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GRATE BOILER MODELING FOR SOFT SENSOR BASED CONTROL

Foreword

Denna rapport ar slutrapportering av projekt P43455 Soft-sensor for
rostforbrinning (Energimyndighetens projektnummer 43455-1) inom
SEBRA, samverkansprogrammet for brianslebaserad el- och
varmeproduktion.

Programmets dvergripande mal &r att bidra till langsiktig utveckling av effektiva
miljovénliga energisystemldsningar. Syftet dr att medverka till framtagning av
flexibla branslebaserade anldggningar som kan anpassas till framtida behov och
krav. Programmet ar indelat i fyra teknikomraden: anldggnings- och
forbranningsteknik, processtyrning, material- och kemiteknik samt systemteknik.
Programmet dr en samverkan mellan Energiforsk och Energimyndigheten.
Ingdende projekt finansieras av Energimyndigheten och av de parter som
Energiforsk samlar i programmet.

Detta projekt har haft som syfte att 6ka forstaelsen for forbranning i rosterpannor
och battre kunna kontrollera den. En soft-sensor for bestimning av
flamfrontspositionen har utvecklats baserat pa detaljerade pannmodeller i
Modelica. Det Modelica-bibliotek som projektet utvecklat finns att tillga hos
Energiforsk och hos Modelon som varit utforare av projektet. Huvudprojektledare
har varit Stéphane Velut.

Projektet har foljts av en referensgrupp bestdende av:
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André Hallberg, E.ON

Nader Padban, Vattenfall
Fredrik Johansson, Holmen
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Exekutiv sammanfattning

Med den 6kande andelen fornyelsebara energikéllor i Europa, stélls nya krav for
driften av kraftvarmeverk. Fokus skiftas mot 0kad flexibilitet, sdsom transienta
driftsituationer och drift vid lagre last. For att mdjliggora denna forandring maste
pannans beteende analyseras, sa att effekterna av drift vid de nya arbetspunkterna
kan utvérderas och begransande faktorer kan identifieras.

Anvandningen av rosterpannor ar utbredd inom kraftproduktionsindustrin. De ar
flexibla da deras konstruktion méjliggor drift med bréansle med varierande
sammansédttning, sasom biobrénslen eller hushallsavfall. Denna flexibilitet leder
ocksa till att kraftverken, atminstone i teorin, kan drivas med det for stunden
billigaste fasta fornyelsebara branslet som finns tillgangligt. En av nackdelarna
med rosterpannor dr den relativt langa uppehallstid bréanslet har pa rosten, vilket
tillsammans med variationer i branslets sammansattning gor processen svar att
reglera.

Ett av reglerproblemen for en panna av denna typ ror flamfrontspositionen, det
vill saga positionen dar allt bréansle har forbrants. For att optimera pannans
prestanda och inte skada komponenter far flamfrontspositionen inte avvika for
mycket fran sitt nominella lige. Om forbranningen &ar avslutad for tidigt utsatts
rosten for péafrestande stralning och pannans kapacitets utnyttjas inte till fullo. Om
badden & andra sidan 6verfylls riskerar oférbrant material att folja med i
askutmatningen, vilket slosar med brénslet och kan skada transportbanden for
askan. Av dessa anledningar ar det till stor nytta att kunna styra
flamfrontspositionen, men i praktiken gors detta séllan pa grund av att méatningar
av flamfrontspositionen saknas. Detta da utrustningen for att gora sddana
maétningar, som IR-kameror och bildbehandlingsmjukvara, ar dyr och kraver
underhall.

I detta projekt har en soft-sensor som kan uppskatta baddhojd och flamfrontens
position baserat pa existerande matningar av bransle-, luft- och rokgasfloden och
av ugntemperatur utvecklats. Pa detta satt tillats reglering av flamfrontspositionen
utan dyr matutrustning. Detta genomfordes genom att modeller utvecklades i
Modelica, som tillsammans med svartlddemodellering anvéndes for att ta fram en
observerare. Modellerna ar baserade pa Modelica Standard Library, samt tidigare
projekt inom omradet.

Modellerna i detta projekt avviker fran de typiska modelleringsmetoder som
normalt anvands pa omradet. Dessa ar antingen detaljerade CFD-modeller som
beskriver forbranningen i detalj, men inte kan anvandas i systemsimuleringar pa
grund av sin komplexitet, eller kraftigt férenklade modeller f6r reglerdesign, som
bara kan representera processen oversiktligt. Med den fysikaliska modellering som
Modelica tillater eftersdks en medelvdg mellan dessa bada metoder, dar den
viktiga fysiken fdngas i en enklare modell.

En forenklad modell av en rosterpanna har tagits fram for att kvalitativt validera
ett generiskt reglersystem samt for att testa de metoder som ska anvandas i
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projektet pa ett enklare system. Malet med modellen &r ett kvalitativt rimligt
beteende béade statiskt och dynamisk.

Den forenklade modellen har primért- och sekundart luftflode samt bransleflode
som insignaler och matsignaler pa temperatur och syrehalt i rokgasen, samt total
frigjord vdarme som utsignaler. Utdver dessa ar den viktigaste signalen i modellen
flamfrontspositionen, som ar vad projektet som helhet kretsar kring.

Den forenklade pannan bestar av tre delar: torkning, forbréanning och
rokgasspadning. Torkningsprocessen for branslet &r modellerad med en konstant
hastighet som &r proportionell mot den totala mangden vatten pa badden. For att
modellera den tid det tar for branslet att varmas till vattnets kokpunkt anviands en
fordrojningsfunktion. Varmeflodet som krévs for att hetta upp brénslet och
foranga vattnet tas fran férbranningsmodellen.

Forbranningsmodellen dr modellerad som en integrator, déar balansen mellan det
inkommande bransleflodet och den stokiometriska foérbranningen med det primara
luftflédet avgor om massan bréansle pa badden ¢kar eller minskar. Bréanslet pa
badden antas vara triangulért fordelat i riktningen mellan bréansleintaget och
askuppsamlingen med en konstant vinkel. Detta innebar att massan brénsle &r
proportionell med langden och hdjden av brénslet. Flamfrontens position antas
vara samma som brénslets langd. Forhallandet mellan luft och brénsle vid
komplett forbranning sattes initialt konstant. Detta gav dock upphov till att
flamfrontens position inte blev observerbar, pa grund av att flera baddlangder kan
ge upphov till samma utsignaler. For att atgarda detta infordes darfor effektivitet i
forbranningen, som ar en funktion av baddens langd. Massan som forbranns bildar
tillsammans med den primaéra luften och vattendngan fran torkningsprocessen
rokgasflodet. Detta blandas upp med det sekundara luftflodet i rostermodellens
tredje del. Har sanks rokgasens temperatur och syre tillsdtts (da forbranningen
med den priméra rokgasen antogs stokiometrisk innehaller gasen som bildats vid
férbranningen inget syre) genom enkla fysikaliska samband.

Den kompletta forenklade modellen har fyra dynamiska tillstand. Den uppvisar
tillfredsstallande kvalitativa resultat, men ar otillracklig for en mer detaljerad
analys, framforallt pa grund av att bréanslets relativa fordelning pa badden ar
konstant, for att forbranningsmodellen dér endast priméarluften anvands ar
orealistisk, samt pa grund av effektivitetsfaktorn som lades till i
forbranningsmodellen, som endast har 16sa fysikaliska grunder.

Ett forenklat generiskt reglersystem har utvecklats for att undersoka beteendet for
den férenklade rosterpannemodellen med en sluten reglerloop. Detta system
kommer &dven ligga till grund for reglersystemet for den komplexa modellen.
Reglerstrukturen ar baserad pa standardmetoder inom kraftverksreglering, dar
styrningen bestdms genom en kombination av framkoppling och aterkoppling. For
modellerna som ar utvecklade i detta projekt anvands tvé av utsignalerna som
angivits for den forenklade processen som insignaler till reglersystemet; det totala
varmeflodet och syrehalten i rokgasen.

Tre PID regulatorer anvands i systemet for att styra last/bréansleflode,
last/primarluft och syrehalt. Deras funktion summeras nedan.
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e Last/bransleflode: Framforallt integralverkande reglering med ldngsam
tidskonstant. Dess syfte ar att motverka variationer i branslets varmevérde
over langre tid (timmar). Ger tillsammans med framkopplingssignalen for
lasten brénsleflodet till pannan.

e Last/primarluft: Framforallt P- och D-reglering med syftet att motverka
variationer i angtryck. Ger tillsammans med motsvarande framkopplingsterm
det priméra luftflddet.

e Syrereglering: Reglerar forbranningens stokiometri genom att styra det
sekundara luftflodet. Regulatorn &r relativt langsam och &r instélld for att
bibehalla ett 6verflod av syre 6ver langre tidsperioder.

Noterbart ar att ingen hansyn tas till branslets fordelning i pannan i denna typ av
reglersystem.

Da den foérenklade modellen &r otillracklig for att beskriva dynamiken i en verklig
panna pa ett tillfredstéllande satt utvecklades en detaljerad modell utifran
grundldggande fysikaliska principer. Kdrnan i denna modell dr baddsegment, som
beskriver de olika processer som sker nér bréanslet torkas och omvandlas till
brannbara gaser, samt forbranningsmodellen. Dessa komponenter ingar i ett storre
system som beskriver pannan som helhet och darfor dven innefattar modeller for
rosten, pannans viggar, varmeoverforingsmodeller, gasvolymer samt randvillkor
for varme- och massfloden. Utover dessa tillkommer dven mediamodeller, som
anvands for att beskriva de termodynamiska egenskaperna hos bransle, luft och
rokgas. De viktigaste delarna i detta system presenteras héarnast.

Luft- och rokgasmediet modelleras som en ideal gasblandning, med hjalp av
interfaceklasser som finns tillgangliga i MSL. Mediet bestar av kvéve, syre,
kolmonoxid, koldioxid, vattendnga och metan.

Brénslets sammanséattning beskrivs med hjalp av en kombination av ultimat och
proximat analys. Bdda beskrivningarna ar nédvandiga da sammansattningen bade
pa atomniva och molekylar niva behovs for att kemiska balanser och
energiinnehall ska kunna representeras korrekt. Varje kategori i den proximata
beskrivningen av branslet modelleras genom enkla antaganden sasom konstant
varmekapacitet, forutom vattnet, som representeras med det fardiga tvafasmediet
IF97, som finns i MSL.

Varje Baddsegment har fyra portar, dar brénsle och gas kommer in och leds ut.
Utover dessa finns dven varmeportar som mojliggodr varmeutbyte med
omgivningen via stralning och konduktion. Modellen bestar av tre undermodeller
som beskriver hur branslet torkas och devolatiliseras samt férgasningen av det
forkolnade branslet. Var och en dessa dar modellerade enligt foljande:

e Torkning: Nar massan vattenanga i ett branslesegment overstiger noll, 6verfors
ett flode anga fran brénslet till gasvolymen, som dr proportionell med angans
massa.

e Devolatilisering: Flyktiga @mnen i branslet flodar till gasvolymen i form av
vate, kolmonoxid, vattenadnga, koldioxid och metan. Processen drivs av
Arrhenius ekvation. Andelen vattenanga och koldioxid i den producerade
gasen bestdms av fixa massfraktioner, medan dvriga &mnen bestams av
massbalanser utifran brénslets sammanséattning.
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e Forgasning: Baserat pa den tillgdngliga mangden koldioxid, syre och
vattenanga i gasen och reaktionshastigheter tagna fran litteratur, reagerar
dessa @&mnen med kol i bréanslet, vilket resulterar i produktion av kolmonoxid,
koldioxid och vate.

Med hjalp av mass- och energibalanser for brénslet och gasen berdknas hur stora
respektive massfloden ut ur modellen ska vara, samt vid vilka temperaturer de
sker. Gasflodena ar drivna av tryckskillnader, medan brénslet drivs framat med
hjalp av rostens rorelse, som beskrivs av en hastighet som ges av en insignal.
Geometriskt beskrivs branslet i varje baddsegment som ett ratblock med fix langd
och bredd, medan hdjden berdknas fran den totala méngden brénsle i segmentet.

