RESEARCH PROGRAM VIBRATIONS ENERGIFORSK VIBRATIONS GROUP

Vibrations caused by load-follow in Nuclear Power Plants

Impact on the dynamic behavior of significant systems, structures and components

Rainer Nordmann & Christopher Ranisch Fraunhofer-Institute structural durability and system reliability LBF www.lbf.fraunhofer.de

AGENDA

- Introduction: project description
- Vibration phenomena in NPP components and systems
- Impact of load-follow on process and operating parameters
- Vibrations in NPP components and systems due to load-follow
 - Main recirculation pumps
 - Piping system
- Experimental & numerical methods and evaluation criteria for vibration problems in NPPs due to load-follow
- Mitigation methods for vibration problems in NPPs
- Conclusion

AGENDA

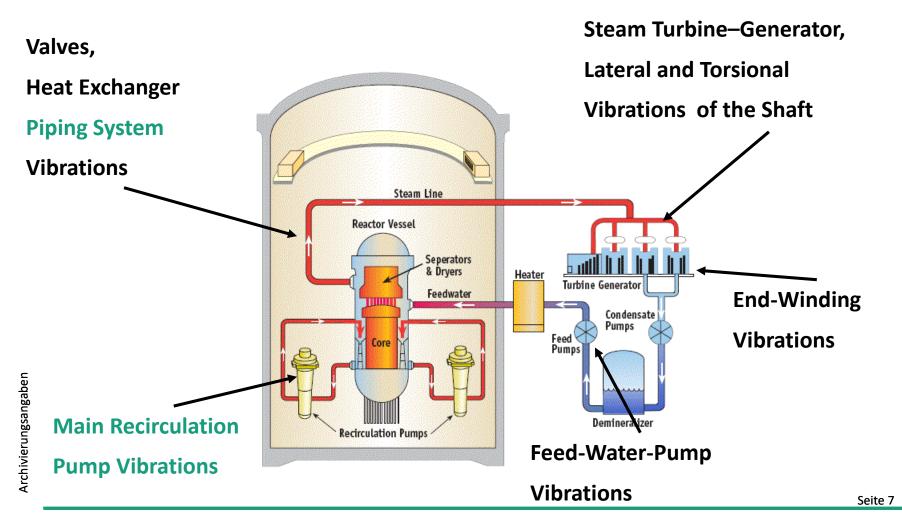
- Introduction: project description
- Vibration phenomena in NPP components and systems
- Impact of load-follow on process and operating parameters
- Vibrations in NPP components and systems due to load-follow
 - Main recirculation pumps
 - Piping system
- Experimental & numerical methods and evaluation criteria for vibration problems in NPPs due to load-follow
- Mitigation methods for vibration problems in NPPs
- Conclusion

Introduction: project description

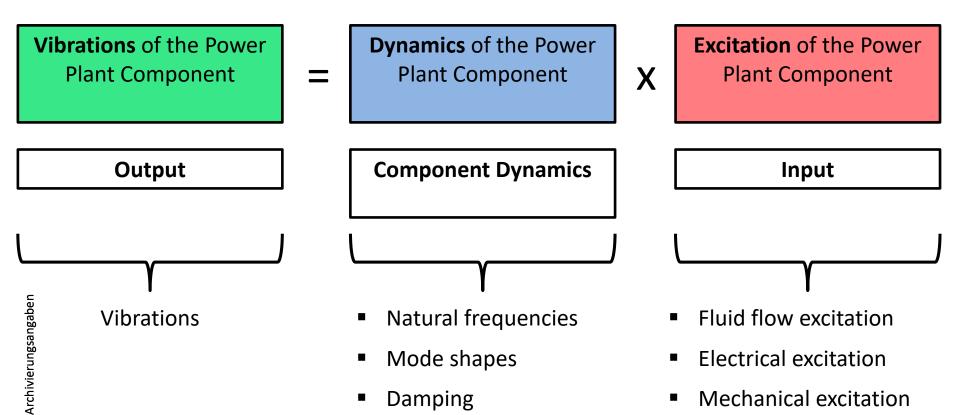
Objective of the project

- Nuclear Power Plants have been constructed as base load plants generating electrical power at stable load
- Load-follow (part-load operation) of NPP becomes essential due to significant increase of highly intermittent power sources, like solar, wind,...
- Risk of vibrations due to load-follow has to be minimized
 - Understanding of what type of problem may occur is essential

