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BACKGROUND

ü Thermal processes as combustion of waste- and biofuels lead to ash related 
problems:                                                          

1. Bed Agglomeration
2. Fouling
3. Corrosion

ü Pyrolysis and gasification gives tars and carbon rich solid products containing 
ash.

ü Experimental methods reveal valuable information regarding ash-related 
problems in thermal system

ü But, full understanding of mechanisms behind ash transformation behaviour is 
not attainable by experimental methods
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BACKGROUND

Modelling can be a good help to understand real processes:                                                          
ü Computational Fluid Dynamics, CFD, is used to se the flow scheme, 

temperature gradients etc.

ü Thermodynamic equilibrium modelling to model what compounds are formed 
at specific conditions

-Temperature
-Pressure
-Composition

NOTE! Thermal equilibrium is only valid at high temperatures! > 400°C
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OBJECTIVE

ü Model thermal processes in Fluidized Bed applications
-Bubbling fluidized Bed (BFB) Boiler
-Circulating fluidized bed (CFB) boiler 
-Dual fluidized bed (DFB) gasifier 

ü Compare with full scale operation (or lab scale)

ü Find suitable models that are useful for boiler and gasifier owners

2019-03-14

DFB



APPROACH

ü Find the boundaries of the new model

ü Find relevant data for the real process
-Temperature profile
-Fuel flows and composition
-Air/fuel ratio
-Pressure

ü Decide and evaluate input data!!!!
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APPROACH

Input data are most important because:

ü They decide what elements are available
- O
- S
- Ca
- Cl

ü What compounds can be formed

Shit in → shit out!
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APPROACH CHEMICAL FRACTIONATION
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APPROACH CHEMICAL FRACTIONATION
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APPROACH IMPROVED MODEL  MODEL 1
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Reaktive part of the fuel!



APPROACH MODEL 2
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APPROACH DATABASES

Important to choose the right databases

Often used by us:

For stoichiometric gas and 
the condensed phase

FactPS

FToxide

FTsalt
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For solid and liquid 
(molten) solution phases

FToxide-SLAFGA

FT-salt-CSOB

FT-salt-SALTF



APPROACH SENSITIVITY ANALYSES

Sensitivity analyses of the input data has to be done!

ü Small changes in one or more input data could give large differences in 
results

ü These has to be found

Ex: Only the available 

oxygen is changed
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RESULTS MODEL 1 AGGLOMERAION OR NOT
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No agglomeration Agglomeration

Ref 870°C AW 750°C



RESULTS MODEL 2 AMOUNT OF MELT IN THE CONDENSED PHASE 
CAUSING DEPOSIT FORMATION
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(a) quantity of  melt in the condensed phase and (b) percentage of  melt in the condensed phase, with a flue gas temperature of 650 to 550 ºC, 
calculated by thermodynamic equilibrium modeling (Paper IV Farzad Modarian PhD-thesis)



KME711: CORROSION EXPOSURES IN THE WASTE FIRED CFB 
APPROACH P15 AT HÄNDELÖ
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MODELLING APPROACH

Hot flue gas

Condensed phase

Gas phase cooling 
down (step 2)

Combustion 
(step 1)

Analysis of the solid 
waste

Chemical elemental 
analysis

+
Chemical fractionation

reactive fraction of ash-
forming elements

T = 860 °C
P = 1 atm

Flue gas temperature       
(900-700 °C )

less-reactive fraction of ash-
forming elements

Bottom Ash

Thermodynamic Equilibrium Calculations

Alkali chloride concentrations 
(ppm)



THERMODYNAMIC EQUILIBRIUM CALCULATIONS
ØTool : FactSage 7 (the thermochemical software and databases)
üThermodynamic databases used: FactPS, FToxid and FTsalt

ØInput data and assumptions:
ü Input elements (reactive fraction): C, H , N , O , Cl , S , K , Na , Ca, Mg, Si, P, Zn and Pb

ü Other elements excluded, owing to their less-reactive nature or very low concentrations

ü Air/fuel ratio: 6 vol % excess O2 in the flue gas

ü One step combustion due to the uniform temperature profile in the furnace of the CFB bolier



ALKALI CHLORIDE CONCENTRATIONS IN THE HOT FLUE GAS (REF 
CASE)
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ALKALI CHLORIDE CONCENTRATIONS DURING GAS PHASE COOLING 
DOWN (REF CASE)

Condensation as solution phase (A) Condensation as pure solid (B)
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ALKALI CHLORIDE CONCENTRATIONS DURING GAS PHASE 
COOLING DOWN (AMMONIUM SULPHATE CASE)
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ALKALI CHLORIDE CONCENTRATIONS DURING GAS PHASE 
COOLING DOWN MEASURED AND MODELLED
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CONCLUSIONS
ü Thermodynamic modelling is a useful tool for analyses of thermal processes

ü Input data and data bases should be chosen carefully

ü Sensitivity analyses are very important 

ü Not valid for low temperatures

ü Could be used and developed for more complicated systems
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Thank you!



APPROACH DFB GASIFIER
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Labb scale BFB reactor

Dual fluidized-ded steam gasifier, DFB



APPROACH FUEL
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APPROACH DFB GASIFIER
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APPROACH DATABASES
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Database Solution phase

FToxid SLAGA (molten oxide of  K2O, Na2O, SiO2, CaO, MgO, P2O5

+ dilute sulphides)

FToxid OlivA (solid solution: Mg, Ca//SiO4)

FTsalt SALTF ( molten salt: Na+,K+//Cl ̄ , SO4
2 ̄ ,CO3

2 ̄ ,NO3 ̄ ,OH ̄)

FTpulp MELTA (molten salt: Na+,K+//Cl ̄ , SO4
2 ̄ ,CO3

2 ̄,OH ̄ ,S2 ̄)



RESULTS COMPOSITION AND MELTING BEHAVIOR IN DFB GASIFIER
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The calculated equilibrium composition and melting behaviour of the fuel-derived ash at different 
temperatures in the (a) gasification and (b) combustion reactors of the DFB gasifier



RESULTS COMPOSITION AND MELTING BEHAVIOR IN DFB GASIFIER
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CONCLUSIONS
ü Thermodynamic modelling is a useful tool for analyses of thermal processes

ü Input data and data bases should be chosen carefully

ü Sensitivity analyses are very important 

ü Not valid for low temperatures

ü Could be used and developed for more complicated systems
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