Forbranningsmodellen ar statisk och uppdelad i tre olika fall, baserat pd mangden
tillgangligt syre. Med hjalp av stokiometri, antaganden om ordningen reaktionerna
sker i och vatten-gas skift-ekvationen forbranns de brannbara @mnena i gasen. Den
frigjorda energin berdknas med hjélp av formationsentalpin for respektive amne.

Baddsegmenten kopplas samman i serie och bildar pa detta satt branslebadden.
Under varje segment i badden finns ett rostsegment som dr sammankopplat med
badden genom luftflodet, som gar genom rosten och via en termisk port, for att
fanga varmeoverforingen mellan dem bada. Rostsegmenten bestar av termiska
massor och rérmodeller for luftflodet.

Gaserna som frigors i badden leds tillsammans med det primara luftflodet till den
primara forbranningsmodellen, blandas med det sekundéra luftflédet och sedan
vidare till den sekundéra forbranningsmodellen. Férbranningsmodellerna,
baddsegmenten samt termiska modeller f6r pannans viggar ar alla kopplade till en
generell strdlningsmodell, som representerar de viktigaste varmeflodena mellan
dessa delar.

Flamfrontens position berdknas med hjalp av forgasningsmassflodet fran
segmenten. Flamfrontens position antas vara dar 90 procent av det totala
forgasningsmassflodet skett.

For att validera modellen anvédndes data fran Sysavs avfallskraftvarmeverk vid
Spillepengen i Malmo. En svéarighet med denna validering var den begransade
méngden dynamiska métdata fran anldggningen, vilket ofta &r fallet for denna typ
av kraftverk. For att kringga att det momentana bréansleflodet inte méts och att
bréanslets sammansattning inte dr kdnt anvandes standarden EN-12952-15 for att
validera modellen statiskt. Vidare finns inte heller matningar av rostens hastighet
och flamfrontens position, vilket innebar att valideringen av flamfrontspositionen
mot det verkliga verket endast gjordes indirekt, genom kvalitativ och kvantitativ
analys av modellens 6vergripande beteende.

Den fullstindiga modellen parametriserades for att matcha Sysavs anldggning
enligt ovan. Den har tio badd- och rostersegment, vilket tillsammans med 6vriga
modeller ger en modell med cirka 300 tillstaind och 3700 variabler. Simuleringar av
modellen visade att de kvalitativa och kvantitativa resultaten 6verensstimmer
med forvantningarna. De olika underprocesserna i badden sker vid de forvantade
temperaturerna och massfloden, energifloden och temperaturer i ovrigt ar ocksa
rimliga. Vissa transienta beteenden i temperatur och syrehalt i rokgasen
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identifierades som orsakade av baddens diskretisering. Modellen kan simuleras
cirka 40 génger snabbare &n realtid, men den har vissa robusthetsproblem, vilket
visar sig begrdnsande i vissa senare moment i projektet. En begransad
modelleringsinsats forvantas dock vara tillrdcklig for att 16sa dessa problem.

For att estimera flamfrontens position utifrdn métsignaler anviandes ett artificiellt
neuralt ndtverk (ANN). Detta ar implementerat i Python med paketet NeuroLab.
Att utveckla en observerare med hjélp av unscented kalman-filter (UKF)
undersoktes dven under projektet, men pa grund av det stora antalet tillstdnd
bedomdes det som orimligt att anvanda den komplexa modellen direkt i detta
syfte, framforallt pa grund av observerbarhetsproblematik, men dven pa grund av
berdkningstiden, som skulle blivit oerhort lang pa grund av de manga sigma-
punkterna processen skulle ge upphov till och den relativt langsamma
simuleringshastigheten. Att anvanda en forenklad modell i Kalman-filtret och den
detaljerade modellen for att simulera processen hade dock kunnat vara en majlig
16sning pa detta spar.

Det neurala nédtverket anvander matsignaler som ar tillgangliga i den riktiga
processen for att hitta vikter som minimerar skillnaden mellan natverkets utsignal
och flamfrontens position i modellen. Da ett ANN normalt ar statiskt anvands
samplade signaler som fordrdjs for att fanga systemets dynamik.

Traningsdata togs fram genom att processens insignaler exciteras vid olika
lastforhallanden med en pseudo-random binary signal (PRBS) med varierande
amplitud. For att uppna tydliga variationer i flamfrontens position kombinerades
dessa med trapetsformade variationer av det primaéra luftflodet. Traningsdata
motsvarande cirka 25 timmar genererades pa detta satt och importeras till
NeuroLab.

Olika parametriseringar av det neurala nédtverket utvarderades genom att
natverkets formaga att observera ett separat scenario med samma typ av
variationer i insignalerna som for traningsdatan, men drivet av ett annat random
seed. De basta resultaten erhélls fran ett system med 20 noder i ett lager, med
samplingstiden 120 sekunder och dar insignalerna till natverket dr fordréjda med
noll, ett och tva tidssteg. Resultaten visar att natverket kan reproducera det
generella beteendet hos variationerna i flamfrontspositionen, men att brus och
spikar gor att signalens tillforlitlighet inte kan garanteras generellt.

Ett forslag till forbattrad pannreglering togs fram fran det generiska reglersystem
som tidigare presenterats. Den estimerade flamfrontspositionen adderades
tillsammans med en PID-regulator till systemet. Styrsignalen denna krets
genererar anvéands i styrningen av brénsleflode och primérluft, genom att
styrsignalerna for dessa multipliceras med en faktor framfrontsregleringen
genererar. Experiment pa den forenklade rostermodellen anvandes for att validera
metodens giltighet. Dessa visar att metoden forbattrar reglerprestandan f6r
systemet. Pa grund av robusthetsproblem med den komplexa modellen kunde
denna inte anvindas vid simulering i sluten loop. Av denna anledning ar inte
heller flamfrontsestimeringen medtagen i detta system, istéllet anvinds det
faktiska vérdet.
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Summary

As renewable energy production is increasing, the demands of thermal power
plants is changing. More flexibility is required, such as transient operation and
operation at lower load. This project is aimed at this issue for grate boilers, by

investigating how better control of the flame front position can be achieved.

Flame front position control have traditionally only been possible by using
cameras and image processing to estimate the location of the combustion.
However, since this solution is quite expensive it is rarely found. An alternative
approach, which is the focus of this project, is to utilize existing measurements to
estimate the flame front position. This discipline is also referred to as state
observation and inherently relies on a physical model to calculate the
immeasurable process variables.

Since the estimated variable of interest (the flame front position) is not measured
the validation of the soft-sensor must also rely on adjacent measurements under
the assumption that “if the physics-based model reproduces these measurements
well, then the estimate of immeasurable variables also matches the physical
values”. This approach is commonly found in power plant control in, e.g., coal mill
control, where the mass flow of pulverised coal is usually not measured (see e.g.
[Andersen et al., 2005]). A detailed Modelica model of a grate boiler have thus been
created for this purpose. Using physics-based modelling, the model was created in
a bottom-up approach, where submodels are combined into a complete
representation of the bed, the grate, fuel combustion and transfer of heat and mass.

The bed is the main part of the model, which consists of bed segments which form
a discretization along the flow direction of the fuel. Inside each segment, the
processes of vaporization, pyrolysis and char conversion are modelled. Another
important part of the model is the combustion model, which calculates the
production and composition of flue gas and the released heat, based on the
gaseous fuel composition and temperature. The model also contains a complex
radiation model, to capture the heat transfer between different parts of the bed and
furnace.

To estimate the position of the flame front in the model, an artificial neural
network is used. Training data with random excitation is created and used for
training of the network, which only gets signals that are typically measured in a
real plant as input. The network is implemented in python, using simulation
results imported from Dymola. Experiments with the trained network reveals that
it is likely possible to retrieve the desired information about the flame front from
already existing measurements. Limits in the implementation makes it hard to
draw conclusions about whether the results from the model are applicable in a real
process too, but the limited number of measured signals used in the model is a
promising sign, as additional measurements could simplify the estimation task
considerably.

To verify the usefulness of estimating the flame front position, an improvement
over a generic control scheme developed in the project is proposed, utilizing this
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information. The controller is tested on a simplified grate boiler model, showing
that improvements in performance is achieved with the added information.

10
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1 Introduction

11 BACKGROUND

With an increasing penetration of renewable energy in Europe over the last two
decades the volatility of electricity prices has increased. At the same time,
increased competition within district heat production forces asset owners to review
their production portfolio toward higher production flexibility both in terms of
transient operation (balancing services, day-ahead and intraday markets),
reduction of minimum stable generation (MSG) and choice of fuel. This has
resulted in an increased focus on optimizing plant operation and agility on all
levels from component to systems to portfolio level.

A necessary approach for successful achievement of these improvements is to
identify and mend the restricting (and often underlying) components or processes
in the hierarchy. In thermal heat and power plants restricting components
(ignoring faulty components) are equal to the components with large time
constants (slow) or stochastic behaviour. That is to say the boiler.

Grate boilers are widely used in the power generation industry as they allow for
combustion of heterogeneous fuels such as biomass or household waste, providing
a good fuel flexibility and tolerance against variations in fuel water contents and
heating value. They have the advantage to accept almost any solid fuel and, in
theory, make it possible to select the cheapest renewable fuel available. The price
for this flexibility and tolerance is a big inertia in the combustion dynamics due to
a high residence time of the fuel of 10-20 minutes (grate entry to slag hopper).
Furthermore, in practice a long commissioning time and fine-tuning is the reality
due to the stochastic properties of the fuel (moisture, heating value and ash
content) in combination with a lacking understanding of the dynamic behaviour
under different working conditions.

The main problem is to control the burn-out location or flame front on the grate
and ensure an evenly decreasing bed thickness towards the slag discharge without
exposing or over-filling the grate. Figure 1 shows an illustration of the problems
that can occur if there is insufficient fuel on the grate, such as increased formation
of thermal NOx near the burn-out location (too much air), higher thermal load on
the exposed part of the grate (radiation), and under-utilization of the grate
capacity.

Figure 2 shows an illustration of the problems that can occur in the opposite
scenario, with an over-filled grate. In this case unburnt fuel enters the slag
discharge (waste of money and risk of fire in the slag conveyor system), the CO
formation is higher due to insufficient primary air (can lead to explosions), the
mechanical load is higher, and the furnace temperature is lower.

13
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Figure 1. lllustration of exposed grate with insufficient fuel.
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Figure 2. lllustration of over-filled grate with unburned fuel entering the slag hopper.
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Good control of the burn-out location and an evenly decreasing bed thickness
would result in a better utilization of the grate with a narrower safety margin.
These quantities can unfortunately not be measured online very well, and plants
are not commonly equipped with the state-of-the-art and expensive technology
such as IR cameras and image processing software. Moreover, those measurements
do not provide any information about the process behaviour to support the boiler
control design. A grate boiler exhibits indeed a complex dynamical behaviour that
should be well understood for the design and tuning of the control system;
instabilities (from fuel/air imbalance) and non-minimum phase behaviour
(increasing fuel flow causes temporarily a decrease in power output).
Consequently, the boiler control is often tuned in a very conservative way, making
the overall boiler control slow and sensitive to disturbances, causing large
variations in NOx and CO emissions. This calls for a model-based soft sensor that
can estimate the flame front by combining a physical model of the plant and
commonly available measurements, see illustration of the concept in Figure 3. The
model-based soft sensor can additionally improve the understanding of the
furnace behaviour and thereby the design and tuning of the boiler control system.
This, in turn, can lead to a better use of the boiler capacity, the utilization of cheap
low-grade fuels (high ash and moisture contents, low heating value) and more
stable emissions.

The main processes taking place in grate fired boilers are illustrated in Figure 4.
Wet fuel is heated and dried on the first part of the grate. The fuel then undergoes
a devolatilization process where volatiles are removed through pyrolysis. Char
then reacts with the surrounding gases at high temperature, resulting in
gasification of the substance and release of heat. The remaining ash is finally
cooled down on the last part of the grate. The gases released from the fuel on the
grate is subsequently combusted above the grate with the addition of secondary air
through air-staging.