Introduction: project description

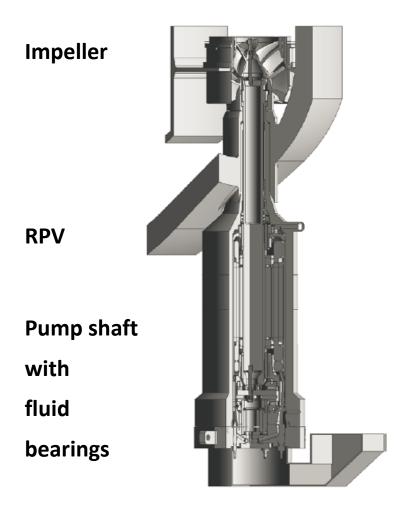

Scope of the project

- Vibration phenomena in NPP components and systems
- Impact of load-follow on process and operating parameters
- Vibrations in NPP components and systems at part-load
- Evaluation of vibrations in NPPs due to load-follow


AGENDA

- Introduction: project description
- Vibration phenomena in NPP components and systems
- Impact of load-follow on process and operating parameters
- Vibrations in NPP components and systems due to load-follow
 - Main recirculation pumps
 - Piping system
- Experimental & numerical methods and evaluation criteria for vibration problems in NPPs due to load-follow
- Mitigation methods for vibration problems in NPPs
- Conclusion

Archivierungsangaben



Vibrations depend on the Dynamics of the component and Excitation

Seite 8

LBF

Vibrations in the **main recirculation pumps** due to:

- Unbalance
- Rotor-stator interaction
- Instability in the fluid bearings
- Misalignment

Vibrations in the **piping system** due to:

- Turbulent buffeting
- Flow pulsations
- Vortex shedding
- Acoustical resonance
- Fluid-elastic instability

Connected pumps and fans
Heat exchanger

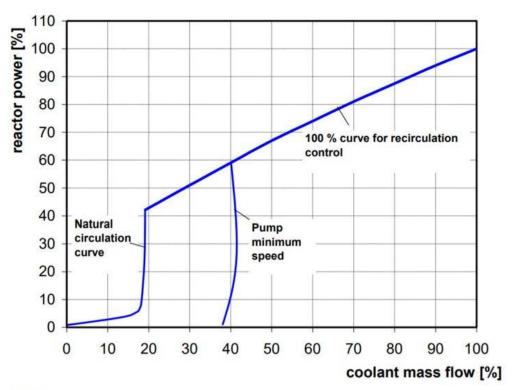
Dead ended side branches

AGENDA

- Introduction: project description
- Vibration phenomena in NPP components and systems
- Impact of load-follow on process and operating parameters
- Vibrations in NPP components and systems due to load-follow
 - Main recirculation pumps
 - Piping system
- Experimental & numerical methods and evaluation criteria for vibration problems in NPPs due to load-follow
- Mitigation methods for vibration problems in NPPs
- Conclusion

Seite 11

Impact of load-follow on process and operating parameters


Load-follow techniques

Thermal power of the reactor core can be changed by:

- A reduced coolant flow by main recirculation pumps
 - Power is proportional to the coolant flow
 - **Load-follow** between **60** and **100**% of rated power
- Inserting the control rods
 - Control rods influence the moderation ratio
 - Load-follow below 60% of rated power

Impact of load-follow on process and operating parameters

Figure 3.14: Schematic characteristic curve for BWR power regulation with recirculation pumps

Source: Ludwig, et al., 2010.

Impact of load-follow on process and operating parameters

Due to **load-follow process** and **operating** parameters **change: Which** parameters **change?**

Power can be expressed by **potential** and **flow quantities**:

Thermodynamics: Enthalpy (Kj/kg) Mass flow (kg/sec)

■ **Mechanics**: Torque (Nm) Angular velocity (1/sec)

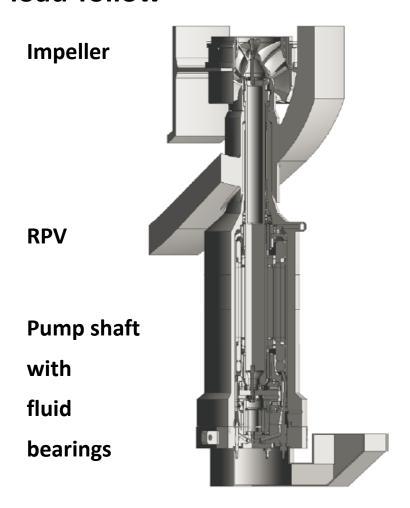
Electrical domain: Voltage (V) Current (I)