Upstream measurements Downstream measurements
4 A "\ s - ™,
' ) .
PA flow ———» -«—— 02 concentration

PA-temperature ———»| «——— Furnace temperature

Soft sensor

—> «— Flue gas flow

Fuel flow ———»| —

I !

Estimated states
- burnout location
- bed thickness

Improved control strategy

Figure 3. lllustration of the soft sensor concept for estimation of, e.g., burn-out location.
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Figure 4. lllustration of the main processes taking place in grate fired boilers.

Prior studies of grate combustion typically fall into one of two categories:

1.

Highly detailed models (CFD), e.g., see [Yin et al., 2008], describing the
combustion part on either a short time scale (reaction kinetics) or in steady
state. These models do not consider the dynamic changes in inputs that occur
in normal closed-loop operation of a grate boiler. They require detailed
information about plant geometry, boundary conditions and parameter values
and are too computationally expensive for online use.

Simple, causal transient models used for control purposes. They have the
advantage of high simulation speed and a limited number of parameters.
However, their simplicity means that they only capture the overall dynamics
and not the restricting details of the process that limit the grate operation
(burnout zone, thermal/mechanical load etc.). The models are most often
implemented in a non-standardized and structurally rigid way (manual
equation rewriting) making them difficult to reuse and practically impossible
to reconfigure and adapt to other plants/fuels. See, e.g., [Ramstrom et al., 2004]
and [Paces et al., 2011].

The gap between the two categories calls for a setup that captures the right level of
detail for the plant in question. Since the required scope/fidelity and available

measurements will vary from plant to plant (even with similar boiler

configurations) the dynamic model that constitutes the foundation for a soft sensor

must be highly adaptable. In the field of soft sensors, implementation is

predominantly done with highly customized code conforming, at most, to external
interfacing standards. This makes it hard to adapt the internal models used for the

estimation to new conditions. The aim has therefore been to make use of a

standardized modelling language (Modelica), model interfacing technologies
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(Functional Mock-up Interface) and measurement signal interfaces (OPC) to
provide a transparent workflow.

The soft sensor plant model derived in this work is used for two purposes with
their specific constraints:

1. Building a soft sensor that estimates flame front. Need for real-time
performance.

2. Designing a control strategy that fully exploits the bed capacity and results in
stable and low emissions.

A requirement has thus been that the model must be structurally compatible with
both purposes, i.e. share the same interface to external measurements and internal
submodels (grate metal, bed segment, gas combustion etc.). Furthermore, a
requirement has also been that it must be easy to replace a simple formulation of,
e.g., fuel drying with a more complex one and vice versa as well as to specify, say,
the spatial discretization of the bed.

Modelica is an open and equation-based language for physical modelling that
inherently supports this modular and component-based way of constructing
models of varying complexity. The Functional Mock-up Interface (FMI) is an
industrial standard interface that allows models of any complexity to be compiled
into a single block accepting, e.g., plant measurements as inputs and producing
estimated states as outputs. It takes care of the transition from a tool/language
specific model to a standardized implementation. Furthermore, the combination of
multiple physical domains (mechanical, chemical, thermal, thermo-fluid, etc.) in
the same modelling framework is usually done in an ad-hoc way. Modelica is a
true multi-domain language that has a clear interface between different physical
domains making it easy to adjust model details, e.g., in heat transmission
correlations, while keeping the same details in the hydraulic domain.

The description and quantification of the chemical processes taking place in
combustion are extremely complicated and much time can be spent in this field. A
key effort in this project has therefore been to balance detailedness and simplicity.
The work here thus builds on previous modelling efforts published in, e.g.,
[Ramstrom et al., 2005], [Kuijk, 2008], [Bauer et al., 2010]. Additionally, Added
Values has previously developed a model together with Aalborg University,
Institute of Energy Technology dealing with the modelling and simulation of
biomass combustion in a grate fired boiler. In this work a flexible model structure
was specifically considered, see [Veje, 2016a] and [Veje, 2016b].

1.2 REPORT OUTLINE

To begin with, a preliminary, simple grate boiler model has been set up from the
requirements of a generic grate boiler control system. The purpose is to validate
the behaviour of the closed-loop control and to get initial experience with state
observation of the process in question.

Subsequently, detailed models have been developed from a first principles
approach and continuing experience from previous work in the same field, e.g.
[Ullum, 2000], [Veje, 2016a], [Veje, 2016b]. The used modelling framework adhere
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to the requirements outlined in Section 1.1 and is based on the Modelica modelling
language.

The models are then used to construct a detailed grate boiler simulation
environment, which is used as “the truth” in the following estimator design. The
Simulation model is parameterized according to approximate dimensions and
layout of the Sysav WtE plant in Malmd. Since measurements in the fuel and flue
gas path in power plants are always very limited — and the Sysav plant is no
exception — it is not possible to make a complete validation of the dynamic
combustion model against measurement data. However, to address this common
problem in power plant modelling, the EN-12952-15 norm has been used to recover
steady state values of some of the missing boundary values for the model using
measurements from Sysav. Given the scope of the project, the intent is not to
provide an exact replica model of Sysav since this is an extensive task itself, even
with existing simulation tools. Rather, the purpose of the model is to reproduce
realistic dynamic behaviour of immeasurable quantities such as the flame front
position such that soft-sensor ideas can be tested on a conceptual level.

Several approaches for estimating the flame front have been considered, finally
settling on an Artificial Neural Network (ANN) solution as the full model
developed in the project was too complex to use directly in a Kalman filter
implementation.

Finally, an extended control concept is presented — based on the initial, generic
grate boiler control — that stabilizes the flame front location, in simulations with
the simplified grate boiler model.
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2  Preliminary Grate Boiler Model

A preliminary simple model has been set up to qualitatively validate a generic
grate combustion control scheme and to be able to make a comparison between a
simple and a complex model. The model should simply reproduce the steady-state
and transient responses that can be immediately reasoned to justify the behaviour
of the controlled process. The simple model also serves as a tool to test soft sensor
implementations and designs and to find potential limitations and solutions in an
early stage of the project.

2.1 MODEL REQUIREMENTS

The model was designed using a top-down approach from the input/output
requirements of the generic control structure resulting in the following inputs;

e fuel mass flow rate,
e primary air (PA) mass flow rate,
e secondary air (SA) mass flow rate,

and the following outputs;

e oxygen concentration (“O2 contents”) in the flue gas,
e flue gas temperature after final combustion stage (SA injection),
e total heat release from combustion,

as shown in Figure 5 below.

Fuel mass flow (wet) = = Flue gas temperature
. . Simple causal .
Primary air flow ——————— i (02 concentration (wet)
grate model
Secondary air flow ——————— = —— = Total heat flow rate

Figure 5. 1/0 requirements for a simple grate combustion model.

In addition to the input /output signals, fuel and air properties (temperature,
moisture contents etc.) are given as parameters.

No chemical reactions are considered in the simple preliminary model, as such
considerations quickly grow in complexity. However, this is the focal point in
subsequent modelling work.
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2.2 MODEL CONSTRUCTION

P
FDmrg neatﬂnwraqmremenc_+

Fuel Stoichit tric
e e — | Fueldrying L B =fesss—e|  Dilution, 02 |——# O2 concentration (wet)
flow (wet) combustion

Primary air flow J

| —® Flue gas temperature

Water re-addition e [ L Total heat flow rate

e primary ai = @ ) Airmixing
Secondary air flow

Figure 6. Total process of simple grate combustion model.

Figure 6 shows the internal sub-processes of the simplified model, which consists
of the following blocks:

Fuel drying.

Stoichiometric combustion of dry fuel.

Re-addition of vaporized moisture.

Mixing of excess primary air from combustion with secondary air.

Gl LN

Addition of total secondary air to increase oxygen contents in flue gas to a
specified value.

The process and its submodels were constructed from the following assumptions
and behavioural requirements. All submodels contain equations for conservation
of mass and energy.

2.2.1 Fuel Drying

Wet fuel enters the grate and is continuously dried at a constant rate k, multiplied
by the total accumulated mass of water m,, on the grate. A variable delay is used to
simulate a “dead zone” in the start of the grate, where the cold wet fuel is heated to
the water vaporization temperature (see also [Bauer et al., 2010]). The delay T; is
set to

kdmw

T,=———
¢ mwf(l — Xp20)

where m,,; is the wet fuel inlet mass flow, xy,, is the water content ratio (0-1), and
kg is a parameter, which can be used to tune the delay (e.g., 30 seconds at nominal
steady state load). The delay will thus go to zero when the accumulated water
mass approaches 0 and the delay will also depend on the dryness of the fuel
added. Given the moisture contents and temperature of the fuel, the heat required
to raise the temperature to 100 °C and vaporize the water is calculated and exposed
as an output signal. This value must later be subtracted from the heat release in the
stoichiometric combustion. The mass flow rates of dried fuel and water vapor,
respectively, are also given as output signals. Figure 7 below shows the responses
of a step in wet fuel input. The change in dry fuel flow is delayed approximately 27
seconds relative to the step change and the vapor flow only slowly starts to
increase after the delay time, since it is a function of the accumulated mass
(changes very slowly). The required heat (Q_flow) immediately increases with the
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step in wet fuel flow (cold wet fuel enters the bed) and then gradually increases
with the increasing vapor flow.

— drying.m_flow_wetFuel drying.m_flow_dryFuel

20
I
154
w
2
1.0 I
0.5 T T T T T T T T T T T T T T T T T T T
0 50 100 150 200
—— drying.m_flow_vapour
0.670
7 4
o
= 0.668—
0.666 T T T T T T T T T T T T T T T T T T T
0 50 100 150 200
—— drying.heatPort.Q_flow
212E6+
2.08E6
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Figure 7. Responses of a step in wet fuel input.

2.2.2 Stoichiometric Combustion

Figure 8 below shows the idea behind the stoichiometric combustion and bed
buffering.

Mgy
=
w Qurying
M eonsumed {'—\ Meyegas A Meyegas
= e =
H dry fuel buffer > - U o
bed
(bed) Trame Tfl.legas
;} Meprimaryair

Figure 8. Bed buffer concept.

Dried fuel enters the grate in a buffer (the bed). The grate speed is not considered.
Primary air (PA) also enters the block and consumes a certain amount of fuel from
the buffer per kg/s of PA. Thus, if the inputs of dry fuel and air are not matched,
fuel on the grate will accumulate or decrease resulting in an integrating behaviour
of the bed height, Hp4. Given the heating value of the fuel and the temperatures of
fuel and PA, the adiabatic flame temperature is estimated. Finally, the heat flow
rate required for the fuel drying is subtracted, thus lowering the flue gas
temperature.
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The relation between the fuel consumption and the PA flow was taken from
[Sadaka et al., 2009] in which it is stated that the stoichiometric combustion of one
kg of dry biomass requires 4.58 kg of air. If this ratio is fixed during the simulation
the bed height will become unobservable since the same solution of the grate
model can appear for different bed heights. To make the model observable there
should be a coupling between the bed height and the rate of fuel consumption.
This is done by introducing a quadratic air efficiency ratio np, (0-1) as a function of
the bed filling, which determines how much of the PA air is available for the

combustion;
— : Lbed 2
np, = min| 1, max| O, L
nom

where Lj.4 represent how much of the grate length is filled with fuel and L, is
the nominal length (efficiency is 1 if Lyq=Lyom). It is assumed that the fuel on the
bed has a triangular shape, with decreasing height along the grate away from the
fuel inlet, so that the bed length Ly, is equal to 5*Hp,g.

Figure 9 shows the step responses from PA and fuel flow to bed height, air
efficiency, and flue gas heat flow rate.

bedCombustion.m_flow_Pa

bedCombustion.m_flow_PA_ filt [kg's]

bedCombustion.m_flow_dryFuel®

8.0
- 1.2
554
s
- 1.0
45 T T T T T T T T T T T T T T
0 40 a0 120 160 200 240 280
bedCombustion.H bedCombustion.airFlowE fficiency®
2.000 4 - 1.000
E i
1956+ - 0.996
T T T T T T T T T T T T T T
0 40 80 120 150 200 240 280
bedCombustion.Q_flow_fluegas
2. 4E7
E 2087
1.6E7 T T T T T T T I T T T T T T
0 40 a0 120 160 200 240 280

Figure 9. Step responses.