Seite 14

Impact of load-follow on process and operating parameters

- Due to the **synchronization** with the **power grid** the **angular velocity** and **voltage** of the **generator-turbine shaft** remain **constant** \rightarrow for the **pumps** the angular **velocity** Ω **changes**
- Mass flow changes proportional to the reduction in power and the enthalpy remains constant

Other **parameters** may **change** as well, namely:


- Pressure
- Temperature
- Moisture content
- Flow-rate of pumps
- Parameters of the generator (i.e. field current)

Seite 15

AGENDA

- Introduction: project description
- Vibration phenomena in NPP components and systems
- Impact of load-follow on process and operating parameters
- Vibrations in NPP components and systems due to load-follow
 - Main recirculation pumps
 - Piping system
- Experimental & numerical methods and evaluation criteria for vibration problems in NPPs due to load-follow
- Mitigation methods for vibration problems in NPPs
- Conclusion

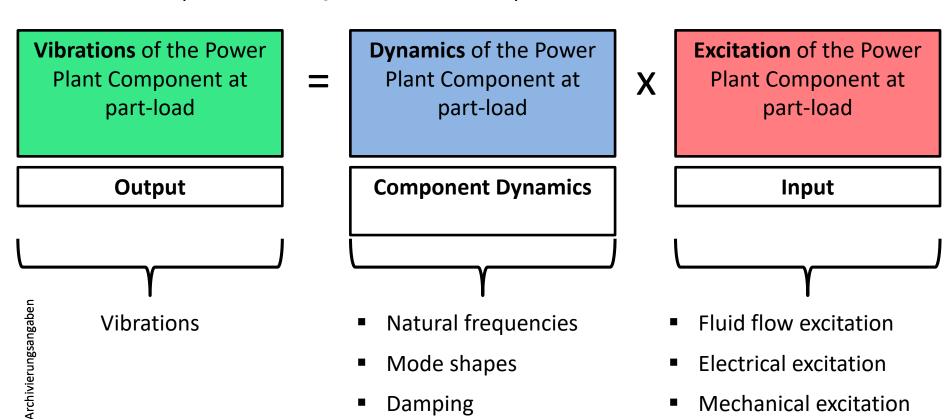
Vibration phenomena in NPP components and systems due to load-follow

At first **vibrations** in the main recirculation **pumps** at **nominal load** are **presented**, followed by **vibrations** in the main recirculation **pumps** at part-load (**load-follow**)

Vibration phenomena in NPP components and systems due to load-follow

Vibrations due to load-follow in the main recirculation pumps

When the power of the reactor is controlled by means of the vertical main recirculation pumps the angular frequency Ω of the pumps will be changed. As a result of a varied Ω the mass flow \dot{m} will be changed as well.


Besides this the pressure p and the static bearing forces are influenced.

- lacksquare The excitation frequencies vary with the angular frequency Ω
- The natural frequencies and damping of the pump are influenced by the angular frequency
- Due to both effects the pump vibrations depend on load-follow

Fraunhofer

Vibration phenomena in NPP components and systems due to load-follow

Vibrations depend on the Dynamics of the component and Excitation

Damping

Mechanical excitation

Seite 19

Vibration phenomena in NPP components and systems due to load-follow

Vibrations in the main recirculation pumps at **nominal** load due **to unbalance excitation**:

```
Excitation (input): Unbalance forces (\sim m \cdot e \cdot \Omega^2), unbalance (m \cdot e), angular frequency \Omega, mech. and hydr. unbalance
```

Component dynamics: Natural frequencies ω_j , damping values α_j and mode shapes ϕ_j depend on the system parameters M,K,D and Ω

Vibrations (output): The vibrations depend on the **excitation** and on the component dynamics. Critical operating states at: $\Omega{\sim}\omega_i$

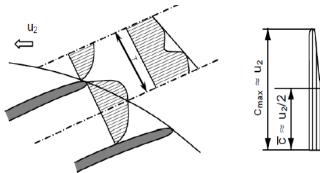
Vibration phenomena in NPP components and systems due to load-follow