As expected, increasing PA flow causes an increased consumption of the bed
buffer and a decreasing bed height. Likewise, increasing the inflow of dried fuel
changes the rate of change in bed height — in this case such that the bed height
increases again. The air efficiency also changes with the bed height and the heat
transfer rate is tied to the consumption rate on the bed (PA flow).
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The flue gas temperature calculated in this block is unrealistically high (> 2,700 °C).
This is due to the two following model deficiencies, which are remedied in the
subsequent blocks:

1. The water vapor has been removed but not yet re-added to the flue gas.
2. The combustion is strictly adiabatic.

2.2.3 Water Re-addition

After the combustion the water vapor from the drying process (at 100 °C) is re-
added to the flue gas, lowering the flue gas temperature further. The specific heat
capacities of dry and wet flue gas are provided as parameters, which can be used
to fit the resulting flue gas temperature to a desired value.

2.2.4 Flue Gas Dilution

Since the secondary air flow is required to control the oxygen contents in the flue
gas and since the combustion block only produced zero excess air (stoichiometric
combustion), secondary air is mixed with the flue gas to increase O2 contents. The
assumption is that SA contains 21 % of oxygen and the incoming flue gas 0 %.
During this “dilution” the temperature is decreased further. Since, normally, the
secondary air makes up a large part of the combustion air compared to PA, the PA
and SA mass flows in the simplified model will be unrealistic. However, to assess
the dynamic behaviour around a working point this has no consequence.

2.3 STEP RESPONSES

To validate the simplified model open-loop step responses have been performed.

2.3.1 Primary Air Flow Step

The responses of a step increase in PA flow is shown in Figure 10 below.

e The bed height decreases (ramp) as the fuel/air balance is compromised and
the increased primary air consumes fuel from the buffer.

e The O2 contents in flue gas decreases as the increase in PA produces more flue
gas but starts to increase again when excess primary air is mixed into the
secondary air due to a decreasing air efficiency.

e The flue gas temperature increases, because increased PA flow consumes more
dry fuel from the bed buffer, without an increased drying heat flow demand.

e The heat flow rate increases due to an increased flue gas temperature and flow.
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Figure 10. PA step response.

2.3.2 Fuel Flow Step

The responses of a step increase in fuel flow is shown in Figure 11 below.

The bed height increases (ramp) as the fuel/air balance is compromised.

The O2 contents in flue gas decreases as more flue gas is generated due to an
increased vapor flow (in wet fuel) while the SA flow remains constant.

The flue gas temperature and generated heat transfer rate decrease as more
heat is needed to dry the increasing flow of fuel.
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Figure 11. Fuel flow step response.

2.3.3 Secondary Air Flow Step

The responses of a step increase in secondary air flow is shown in Figure 12 below.

The bed height approximately remains constant.

The O2 contents in flue gas increases.

The flue gas temperature and heat transfer rate decreases as the flue gas is
diluted with “cold” (120 °C) secondary air.
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Figure 12. SA flow step responses.

2.3.4 Load Step response

Figure 13 shows the responses of a step increase in load — i.e. when fuel, PA and
SA flows are doubled and thus maintaining the same ratio before and after the
step.

e The bed height initially decreases and then increases. The decrease is caused
by the slower filtering of the fuel input, through the vaporization process,
compared to the faster air flow inputs (a higher PA flow consumes more dry
fuel from the bed before an equivalent amount is generated).

e The flue gas temperature and total heat transfer rate initially decreases a bit
due to the step change in wet cold fuel which takes heat from the process. The
increased air flows then eventually cause an increase.
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Figure 13. Load step response.

24 CONCLUDING REMARKS ON PRELIMINARY MODEL

A simple preliminary grate combustion model has been derived, implemented,
and simulated in Dymola. Through exposed parameters it is possible to tune the
behaviour of the model to provide a qualitatively realistic dynamic response to
changes in fuel and air inputs.

The model can be used for evaluation of initial control and observer designs, as the
dynamic behaviour is intuitive and easier to comprehend than with more complex
models.

Initial investigations on the preliminary model revealed that the bed height (or
length) was un-observable in the outputs as there were no coupling to the
combustion taking place. A coupling between the bed height/length and the rate of
fuel consumption was therefore added to be able to design a soft sensor for bed
height/length estimation. Emphasis in subsequent modelling has therefore been
placed in verifying that the heuristic observability solution can be replaced by real
physical couplings between height/length and measurable quantities in the grate
boiler.
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3  Generic Grate Control and Analysis

3.1 CONTROL STRUCTURE

A simplified generic combustion control scheme has been set up to test the closed-
loop behaviour of the preliminary grate model. Figure 14 shows the generic control
scheme.

Load = fuel

fix) Fuel flow setpoint
Llg

Load = SA

Load feedforward fix)

SA flow setpoint

Load = Load/fuel controller Load = O,

load +

e

Steam pressure

0O

Load = PA

Feeufurwar PA flow setpoint
PA controller o
PO l—.(+} P4 correction fac

Load

Figure 14. Generic grate boiler control scheme

The control scheme complies with standard power plant control practice in which
it should be possible to set feedback controllers in manual mode and still have the
process “survive” by means of pure feedforward control. In this kind of
implementation, the resulting control signal to an actuator (or actuating process) is
the sum (or product) of the feedforward signal and an additive or multiplicative
correction signal. Both cases are shown in Figure 14. Please note that the design
shown in the figure is greatly simplified.

In the example control scheme, the boiler controls the live steam pressure. This
could also be any other measure of the boiler output power, e.g., steam flow or
heat flow rate.

Below the control will be explained, referring to the circled numbers in Figure 14.
The boiler to be controlled is assumed to have a thermal output of approximately
12 MJ/s.

The boiler load percentage setpoint (1) is rate limited and used as a feedforward
value for all other actuating signals (mass flow rates). Thus, setting the boiler load
to 100 percent (and omitting the feedback loops) will result in the following output
values:

e nominal fuel mass flow rate (1,667 kg/s)
e nominal SA mass flow rate (1,47 kg/s)
e nominal PA mass flow rate (4,58 kg/s)

This means that in the simplest case the contents of the “f(x)” blocks (@) will be
constant gains of 1.667/100, 1.47/100 and 4.58/100 respectively.
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The “f(x)” blocks (2) produce the live steam pressure set point and excess O2 setpoint
respectively which are, typically, not constant gains but rather load dependent
functions (e.g. high O2 setpoint at low loads and low values at high load).

The feedback controls consist of three PID controllers. The load/fuel controller (5)
is slow (mainly integral action) and is used to suppress deviations in fuel heating
value over a longer period (hours). When added to the load feedforward signal the
resulting fuel load (3) is generated. If the fuel has a lower heating value than
expected the resulting fuel load will be greater than the desired load setpoint, e.g.
105 percent to produce 100 percent boiler load.

The load/PA controller (6), on the other hand, mainly consists of derivative and
proportional action and utilizes the bed buffer of dried fuel to suppress transient
variations in steam pressure. It corrects the feedforward value of the PA flow
setpoint.

The Oz controller corrects the SA flow setpoint to obtain the right combustion —
measured by the amount of excess air after the boiler. By the time the Oz sensor
measures a deviating value the combustion has already taken place upstream.
Thus, the controller is quite slow to maintain the excess oxygen value over a longer
period.

None of the inputs in the control scheme in figure 14 relate “closely” to bed size
(height or position of burnout zone). Therefore, it cannot be guaranteed that the
grate always has a proper bed shape. For example, if the grate is nearly empty and
the steam pressure is too low the load/PA controller will react by increasing the PA
flow causing the bed size to reduce further.

3.2 CLOSED LOOP STEP RESPONSE

Figure 15 shows the responses from a step change in boiler load reflected in the
following process variables:

e The topmost figure shows that the bed height is constant, 2 meters, until the
load step at t=200 seconds. The dynamic coordination of air and fuel inputs
causes the bed height to reduce a bit before starting a steady increase. If the
model is simulated for long time, the bed height will converge to a value of
above 2 meters (not shown).

e The second figure shows the flue gas oxygen contents and its constant setpoint.
The oxygen controller manages to maintain the O2 contents after the load
change.

e  The third figure shows the flue gas temperature increasing with increasing
load. The small drop in temperature just after the load step is caused by the
step in wet fuel flow, requiring immediate increase in heat consumption for
drying.

e The bottom figure shows the heat released from the combustion — the main
controlled variable in the grate controller. The response in the figure shows a
settling time of just about 10 seconds which seems quite unrealistic. The initial
drop in heat flow rate is a consequence of the initial drop in flue gas
temperature.
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Figure 15. Closed-loop step response.

3.3 CONCLUDING REMARKS ON GENERIC GRATE CONTROL

The step responses in Figure 15 show that the simplified generic grate boiler
control essentially works. However, the simplified grate model has some
shortcomings that should be addressed in a more detailed and physically founded
model.

In the simplified model the primary air acts almost immediately with dried fuel
available on the grate and is thus capable of producing a fast and effective heat
flow response (bottom plot in Figure 15). In reality, the primary air will help with
drying of the wet fuel at the inlet of the grate, while it will accelerate the pyrolysis
and combustion at the outlet of the grate. Also, the bed will contain a mixture of
wet and dry fuel and adding a small additional amount of wet fuel will not cause a
sudden drop in flue gas temperature. This flaw is caused by the modelling
assumption that the bed only contains dry fuel and that wet fuel entering the grate
is dried immedjiately.

Many more flaws can be found in the preliminary model and this underlines the
need for a more detailed model based on physical principles.
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4 Detailed Grate Boiler Model

The preliminary model provides a measure of the bed height/length, and displays
reasonable qualitative results, but some quantitative results, such as dynamic
settling times for step responses, are not realistic. It is also missing essential
physical phenomena as it does not contain information about what happens along
the grate in the fuel flow direction, e.g., fuel propagation dynamics, flame front
(burn-out location), ash cooling, temperature gradients, combustion air pressure
drop, etc. A heuristic coupling between the bed length and the combustion taking
place also had to be applied to the preliminary model to ensure observability.
Furthermore, missing combustion air dynamics makes controller tuning trivial and
limits the models use in control design.

The purpose of the detailed grate boiler modelling is to alleviate some of the
shortcomings of the preliminary model. This is achieved by using a staggered grid
approach with spatial discretization of the bed and systematic and rigorous
application of conservation equations (mass, energy, species, momentum).

4.1 MODEL REQUIREMENTS

The input/output requirements of the generic control structure results in the same
minimum list of inputs and outputs as in the preliminary model. An additional
output requirement is a measure of the flame front (burn-out location), which
needs to be observed/estimated and subsequently utilized in a more advanced
grate controller.

It is important that the detailed grate boiler model has a high degree of;

e scalability, e.g., through spatial discretization possibilities,

e reusability, e.g., through use of common media models and splitting of large
models into sub-components,

e variable detailedness, e.g., through replaceable models with common interface
definition (simple combustion equations vs. reaction kinetics etc.).

The modelling framework should also have the potential to provide the possibility
of modelling dynamic behaviour such as fuel “waves” (movement behaviour of
the fuel on the grate), combustion air pressure drop and burn-through zones on the
bed (air distribution problematics).

4.2 MODELING OVERVIEW

Detailed modelling of the grate boiler is split up into the following sub-
components/models to ensure a high degree of reusability and to allow for variable
detailedness in modelling:

¢ Media models — Specification of solid fuel and gas mixture including
equations for calculation of media properties such as specific heat capacity,
enthalpy, density, etc.
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e Bed model — This model describes the behaviour of the fuel on the grate and
interaction with the gas mixture located in the void space surrounding the fuel.
The main subprocesses taking place are vaporization, pyrolysis
(devolatilization), and char conversion. These subprocesses are placed in
individual sub-components to further strengthen reusability and variable
detailedness in modelling.

¢ Combustion model — The gas mixture (flue gas) generated in the bed contains
unburnt constituents from pyrolysis and char conversion, which is
subsequently burnt in a combustion model under the presence of oxygen. This
allows for modelling of furnace air-staging by having multiple combustion
models in series with addition of secondary air in between.

e Grate model — This model describes the pressure loss of the combustion air as
it passes through the air holes in the grate and the thermal inertia of the grate.

e Furnace wall model — The thermal inertia and conductive resistance of the
furnace wall is described in this model, which can be comprised of multiple
layers of different material (tiles, concrete, metal).

e Radiation heat transfer model — A framework for calculation of radiation heat
transfer inside the furnace between all facing surfaces and the flue gas. The
model is scalable in the sense that it allows for choosing an arbitrary number of
discretizations of the bed surface, furnace wall surface, and combustion
volumes.

The sub-components are aggregated into a complete grate boiler simulation for
demonstration purposes and partly validated using norm EN-12952-15 and
measurement data from Sysav waste grate boiler.

The water/steam side of the grate boiler (drum boiler, evaporator, superheaters,
economizers, etc.) and air distribution components (fans, dampers, etc.) are not
modelled in this work. However, standard components from the Modelica Fluid
library can be used for this purpose.

4.3 MEDIA MODELS

The subcomponents utilize two medium package models with functions for
calculation of heat capacity, enthalpy, density, etc.:

e Solid fuel — Defined in this project (utilizing IAWPS97 [Wagner et al., 2000]
for the water contents).

e Gas mixture — Ideal gas mixtures (using NASA coefficients [McBride et al.,
2002].

During interaction of the media — e.g., water in solid fuel vaporizes and is mixed
with flue gas — it is important to use the same reference temperatures and
enthalpies for the three medium models. It was chosen to use the reference of the
ideal gas mixture, specific enthalpy=0 at 25 °C, 1 bar. This means that the
enthalpies of water/steam and solid fuel must be offset accordingly. Likewise, the
enthalpy of formation is omitted in the ideal gas mixtures, since it is not defined in
the water/steam and solid fuel media. However, enthalpy of formation is
considered in models with chemical reactions occurring (pyrolysis, char
conversion, and combustion).

32



GRATE BOILER MODELING FOR SOFT SENSOR BASED CONTROL

4.3.1 Solid Fuel specification

Solid fuels can be specified both in terms of proximate analysis (volatiles, water,
fixed carbon, and inerts) and ultimate analysis (e.g., C-H-O-N-5S-Ash). In this
project, both proximate and ultimate analysis capabilities of the solid fuel are
needed. The proximate information is used to split the fuel into subcomponent
models for vaporization, pyrolysis and char conversion. The ultimate information
is also needed in the pyrolysis and char conversion models to calculate the
resulting constituents transferred to the flue gas and the generated heat.

The fuel specification vector Xy, is defined as
Xryel = Xvo1 Xm200 Xc) X1, X0, XNy X5, Xasn }

This vector does not satisfy the typical assumption in medium models that all
species sum to unity, as some atoms are accounted for in more than one category
(e.g. oxygen is not only in the fraction x,, but also in x,,,; and x;,¢). Therefore, care
must be taken when the fuel composition is modified, so that it remains consistent.
The ultimate information x¢, xy, Xo, Xy, s and X, is typically used as a base in
calculation as it accounts for all atoms in the wet fuel and sums to unity. The
assumption that the proximate composition also sums to unity is used to infer the
fraction of fixed carbon in the fuel from x,,,;, Xy20 and x,g,. Finally, the specific
atomic compositions of the different proximate categories can be retrieved by
utilizing the known composition of water and the assumption that char consists
entirely of coal. The sulphur and nitrogen in the fuel were considered inert in all
chemical processes, if these were to be included, extra assumptions regarding
these, or additional information in the fuel medium model, would be needed.

Table 1 provides the composition of different types of fuel for simulation purposes,
with specification based on dry moisture free fuel. Helper functions have been
implemented to easily convert between specification on wet and dry basis. Note
that the volatile mass fraction for the given municipal solid waste (MSW) was not
available. Furthermore, general functions for specific heat capacity, enthalpy and
density are also difficult to obtain for MSW as these values are very dependent on
the composition of the waste (paper, plastic, etc.). The present work will thus be
limited to biomass fuels, but with the possibility of easily switching to other types
of fuel (functions contained in interchangeable media models).

Table 1. Composition of different types of fuel, with specification based on dry moisture free fuel (DF). Ash

accounts for all other constituents not part of CHONS. *Composition based on [DK06]. **Composition based
on [Bech et al., 1996]. ***Composition based on statistical analysis of Danish MSW from 1991.

Wood Chips Straw MSW

Typical. * Beech* Pine* Fir* Wheat* Barley** DK***

Vol. (% DF) 81 83.9 818 80 81 79.9 NA

H.0 (%) 40 40 40 40 125 12.1 18.5
C (% DF) 50 49.3 51 50.9 47.4 47.2 35.6
H (% DF) 6.2 5.8 61 58 6 46 5.06
0 (% DF) 43 43.9 423 413 40 44.4 35.7
N (% DF) 0.3 0.22 01 039 06 0.8 0.95
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Wood Chips Straw MSW

Typical. * Beech* Pine* Fir* Wheat* Barley** DK***

S (% DF) 0.05 0.04 0.02 0.06 0.12 0.0 0.17
Ash (% DF) 0.45 0.74 0.48 1.55 5.88 3.0 22.6
LHV (MJ/kg DF)  19.4 18.7 19.4 19.7 17.9 17.9 10.5

The specific enthalpy of the fuel is calculated as a function of temperature and the
proximate composition;

hfuel = xvolhvol + xashhash + xcharhchar + xHZOhHZO

For ash and char, the following expressions are used for the specific heat and
enthalpies [Hobbs et al., 1992], [Ullum, 2000]:
Cp,char = 710

henar = Cp,char(Tfuel - Tref)

1 0.586
< 2 (Tfuel2 - Trefz) + 594(Tfuel - Tref))

C. ,ash =
pas Tfuel - Tref

hosh = Cp,ash(Tfuel - Tref)

The specific enthalpy of volatiles h,,,; is based on a standard proximate
composition of unpyrolyzed biomass in the following expression:

0.6 0.1101 0.0039
vol = (m Cp,com - mcp,chm’ - ch,ash> (Tfuel - Tref)

Where the specific heat of biomass before pyrolysis is given by [Dupont et al.,
2014]:

1 5.340
Cp,com = Tfuel — Tref ( 2 (Tfuel2 - Trefz) - 299(Tfuel - Tref))

Water medium properties are calculated using the IF97 medium model in
Modelica Standard library, which is based on the IAWPS97 standard [Wagner et
al., 2000].

The density of the fuel is also calculated from the proximate composition,
assuming the fixed densities p,,; = 400 kg/m? , posn = 721 kg/m3, pepar =
600 kg/m3 and py,o = 1000 kg/m3.

4.3.2 Gas Mixture Specification

The gas mixture media package extends from
Modelica.Media.Ideal Gases. Common.MixtureGasNasa and the gas specification vector
Xgas (must sum to 1) is defined as

Xgas = {Xn2 Xy2) Xcos X025 XH205 Xc02) XcHa}

These are the species considered for the flue gas.
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4.4 BED MODEL

The bed model describes the behaviour of the fuel on the grate and interaction
with the gas mixture located in the void space surrounding the fuel. The model
structure is important, since the bed model is comprised of individual bed
segments used in a 2D discretization scheme. Both segment and discretized model
should conform with the staggered-grid topology.

4.4.1 Bed Topology

A staggered-grid model contains a grid of alternately flow and volume models. Flow
models generally contain static models describing a flow (mass, heat, displacement
etc.) as a function of a potential difference (pressure, temperature, force etc.).
Volume models generally contain dynamic conservation equations in which, e.g.,
pressure, temperature or mass are dynamic state variables. The states can be
regarded as potentials that can create a flow. If two volume models are directly
connected, then the connection enforces the potentials to be equal. This can cause
numerical problems for instance during initialization if the state variables are given
different initial values.

Figure 16 shows the chosen bed segment topology. The details of the flow and
volume models will be described in the following sections. Volume and flow
models are always connected alternatingly. The black circles left and right in the
figure represent the solid fuel connectors through which fuel enters and leaves the
segment. The flow of fuel enters a volume model, indicated by the brown circle, in
which the common bed temperature, T, and the masses of C, H, O, N, S, ash,
volatiles, fixed carbon are expressed as dynamic state variables. Unlike a hydraulic
flow model, the mass flow rate of fuel leaving the segment is not expressed as a
function of a pressure difference but rather is forced out of the segment by the
movement of the grate, given by the grate velocity, vgrate, shown as a blue triangle
on the left. The blue circles represent the gas mixture connectors (Modelica stream
connectors) through which primary air or generated combustibles flow from
bottom to top. Primary air (or flue gas generated by the previous bed segment
below) enters a volume model that holds the masses of N2, H2, CO, Oz, CHu etc,,
the flue gas temperature leaving the segment and the inlet pressure — all as
dynamic state variables. The flue gas volume model is connected to a flow model
describing the relationship between pressure difference and mass flow rate. A
convective heat flow model is used to model the heat transfer between solid fuel
and flue gas with a constant heat transfer coefficient a. Similarly, heat transfer
between two vertically connected bed segments would go through the heat
transfer model “UA”.
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Ttop
’ Flow:
UA
Flow:
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T Vgrate ¢
Flow:
m_flow = f(v)
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Flow:
m_flow = f(RR)

Figure 16. Bed Segment Topology

The discretized bed model can be constructed by connecting M times N bed
segment models — M being the number of vertical segments, counting from the
grate upwards and N being the number of horizontal segments, counting from fuel
inlet towards ash discharge. Because each bed segment model is constructed as a
volume-flow model the interconnection of the segments is straightforward, as
illustrated in figure 17.

The solid fuel connectors consist of M individual connectors. The vertical fuel
distribution at the inlet must be handled by a fuel splitter model that explicitly
determines the fuel split. The gas mixture connector consists of N gas mixture
ports connected to the segments as shown in Figure 17. If, for instance, one PA fan
is connected to the discretized model its outlet connector must be connected
directly to each of the N inlet connections. The hydraulic properties (flow
resistances) will then calculate the PA flow distribution accordingly given a fixed
furnace pressure connected to each of the N outlet connectors. The grate speed
input is connected directly to all M times N segments. The upper segments
individually expose their temperature through Modelica heat port connectors
upwards such that different heat flows can be irradiated from the furnace to the
bed. The lower segments individually expose their temperature through heat port
connectors downwards such that heat can be conducted horizontally through the
grate model.
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Figure 17. Bed model discretized in M times N bed segments.

4.4.2 Bed Segment Model

Figure 18 shows a Dymola diagram view of the bed segment model with
replaceable models for vaporization, pyrolysis and char conversion.

Replaceable submodels

0O

fluegas_out

heatPort
evaporat... .
heatPort_.. .

‘ |
velocity_grats
BYTOSIS

heatPort_...

[]

fluegas_in

Figure 18. Dymola diagram view of the bed segment model with indication of replaceable submodels for
vaporization, pyrolysis, and char conversion.
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The governing equations in the bed segment model are presented in the following,
starting with the mass balances on the fuel proximate components;

dmpyzo . .
dt - mfuel,ianZO,in - mfuel,outxHZO - mHZO,evap
dmvol . . .
dt - mfuel,inxvol,in - mfuel,outxvol - mvol,pyra
dmchar e . .
dt - mfuel,inxchar,in - mfuel,outxchar — Mchar,conv
dminert e .
dt - mfuel,inxinert,in - mfuel,outxinert,out

where the inlet mass flow of each proximate component is given upstream
(boundary condition) and the outlet mass flow is calculated from the grate velocity
Vgrate, the fuel height dg,, the grate width wg,,; and density pry;, according to

Meyel,out = dfuel WruelPfuelvgrate

The extra outgoing flows (120 evap, Mot pyrod@Nd Mepar conv), from the fuel in the
bed segment, are calculated in the submodels for vaporization, pyrolysis and char
conversion, respectively. As explained in Section 4.3.1, the char part of the fuel
assumed to consist entirely of carbon and that the inert part of the fuel is the sum
of nitrogen N, sulphur S, and ash. Fuel bound N and S mass fractions are small and
do not contribute much to the general combustion dynamics. However, N and S
are important for emission calculations and could be added later if needed.