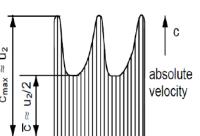
Change of Vibrations in the Recirculation pumps due to Unbalance Excitation in case of Load Follow	Angular Frequency of Pump Shaft Ω	Mass Flow of water mother through the pump	Pressure differences in the pump Δp	Static bearing forces in pumps F_{st}
Excitation Exc. Amplitude $\sim me\Omega^2$	Reduced due to Ω decrease	Possible change of <i>e</i>	No change	No change
Exc. Frequency Ω	Ω reduced	No change	No change	No change
Dynamic Behavior Matrices M, D, K	Change due to Ω change	Damping <i>D</i> may change	Change of Seals: <i>D</i> , <i>K</i>	Change of Brgs.: <i>D</i> , <i>K</i>
Natural Frequencies ω_j	Change due to Ω change	Possibly no change	Small influence	Change to Brgs. <i>D</i> , <i>K</i>
Damping $lpha_j$	Change due to Ω change	Influence on damping	Positive influence	Changedue to Brgs. D, K
Vibration Response Response Amplitude	Probably lower Ampl.	Influence on Amplitude	Small influence	Possible influence
Response Frequency	Ω reduced at part load	No influence	No influence	No influence

Vibration phenomena in NPP components and systems due to load-follow

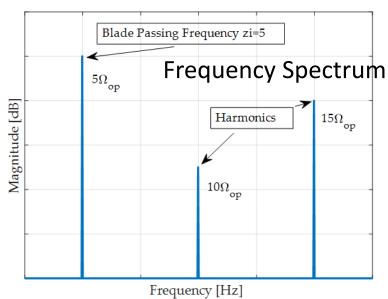
Vibrations in the main recirculation pumps at **nominal** load due to **rotor-fluid interaction**:

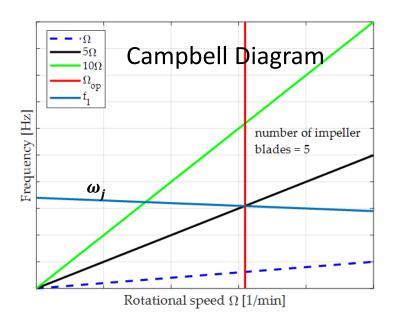
Excitation (input): Hydraulic disturbance forces depend on fluid flow profiles and z_i . Excitation frequencies: $n \cdot z_i \cdot \Omega$ (n = 1,2, ...), z_i :number of impeller blades


Component dynamics: Natural frequencies ω_j , damping values α_j and mode shapes ϕ_j depend on the system parameters M, K, D and Ω


Vibrations (output): The vibrations depend on the rotor-fluid interaction forces and on the component dynamics M, K, D and Ω . Critical operating

states: $n \cdot z_i \cdot \Omega \sim \omega_j$




Vibration phenomena in NPP components and systems due to load-follow

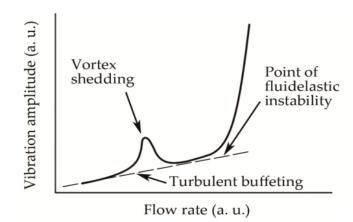
Rotor-fluid-interaction at impeller outlet

Seite 23

Vibration phenomena in NPP components and systems due to load-follow

Change of Vibrations in the Recirculation pumps due to Rotor-Structure Interaction in case of Load Follow	Angular Frequency of Pump Shaft Ω	Mass Flow of water m through the pump	Pressure differences in the pump Δp	Static bearing forces in pumps F_{st}
Excitation Exc.Amplitude $\sim \Omega, m^{\bullet}, \Delta p$	Ampl. change due to Ω	Ampl. change due to m [•] , fluid profile	Ampl.change due to Δp , fluid profile	No change
Exc. Frequencies $n \cdot z_I \cdot \Omega z_I$: number of blades	Change due Ω	No change	No change	No change
Dynamic Behavior Matrices <i>M</i> , <i>D</i> , <i>K</i>	Change due to Ω change	Damping <i>D</i> may change	Change of Seals: <i>D</i> , <i>K</i>	Change of Brgs.: <i>D</i> , <i>K</i>
Natural Frequencies ω_j	Change due to Ω change	Possibly no change	Small influence	Change of Brgs. <i>D</i> , <i>K</i>
Damping $lpha_j$	Change due to Ω change	Influence on damping	Positive influence	Change of Brgs. <i>D</i> , <i>K</i>
Vibration Response Response Amplitude	Influence on Amplitude	Influence on Amplitude	Influence on Amplitude	Possible influence
Response Frequencies $n\cdot z_l\cdot \Omega$	Ω is reduced at part load	No influence	No influence	No influence