Mass balances for the ultimate components have the same form as the proximate
balance equations above. There is however not a need for implementing dynamic
balance equations for every ultimate component, instead algebraic relations can be
used in some instances, based on the assumptions mentioned above.

The fuel energy balance is defined as

dE
'fuel . - . -
dt = mfuel,inhfuel,in - mfuel,inhfuel - Hfuel,evap - Hfuel,pyro - Hfuel,cov + Qup,fuel

+ Qdown,fuel + Qaux,fuel + Qfg,fuel

where h is specific enthalpy, Q is heat flow rate and H is enthalpy flow rate caused
by removal of water, volatiles, and char from the fuel (note that H should also
include any change in enthalpy due to chemical reactions, which is calculated in
submodels). Qup ruer aNd Quown fuer are the heat transfer rates from upward and
downward direction to the fuel, respectively, and Qg fue is an optional additional
heat input directly to the fuel, e.g., to simulate the presence of auxiliary burners
during start-up (from cold conditions). The final heat transfer rate from the flue gas
surrounding the fuel to the fuel, Q4 fye1, is approximated by

Qrgruet = Arg ruet(Trg = Truet)

Where « is the convective heat transfer coefficient and the heat transfer area

Afg ruer is approximated by the volume of the void space inside the fuel, Viye; voia,
and a conversion factor from volume to surface area, 154, according to the
equation

Arg ruel = Vruelvoialvsa

38



GRATE BOILER MODELING FOR SOFT SENSOR BASED CONTROL

The void space is calculated as

Vfuel,void = QAo + Ay + Achar + Xinert
PH20 vol char inert

With a0, @pors Xcngr and Aiere representing the faction of void space per unit

volume of liquid water, volatiles, char and inerts, respectively.

The equations for the interacting gas mixture (flue gas) surrounding the fuel are
provided in the following. The individual flue gas mass balances are;

dmy, . . . .

dt = Myg,inXH2,in — MyrgoutXH2 + Myot,pyroXH2,pyro — MHu2,conv
dmeo . . . .

dt = Myg,inXco,in — Myg,outXco + Myot,pyroXco,pyro — Mco,conv
dmo, . . . .
T = Mygg.inXo2,in — Myrg,outX02 + Myol,pyroXo2,pyro — Mo2,conv

dmpyzo . . . .
dt - mfg,ianZO,in - mfg,outxHZO + mHZO,evap + mvol,pyroxHZO,pyro — Mpy20,conv
dmeo, . . .
dt - mfg,inxCOZ,in - mfg,outhOZ + mvol,pyroxCOZ,pyro — Mco2,conv
dmcy, . . .
dt = mfg,inxCH4,in - mfg,outhH4 + mvol,pyroxCH4,pyro

Note that char conversion flows can both be positive and negative depending on if
the specific gas mixture constituent is consumed or produced. The equation for N:
finally ensures conservation of mass;

dmy; . . . . . dmy, dmey dmg,
T = Mygin — Mrgout T Mu20.evap T Moolpyro T Mrg.conv — dt - dt - dt
_ dMmpyzo _ dmco, _ dmcpa
dt dt dt

The energy balance equation is defined as

dE
fg X X . . .
ar Mg inhrgin = Meginhrg + Hrgevap + Hrgpyro + Hrgcov = Qrg,fuet

where the enthalpy flow rates H are due to addition of gas from the fuel to the flue
gas. Finally, the fuel height and fuel porosity factor dependent flue gas pressure
drop is approximated by

dfuel

Ap = 0.5kfye Mg out |y g out

2
pfg(lfuelwfuelaavg)

where kg, is the flue gas flow resistance and the average porosity factor a,y, is
calculated using the void space factors;

Aavg = Xpo1Qvol t XinertXinert T Xchar Xchar T XH20%H20
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4.4.3 Vaporization Model

The purpose of the vaporization model is to calculate the mass and enthalpy flow
rate of water vapor leaving the solid fuel, given an average fuel temperature in the
bed segment in question. No vaporization occurs when the temperature is below
the saturation temperature of water. When the temperature exceeds the saturation
temperature, the vaporization mass flow is assumed to be proportional to the
available volume of steam. The enthalpy flow rate is calculated based on this mass
flow, using the enthalpy of the water/steam mixture. This is not a very accurate
representation of the physical process, but this is not expected to be a big problem
as it does satisfy mass and energy balances and captures the qualitative behaviour
correctly, which will result in the reasonable overall behaviour of complete
vaporization of the water in the fuel once sufficient heat is applied.

The model is replaceable and has the following standard inputs/outputs from/to
the bed segment model:

e Saturation pressure (input).

e Specific enthalpy of the water in the fuel (input).

e Mass of the water in the fuel (input).

e Mass flow of vaporized water steam (output).

e Specific enthalpy of vaporized water steam (output).
e Vaporization enthalpy flow rate (output).

4.4.4 Pyrolysis Model

Pyrolysis is the process of thermal decomposition of material in inert atmosphere,
where the material undergoes an irreversible change in chemical composition. In
the pyrolysis model the volatiles fraction of the solid fuel is assumed to be
converted to the ideal gas products {H2, CO, H20, CO2, CH4}, leaving only char
(fixed C) and ash. The constituents of the pyrolysis are unknown and are defined
as CcHuOo, where subscripts denote the specific composition which depends on
the chosen fuel. Tar and smaller amounts of higher hydrocarbons than methane is
also formed, but both are neglected in the analysis, e.g., see [Ullum, 2000].

Pyrolysis is a complex process, where the mass fractions of formed gas products
depend mostly on temperature, but also on factors such as fuel particle size, heat-
up rate and fuel type (e.g., for biomass it depends on the ratio of lignin, cellulose,
and hemicellulose). Different approaches for modelling of pyrolysis has been used
in the literature, e.g., see [Ullum, 2000] for a discussion.

Temperature Dependent Pyrolysis Model

A temperature dependent pyrolysis model has been implemented based on the
approach used in [Thunman et al., 2001] and [Ullum, 2000]. The volatile mass flow
rate 1My pyro 1S determined using an Arrhenius expression [Ullum, 2000];

ER
mvol,pyra = Aoe T My

where m,,,; is the mass of volatiles, T is fuel temperature, 4, is set to 650, and ER is
set to 6500. These parameters mean that most of the pyrolysis happens between
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200 °C to 600 °C. Atomic mass balance equations can be derived based on the
volatile fuel composition defined by the mass fractions X¢ ,o; + Xy vo1 + X001 = 1,

M, M, M
xC,vol Xco ,PYTO M —+ Xco2 ,byTro M —+ XcH4 ,PYTO M
ZMH ZMH 4MH

xH,VOl = xHZ,pyro + xHZO,pyro + xCH4,pyro
MHZ MHZO MCH4-

M, M, 2M,
“"o
xO,vol Xco ,byTo M —+ XH20 ,PYTO M + Xco2 ,DYTOo M

which can be complemented by an equation for conservation of energy,

LHVvol(Xvol) + hvol(T) + hpyro
= (LHVHZ + hys (T))xHZ,pyro + (LHVCO + heo (T))xCO,pyro
+ (LHVy20 + hy20(T))Xu20.pyr0 + (LHVco2 + heo2(T))Xcoz pyro
+ (LHVcys + hepa(T))Xcnapyro

where the lower heating value (LHV) of the gas components are provided by the
ideal gas mixture media package and the reaction enthalpy h,,,, is set to 400 k]J/kg
([Ullum, 2000] states that it is typically between 200 and 600). The mass fraction
vector of the volatiles X,,,; is used to calculate the lower heating value of the
volatiles, LHV,,,;, with the addition of a unified correlation for estimation of HHV
of solid, liquid, and gaseous fuels, which is valid for almost all dry fuels
[Channiwali et al., 2002];

MHZO
LHV = HHV — hlatent M XH,vol
H2

HHV = (34.91x¢ oy + 117.83%p o1 — 10.34X 5oy — 1.51%y oy + 10.05%5 0; — 2.11X g5 5o ) * 10

where hygten, is the latent heat of vaporization. An additional equation is still
needed to be able to solve the equation system. For this purpose, an empirical
temperature dependent relationship for devolatilization of wood is provided in
[Thunman et al., 2001] (based on results in [Blasi et al., 2001]);

- —671.87
Xco,pyro = 1.94%107°T Xcoz,pyro

Alternatives for the above relationship equation can be found in [Thunman et al.,
2001];

— 1173.39 —
xCH4,py‘ro =1.305%*10 T xCOZ,pyro'xHZO,pyro - 0-95xC02,py‘ro

and [Ullum, 2000] instead assumes that the mass fraction of water is always 0.13 %.
A temperature dependent pyrolysis model could potentially also be based on the
empirical work in [Neves et al., 2011], which is a continuation of the work reported
in [Thunman et al., 2001].

Figure 19 shows the temperature dependent composition of the volatile gas for
different types of fuel.
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Figure 19. Volatiles mass fraction as a function of temperature for four different biomass compositions using a
pyrolysis modelling approach similar to the one used in, e.g., [Thunman et al., 2001]. The biomass fuel
composition can be found in table 1 (WC_TYP = Typical wood chips, WC_TYP_Less_Vol = Typical wood chips
with 75% volatiles instead of 81%).

Note that the mass fractions of methane and water are negative at high pyrolysis
temperatures and that the mass fraction of water is always negative using the
biomass composition of typical wood chips, wheat straw, and barley straw.
However, the water mass fraction is positive for the fuel specification used in
[Ullum, 2000], where the volatile fraction is only 75% (pyrolysis model needs at
least 20% fixed C on dry basis to work properly).
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Table 2 provides the total end product result after finished pyrolysis reported in
literature (the mass fractions in figure 19 would have to be integrated over
temperature for a direct comparison). Large differences can be observed in the
literature, which indicate the general difficulties in determining the correct gas
composition.

Table 2. Volatiles mass fraction reported in [Ullum, 2000] from different sources and from simulation.

*Simulated values (straw composition dry fuel; fixed carbon = 0.2, ash = 0.051, volatiles = 0.749, xc = 0.472, xu
=0.061, xo = 0.408). **Water content not measured but fixed to 0.130.

Volatiles [Henriksen et al., [Bech et al., 1996] [Brandt et al., [Ullum, 2000]
mass fraction  1991] (Straw) (Barley straw - see 1997] (Straw) (Straw)*
Table 1)

X 0.055 0.045 0.013 0.018

Xco 0.716 0.630 0.193 0.258

Xizo 0.133 0.131 0.130** 0.130

Xco2 0.084 0.143 0.444 0.396

Xana 0.011 0.051 0.220 0.198

Simplified Pyrolysis Model

An alternative, simplified temperature independent pyrolysis model has been
implemented, with focus on getting the result in terms of total amount of species
correct. This simplification is reasonable if gases from pyrolysis in each bed
segment are mixed before combustion (only serial and no parallel gas combustion
is taking place above the bed).

Fixed mass fraction for H20 and CO:z are used in the simplified model, together
with the Arrhenius expression for calculation of the volatile mass flow rate. The
remaining mass fractions then only has one solution given a certain volatile
composition. The measured H20 mass fraction is 0.131 in [Bech et al., 1996], 0.133
in [Henriksen et al., 1991], and [Ullum, 2000] uses a fixed value of 0.13. The other
mass fractions are not consistent in the literature and the CO:2 mass fraction,
measured in [Bech et al., 1996], is therefore chosen (gives approximately the same
ratio between H20 and CO: as used in [Thunman et al., 2001]). This results in the
following equations calculated in the given order;

xHZO,pyro =0.13
xcozrpyro = 0.143

X . (x M, X 2M, X Mco
COo,pyro — o,vol — H20,pyro — CO02,pyro
MHZO MCOZ MO
M¢ M. Mcps
XCH4 = (xc 1~ 3, Xco — 37 Xcoz )_
PYyTo Vo MCO ,pYTro MCOZ ,pYyTro MC
4My, 2My,

xHZ,pyro = XHvol — M xCH4,py‘ro - M xHZO,pyro
CH4 H20

It can be necessary to iteratively decrease the H20O mass fraction until H2 is just
above 0, if the amount of H in the fuel is very low (to avoid negative mass
fractions).
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Table 3 shows the mass fraction of volatile gases for different types of biomass
fuels using the simplified pyrolysis model. The result for typical wood chips with a
reduced amount of volatiles is similar to the results reported in [Bech et al., 1996]
(75% volatiles was adopted from this reference).