AGENDA


- Introduction: project description
- Vibration phenomena in NPP components and systems
- Impact of load-follow on process and operating parameters
- Vibrations in NPP components and systems due to load-follow
 - Main recirculation pumps
 - Piping system
- Experimental & numerical methods and evaluation criteria for vibration problems in NPPs due to load-follow
- Mitigation methods for vibration problems in NPPs
- Conclusion

Vibrations in the **piping system** strongly depend on the **flow conditions**:

- **Flow situation** in the **pipe** or **component** (cross-, axial, two-phase,...)
- Fluid flow velocity
- Pressure and Temperature
- **Geometry** of the **piping** system or **dead ended** side **branches**

- The excitation frequency is proportional to the fluid flow velocity
- Excitation force is quadratic proportional into the fluid flow velocity and proportional to the density of the fluid

$$F_{fiv} = \rho \cdot v_{fluid}^2$$

Vibration phenomena in NPP components and systems due to load-follow

Vibrations in the the **piping** system at **nominal** load due to **flow pulsations** caused by **pumps** or **fans**:

Excitation (input): Pumps or fans may cause flow pulsations (acoustic pulses) with frequency of $\Omega/60$ and higher harmonics

Component dynamics: Natural frequencies ω_j , damping values α_j and mode shapes ϕ_j depend on the system parameters M, K, D

Vibrations (output): The vibrations depend on the excitation frequencies and on the component dynamics M, K, D and Ω . Critical operating

states: $n \cdot \Omega/60 \sim \omega_i$

Fraunhofer

Vibration phenomena in NPP components and systems due to load-follow

Change of Vibrations in the piping system due to flow pulsations	Angular Frequency of Pump Shaft Ω	Temperature T of the fluid	Pressure <i>p</i> of the fluid
Excitation Exc.Amplitude	Reduced due to Ω decrease	Small influence	Small influence
Exc. Frequency	Ω reduced	No change	No change
Dynamic Behavior Matrices M, D, K	No influence	No significant influence	No significant influence
Natural Frequencies ω_j	No influence	No significant influence	No significant influence
Damping $lpha_j$	No influence	No influence	No influence
Vibration Response Response Amplitude	Probably lower Ampl.	Influence on Amplitude	Small influence
Response Frequency	Ω reduced at part load	No influence	No influence

Vibration phenomena in NPP components and systems due to load-follow

Vibrations in the **piping** system at **nominal** load due to **vortex shedding** in **dead ended** side **branches**:

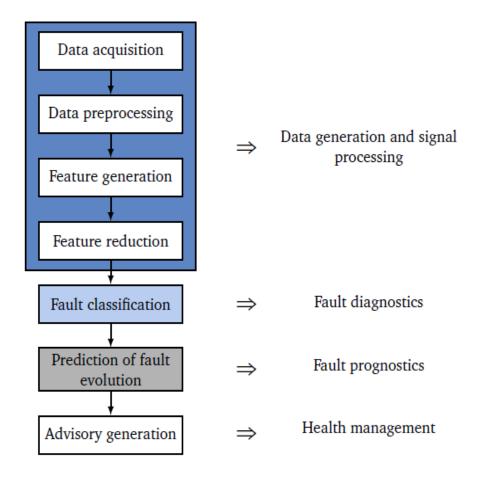
```
Excitation (input): In the piping system vortices are formed at the upstreaming edge of a dead ended side branch with frequencies of f_{vortex} = n \cdot (S_r \cdot v_{fluid})/D_{de}
```

Component dynamics: Natural frequencies ω_j , damping values α_j and mode shapes ϕ_j depend on the system parameters M,K,D

Vibrations (output): The vibrations depend on the excitation frequencies and on the component dynamics M, K, D. Critical operating states: $f_{vortex} \sim f_j$

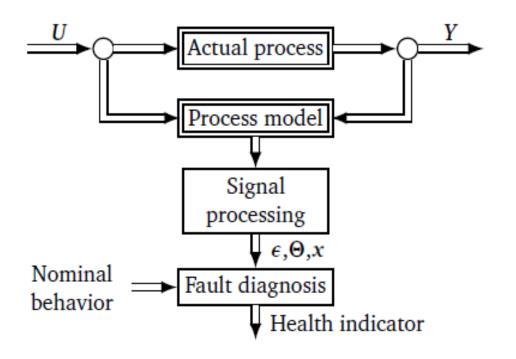
Vibration phenomena in NPP components and systems due to load-follow

Change of Vibrations in the piping system due to vortex shedding	Mass flow m	Temperature T of the fluid	Pressure <i>p</i> of the fluid
Excitation Exc.Amplitude	Small influence	Small influence	Small influence
Exc. Frequency	<i>m</i> reduced and therefore the excitation frequency	No change	No change
Dynamic Behavior Matrices <i>M</i> , <i>D</i> , <i>K</i>	No influence	No significant influence	No significant influence
Natural Frequencies ω_j	No influence	No significant influence	No significant influence
Damping $lpha_j$	No influence	No influence	No influence
Vibration Response Response Amplitude	Small influence on amplitude	No significant influence	Small influence
Response Frequency	\dot{m} is reduced and therefore the response frequencies	No influence	No influence

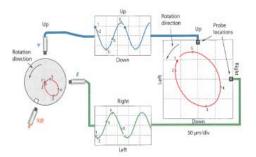


AGENDA

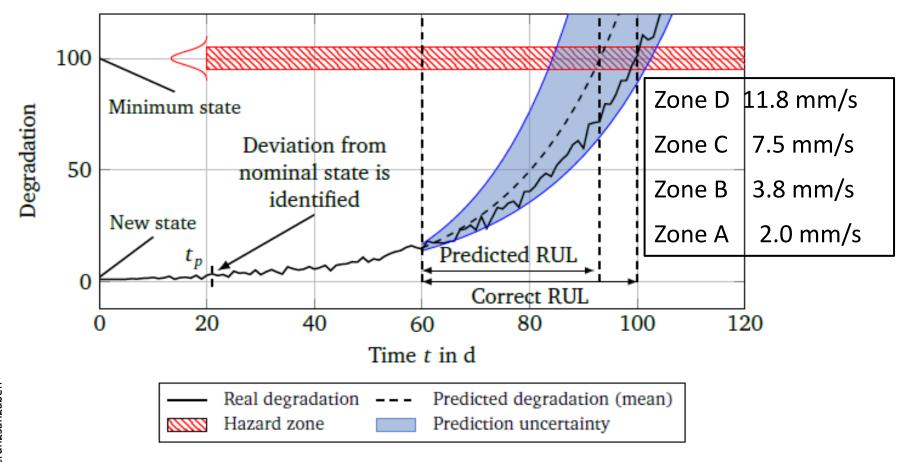
- Introduction: project description
- Vibration phenomena in NPP components and systems
- Impact of load-follow on process and operating parameters
- Vibrations in NPP components and systems due to load-follow
 - Main recirculation pumps
 - Piping system
- Experimental & numerical methods and evaluation criteria for vibration problems in NPPs due to load-follow
- Mitigation methods for vibration problems in NPPs
- Conclusion


LBF

Experimental & numerical methods and evaluation criteria for vibration problems in NPPs due to load follow



Experimental & numerical methods and evaluation criteria for vibration problems in NPPs due to load follow


Measurement

By means of an **FEM** analysis the dynamic response can be predicted.

Fault diagnosis by **Identification methods**

Experimental & numerical methods and evaluation criteria for vibration problems in NPPs due to load follow

AGENDA

- Introduction: project description
- Vibration phenomena in NPP components and systems
- Impact of load-follow on process and operating parameters
- Vibrations in NPP components and systems due to load-follow
 - Main recirculation pumps
 - Piping system
- Experimental & numerical methods and evaluation criteria for vibration problems in NPPs due to load-follow
- Mitigation methods for vibration problems in NPPs
- Conclusion

Archivierungsangaben

Seite 36

Mitigation methods for vibration problems in NPPs

- Vibrations can be mitigated by the following techniques:
 - Reduction of excitation forces
 - Tuning of the system behavior (i.e. adding mass, different materials, passive absorber, ...)
 - Additional damping (i.e. shunt-damping,...)
 - Isolation of exciter or receiver (i.e. mounts,...)

Mitigation methods for vibration problems in NPPs

Effectiveness, Complexity, more Solution variants

Archivierungsangaben

Fraunhofer

Seite 38

AGENDA

- Introduction: project description
- Vibration phenomena in NPP components and systems
- Impact of load-follow on process and operating parameters
- Vibrations in NPP components and systems due to load-follow
 - Main recirculation pumps
 - Piping system
- Experimental & numerical methods and evaluation criteria for vibration problems in NPPs due to load-follow
- Conclusion

Concluison

- In this report only qualitative statements on vibrations due to load-follow were possible
- These statements are based on:
 - A literature study
 - Expert talks with power plant engineers
 - **Experience** from manufacturers
- Quantitative statements of the impact of load-follow can be gathered by means of numerical simulations, field measurements or further expert talks