Table 3. Volatiles mass fraction using a fixed ratio of H20 and CO2 in the pyrolysis model. The biomass fuel
composition can be found in table 1 (*Typical wood chips with 75% volatiles instead of 81%).

Volatiles mass fraction Wood chips Straw

Typical Beech  Pine Fir Typical* Wheat  Barley
X 0.020 0.009 0.011 0.010 0.057 0.000 0.016
Xco 0.548 0.534 0.521 0.523 0.623 0.489 0.601
Xi2o 0.131 0.131 0.131 0.131 0.131 0.130 0.131
Xco 0.143 0.143 0.143  0.143 0.143 0.143 0.143
Xana 0.158 0.183 0.194 0.193 0.046 0.238 0.109

Both the temperature dependent and the simplified pyrolysis model adhere to the
same input/output interface and are therefore interchangeable in the bed segment
model. The inputs and outputs are;

e fuel temperature (input),

e ultimate composition of the volatile part of solid fuel (input),
e mass of volatiles (input),

e flue gas pressure (input),

e mass flow rate of volatiles (output),

e composition of flue gas from pyrolysis (output),

e enthalpy flow rate out of fuel due to pyrolysis (output),

e enthalpy flow rate into flue gas due to pyrolysis (output).

4.4.5 Char Conversion Model

The conversion of char is a process where fixed carbon in the fuel reacts with
surrounding gases, resulting in gasification of the substance. The following
reactions are considered in the char conversion model:

C+0,-CO,
C + H,0 - CO + H,
C+C0, > 2C0

The reaction C + 2H2 — CH4 generally also occurs during the gasification, but as
this reaction is significantly slower than the rest of the reactions [Laurendeau,
1978], it will not be included in the model.

The conversion of char is usually divided into the following three regimes,
depending on the temperature:

e The chemical regime, where the kinetics is limiting the reaction rate

e The diffusion or transport-controlled regime, where the diffusion of gases to
the fuel particles and through its pores is limiting

e The combined regime, which is the region where both effects are present
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The char conversion model includes reaction rates in the chemical regime and the
diffusion regime. The combined regime is modelled using a smoothened min
function of the two reaction rates, an example of this is illustrated in figure 20. The
reaction rate calculation for the two regimes are presented next.

—— Reaction Rate — — — Reaction Rate, Chemical limitation - --- Reaction Rate, Diffusion limitation
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Figure 20. Reaction rate for CO2 at different temperatures.

Chemical Regime
In the chemical regime, it is assumed that the reaction rate r is given by the
Arrhenius equation [Ullum, 2000]
ER

r(T,x) = ApeT x™
Where x is the concentration of the reactant in the gas and n is the reaction order.
The constant A varies for the different reactions and is retrieved from literature
[Ullum, 2000], [Tanner et al., 2016].
Diffusion Regime
In the diffusion regime, the reaction rate is formulated as in [Ullum, 2000]:

r(T,x) = A, T 5 x

Where A, is chosen so that the reaction rate given by the two different equations is
equal at the transition temperature T;:
ER
AyeTex™
A =—73
T, >x
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In conclusion, the reaction rate over the entire interval can be summarized as

Agerxn T ST,

r(T,x) = .
( ) {AITI.Sx if T > Tt

4.4.6 Flame Front Calculation

The position of the flame front is calculated based on the char conversion mass
flows in each segment. During normal operating conditions the char conversion
occurs in several segments, with the mass flow in each determined by the reaction
speed, which in turn is given by the temperature, and the amount of available char
in the segment, as illustrated in Figure 21.
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Figure 21. Char conversion mass flow, fuel temperature and char mass in each segment of the bed.

The flame front position is calculated from the distribution of char conversion mass
flows, assuming that the location coincides with the position where a predefined
fraction (chosen to be 90 percent in our case) of the total char conversion mass flow
has occurred, as visualized in Figure 22.
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Figure 22. Char conversion mass flow. The highlighted area represents 90 % of the total mass flow, with the
position of the flame front given by the position of the right edge of this area.

4.5 COMBUSTION MODEL

The combustion is modelled as a set of reactions that happen instantaneously
when the gaseous fuel enters the model. The same model can be used to model
both over and under-stoichiometric conditions. The implementation is based on
the following assumptions:

e Fuel cannot coexist with oxygen after combustion
e CH4 combustion occurs before H2 combustion
e N2isinert and does not react with the other species

The total combustion reaction is:

aiCH4 + [)’L-COZ + )/LCO + (J)in + T],:HZO + ¢i02
- a,CH, + B,C0, +v,C0 + w,H, +1,H,0 + ¢,0,

Where the Greek letters indicate the mole flow of the species and the subscripts i
and o denote inlet and outlet, respectively. [Veje, 2016b]

The combustion is divided into three separate cases, depending on the
stoichiometry, two under-stoichiometric and one over-stoichiometric. In the under-
stoichiometric regions, the water-gas shift reaction is used to determine the ratio of
carbon dioxide and, carbon monoxide, water and hydrogen, calculated from the
combustion temperature. This reaction can be written as

CO + H,0 2 CO, + H,
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The following flows of carbon, hydrogen, and oxygen are introduced:

C=a;+pi+tyvi—a,
H=4ai+2wi+2ni—4ao
0=2B+yi+n +2¢;

By combining the formula for the reaction, the assumptions utilized in the
combustion model and the water-gas shift reaction, the analytical solution to the
outflow of carbon dioxide can be calculated to be:

—b + Vb2 — 4ac
Bo = 2a
Where a, b, and c are given by:
a=K,—1
b =K,(C -0+ 0.5H)
c=C({-0)

And K, is the equilibrium constant of the water-gas shift reaction. This holds for
the under-stoichiometric cases. The mass flows of the other species in the different
cases are presented next.

4.5.1 Very Limited Amount of Oxygen

In this situation, the amount of oxygen is insufficient to burn all the methane, and
it is therefore present in the outgoing flow. The mole flow rates of the species
leaving the segment are as follows:

a, = a; —0.5¢;
Yo=C—58,
w, = 0.5H — 1,
Mo =0 — (2B +7,)
¢, =0

4.5.2 Limited Amount of Oxygen

In this case, the amount of oxygen is sufficient to combust all the methane, but
there is still not enough oxygen to achieve complete combustion. The mole flow
rates of the species leaving the segments are:

a, =0
Yo=C—8,
w, = 0.5H — 1,
No =0—(2.80+yo)
¢, =0

4.5.3 Excess of Oxygen

In this final case, there is enough oxygen for complete combustion. No methane,
hydrogen or carbon monoxide is leaving the segment. The flow rate for the species
leaving the segments are:
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a, =0
Bo=C
Yo=0
w, =0

No = 0 - (2.30 +yo)
¢, = 0.50 — B, — 0.51,

Figure 23 shows the composition of the flue gas when a fuel consisting of 95 %
methane and 5 % hydrogen is combusted, as a function of A. When no air is
present, only methane and hydrogen is leaving the segment. As more air is
introduced, methane is combusted, producing mostly water and carbon dioxide.
The temperature determines the ratio between hydrogen and carbon monoxide in
the flue gas through the water-gas shift reaction. As the air/fuel ratio is
approaching A =1, the carbon monoxide and hydrogen are combusted as well,
leaving only the products of complete combustion, carbon dioxide and water. As A
gets larger than 1, excess oxygen is seen.

Mass fractions

0 02 0.4 0.6 0.8 1 1.2
larmbda

Figure 23. Gas species after combustion over varying A.

Figure 24 shows the results of a unit test of the combustion model. Oxygen and
Nitrogen in a fixed mass ratio of 1:3.29 is increased from zero to 6 kg/s and added
to a gaseous fuel mixture with a fixed mass flow rate and composition. This results
in an air excess number (A) sweeping from zero to 1.37, thus covering under-
stoichiometric to over-stoichiometric combustion. The topmost figure shows the
combustion temperature, peaking at stoichiometric combustion (A=1). The bottom
figure shows the mass fractions of the species in the flue gas.
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Figure 24. Plots showing combustion temperature (top) and species in flue gas as a function of A.

4.6 GRATE MODEL

The grate beneath the fuel is discretized horizontally similarly as the bed model
(from fuel entry to slag discharge). Each grate segment has a fluid pipe model
(Modelica.Fluid.Pipes. DynamicPipe) representing the flue gas flow resistance. The
pipe is connected thermally, through convective heat transfer, to a heat capacitance
representing the thermal inertia of the grate metal. A constant heat transfer
coefficient is chosen for reduced complexity (700 W/(m2K)). However, the heat
transfer model in the dynamic pipe model can easily be interchanged with more
complex versions. Thermal conduction is also assumed to take place horizontally
through the grate and in an upwards direction towards the fuel. The implemented
grate segment model is shown in Figure 25.
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Figure 25. Grate segment model.

The dynamic equation for the heat capacity is
ar
CpglgWedgPg o7 = Qg

where the grate dimension is determined by [;, w, and dg, the density p, is set to
7900 kg/m3, Q is the heat transfer rate going into the heat capacity, and the
specific heat capacity is a temperature dependent relation for the steel group 1 0,3
Mo (see standard DS/EN 12952-3);

Cpg = 454.93 + 0.28139T, — 3.8815 » 107*(T, — 273.15)" + 4.7542
+1077(T, — 273.15)°

Each thermal conductor model adheres to the following dynamic equation;

K, Ae oy
gd_c C_QC

Where A, is the thermal conduction surface area, d. is the thickness of the
conducting material, AT, is the temperature difference across the conducting
material, and k is the thermal conductivity of the material calculated as (steel
group 1 0,3 Mo)

ky = 49.83 — 1.613 * 1072(Tyy, — 273.15) — 1.372 * 1075(T,y, — 273.15)°
Where T,,, is the average temperature of the conducting material.

The grate model is then constructed by connecting n number of grate segments in
parallel through the horizontal heat port connections.
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4.7 FURNACE WALL MODEL

A layered wall model is implemented using a resistive-capacitive-resistive network
to represent the thermal inertia of the furnace. Each layer consists of a capacity
connected to a thermal resistance in each direction of heat conduction through the
wall (1D heat conduction). The chosen properties for typical furnace wall material
are listed in Table 4.

Table 4. Chosen furnace wall material properties. Emissivity is only provided for surfaces facing the inside of
the grate boiler.

Steel 15Mo03 Inconel 625 SIC-90 tiles SIC concrete filling

Thickness (m) 0.005 0.002 0.030 0.030
Density (kg/m3) 7850 8440 2510 2300
Thermal conductivity (W/(mK)) 50 11 11.715 4
Specific heat capacity (J/(kgk)) 500 475 678 650
Emissivity NA 0.71 0.9 NA

Most of the furnace is covered by evaporator wall, which could be steel 15Mo03.
The lower part of the furnace is typically also covered with ceramic tiles and a
layer of concrete filling between tiles and steel. The steel is typically covered by
Inconel 625 instead of tiles in the upper part of the furnace. A constant evaporation
temperature can be assumed on the other side of the furnace wall, if the boiler
water pipe network is not modelled.

4.8 RADIATION HEAT TRANSFER MODEL

Heat transfer by thermal radiation is dominant inside the first flue gas pass of the
boiler. The subsequent passes with superheaters are typically dominated by
convective heat transfer, hence called convective passes.

Grey body radiation is illustrated in Figure 26. The incident radiation is partly
reflected, absorbed, and for some materials transmitted. The radiated heat is the
sum of reflected radiation and emitted radiation (Stefan-Boltzmann law).

. B Reflected
Em.ltt.Ed 4 Oy radiation Incident
radiation H radiation
sol* ° H

Absorbed //
radiation aH ~ TH

&
L Transmitted
» radiation

Figure 26. Grey body radiation example.
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All facing surfaces in the furnace will radiate heat to each other. The complexity of
the resulting network of heat transfer connections grows rapidly with increased
discretization of the bed and furnace wall. The inner geometry of the furnace can
also be of complex nature. A generalization and simplification of the radiation heat
transfer is therefore needed and implemented in a separate model.

In the implemented radiant heat transfer model, it is assumed that the furnace can
be represented by a rectangular box, as shown in Figure 27. The box is split
vertically into m combustion zones, with m heat port connections in the horizontal
direction going to the furnace wall and m connections to the flue gas combustion
volumes inside the furnace. Furthermore, n connections are provided in the
downward direction (e.g., number of bed discretizations) and k connections in the
upward direction.
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#
&
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Zone m |
— —
— 1
— —

Zone 1 III

Figure 27. lllustration of the generalized furnace radiation heat transfer model.

The complete radiation of heat in the furnace is calculated by solving the following
set of equations (note that the equation for the outgoing heat transfer rates for all
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surfaces B, with dimension n+2m+k, involves element wise multiplication of
vectors);

H=FB
B = AeoT* + pH
Q=H-B

where the vector H is the incoming heat transfer rates into each surface, the square
matrix F determines how the outgoing heat transfer rates are distributed to the
facing surfaces (has zeros in the diagonal — a surface does not radiate heat to
itself), the vector A is the surface areas, the vector € is the emissivity of each
surface, o is the Stefan-Boltzmann coefficient, the vector T is the surface
temperatures, the vector p is the reflected or transmitted radiation from each
surface, and finally Q is the resulting heat transfer into each surface element. Note
that the sum of the elements in the vector Q is always zero.

The difficult part of deriving a radiation model is to formulate a generalization of F
for an arbitrary number of surface discretizations. A simple version is
implemented in the present work, where the outgoing radiation is distributed
among all other surfaces according to their relative surface areas (view angles are
thus neglected). Additionally, the following assumptions are made (see also
[Ullum, 2000]);

e A gas volume absorbs and transmits energy (no reflection).

e A surface absorbs and reflects energy (no transmittance).

e Emittance = absorptance.

e Absorptance (0-1) + transmittance (0-1) + reflectance (0-1) =1.

e Absorptance and reflectance for bed and furnace wall surfaces are constant.

e Absorptance for the gas volumes is constant (in more elaborate versions it
should be a function of pressures, temperature, and mean travel length).

Figure 28 shows temperatures of heat capacities in a simulation example where
they are all thermally connected with a cubic 1 m3 radiation box with downward
discretization of n=4 (T1-T4), horizontal wall discretization of m=2 (Ts, Ts), upward
discretization of k=1 (T7), and horizontal flue gas discretization of m=2 (Ts, T9). The
chosen radiation coefficients are summarized in Table 5.

Table 5. Radiation coefficients used in simulation.

Emittance Reflectance Transmittance
down (fuel bed) 0.8 0.2 0
horizontal (tile wall) 0.9 0.1 0
up (Inconel) 0.71 0.29 0
horizontal (flue gas) 0.4 0 0.6
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Figure 28. Furnace radiation heat transfer simulation example showing convergence of temperatures.

The radiant heat transfer between the heat capacities cause the temperatures to
converge towards each other. However, there is a temperature offset caused by
differences in radiation coefficients, e.g., the transmittance is high for the flue gas
and these steady state temperatures (Ts and Tv) are also lowest.

4.9 COMPLETE GRATE BOILER SIMULATION

The presented detailed grate boiler submodels have been aggregated into a
complete grate boiler simulation example. A Dymola diagram view of the model is
shown in Figure 29. Starting from the left, the fuel inlet flow is determined by
flowSource with fuel composition specified by X_source. The fuel enters the bed
model and is propagated along the bed with a given grate velocity (blue triangular
input connector). The bed is discretized into n bed segments horizontally and
vertical discretization is omitted in the example simulation model. A grate model
(also with n segments) is thermally connected to the bed model and acts as a
primary air flow resistance between the flow source PA_source and the bed model.
The flow source air flow is split along the grate in the model represented by the
light blue box (determines air distribution). The flue gas flows out of the bed
segments are subsequently mixed before entering the first combustion model
(orange box). Subsequently, secondary air is added with the SA_source before the
flue gas enters the second combustion model (air staging). The furnace walls are
represented by three layered wall segments; furnaceWalll, furnaceWall2, and
furnaceTop. The first two segments, representing the vertical furnace walls, are
made of tiles, concrete, and evaporator steel. The last segment, representing the
furnace top, is made of Inconel and evaporator steel. The furnace walls are
thermally connected to a constant saturation temperature on the outside,
representing evaporating water in the riser tubes. All internal furnace surfaces,
including the flue gas, are thermally connected through radiation heat transfer
using the radiationZone model. AuxiliaryBurnerl, AuxiliaryBurner2, and
AuxiliaryBurner3, are added to the example providing a specified heat flow rate
into the last three bed segments. This can be used during start-up if the simulation
is started from cold conditions without fire on the bed. The main measurable
outputs from the grate boiler simulation are furnace flue gas temperature T_fluegas,
potential heat output Q_heating, flue gas oxygen concentration O2_wet, and the
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position of the burn-out location flameFront. In addition to these, all internal model
variables are available in the simulation.

EvapTemp

initValues -

T_fluegas

secondOrder

Q_heating
» /\/ >—>

w=0.1

seBany oy W noseBen"| o seBanyy
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variableDelay

delayliax=1000

uolpEy Z0

fuegas_sink

flameFront

Figure 29. Dymola diagram view of complete grate boiler model simulation.

The oxygen concentration sensor is typically located after economizers and before
the air preheater. This means that the measurement will be delayed with the
transportation time of the flue gas through the flue gas channel (empty passes,
superheater passes, etc). Models of the flue gas channel after the furnace is not part
of the simulation example. However, a variableDelay model is added to the
simulated O2_wet output with a delay given by the spatialDistribution operator in
Modelica. The flue gas flow velocity v;, required in the delay calculation is
approximated by

Mg

vf -
g
pfg,angcross,avg

Where 1 is the mass flow rate, prg 414 is the average flue gas density along the
channel and Ay 45, avg is the average cross-sectional area of the channel.

The grate boiler heat output is normally calculated on the water/steam side.
However, the water/steam part in the boiler drum, evaporators, superheaters, etc.,
is a complex system of pipes and heat exchangers in itself and is not part of the
implemented simulation example (components from Modelica Standard Library
can be used for this purpose). The heat output Qpeqting is instead calculated as

Qheating = Qevap + mfg (hfg,out - hfg,ref)

where Q¢ is the total heat transfer through furnace walls (cooled by the
evaporator) and the rest is the available heat in the flue gas when cooled down
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from the furnace outlet temperature to a given reference temperature. The heat
output Qpeqting is additionally passed through a second order filter to approximate
the overall dynamics in the water/steam pipings.

4.10 MODEL VALIDATION

Usually, a model can be validated by directly comparing simulation results with
measurements or other reference values. Since utility boilers are always very
sparsely instrumented in the fuel and flue gas path, obviously, immeasurable
states such as flame front, bed composition and temperatures must be validated in
a different way. The key is to rely on the fidelity of the model and to assume that if
the model can reproduce measured values well, the intermediate states between boundary
conditions and measured states are also reproduced well. This approach is often taken in
the field of control engineering, where it is referred to as state estimation, which also
includes a feedback loop that continuously adjusts the model to ensure a match
between measured and simulated states. In that context, it is worth noting that
even if the simulated states do not exactly match the corresponding physical states,
state-feedback control can still improve the process.

Nine days of data from the Sysav WtE plant in Malmo has been made available for
potential model validation. The data is sampled with a 10-minute interval and the
specific measurements are highlighted in Figure 30.
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Figure 30. Simplified drawing of a Sysav grate boiler with indication of available measurements (green).

Suitable measurement data are necessary to validate the model. In this case the
validation process is challenged by the fact that not all upstream boundary values
for the model are measured at the Sysav plant. Particularly, the fuel flow and
composition are an unknown input, which inhibits the fidelity of the validation
process in the following way:

e The dynamic behaviour of the process cannot be validated since both the input
and (dynamic) outputs must be known.

e The fuel movement speed on the grate also influences the dynamic response,
but only grate speed in mm movement is known.

e The burn-out location (flame front) is not measured at Sysav.

e The steady state behaviour of the model, however, can be validated to some
extent without the measured fuel input. This can be done by re-constructing
(or back-calculating) the fuel input from downstream measurements such as
oxygen contents, flue gas flow, furnace temperature etc. The norm EN-12952-
15 prescribes how to do so.

e The steady state calculation also requires assumptions in terms of fuel
composition (e.g., “typical” waste), heating value, and ash losses (amount of
unburnt and temperature).
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e The missing volatile mass fraction in the MSW fuel composition and the fact
that the implemented pyrolysis model is based on biomass experiments also
makes a direct comparison difficult.

However, the available measurements can be used to;

e obtain the produced heat on the steam side, which can be used to scale the
model so that it approximately matches the size of the Sysav grate boiler.

x  Two-hour average values during five steady state periods at nominal load
shows an average of 81 MW on the steam side, given the measurement
locations shown in figure 30.

e obtain an indication of a reasonable PA/SA combustion air split.

x The same periods as above shows a split of 54.8/45.2.

e compare furnace temperatures.

% Four temperature sensors are located inside the furnace showing an
average temperature during nominal load of 958 °C (min 939 °C and max
975 °C).

Additionally;

e the norm EN-12952-15 can be used to calculate the necessary combustion air
flows at a given target O2 content in the flue gas. Applying these air flows
should give the same O2 content in the flue gas for the same fuel specification
in the simulation.

x Typical excess air ratios used in district heating furnaces fired with wood
chips is in the range 1.4-1.6 corresponding to a dry O2 content in the flue
gas of 6-8 %. A dry O2 content of 6 % corresponds to a wet O2 content of
4.79 % for typical wood chips with the specification given in table 1. The
combustion air flow should in this case be 5.43 times higher than the fuel
flow according to calculations prescribed by EN-12952-15.

e the heating value of the chosen fuel can be used to calculate the expected heat
output for comparison with the simulated output.

% The lower heating value (LHV) of typical wood chips is approximately
10.7 MJ/kg (from 25 °C fuel to 150 °C flue gas). Any discrepancy in the
result must consider the losses due to hot ash and unburnt fuel leaving the
grate.

A complete grate boiler simulation has been parameterized to validate the
modelling work, with boundary conditions and expected output based on the
above discussion. An overview of the parametrization and boundary conditions is
provided in Table 6. Note that parameters are mostly based on reasonable
estimates and experience (e.g., physical dimensions that otherwise would have
taken long, valuable, time to infer from drawings etc.).
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Table 6. Key parameters and boundary conditions used in complete grate boiler simulation.

Description Value Unit Comment

Fuel, typical wood chips  see table 1 -

Fuel inlet flow, Meyn 7 kg/s  Gives a total heat output
corresponding to Sysav

Fuel inlet temp., Tein 25 °C For comparison of heat output with
LHV

Grate velocity, Vg 0.005 m/s

PA flow, mea 22.8 kg/s  60% of fuel flow multiplied with 5.43

SA flow, ms, 15.2 kg/s  40% of fuel flow multiplied with 5.43

Air temp., Tea and Ts 150 °C For comparison of heat output with
LHV

Bed discretization, n 10 -

PA flow distribution {0.03,0.03,0.05,0.05 - Less air in first and last part of grate

vector ,0.09,0.09,0.26,0.22 (same discretization as bed)

,0.1,0.08}

Bed length 8 m

Bed width 4 m

Furnace length 6 m

Furnace width 4 m

Furnace height 16 m

Cross-sectional area of 9 m> Average cross-sectional area of flue gas

flue gas channel, Acosa channel from furnace to O,
measurement location

Flue gas channel length 70 m

Auxiliary burner, Quue 35 MW  Distributed among the last three bed
segments during the first hour of
simulation

Evap. temp., Tes 260 °C Same value as in Sysav data

Init. furnace wall temp. 260 °C Initialized to evap. temp.

Init. bed fuel temp. 25 °C Cold initial bed

Figure 31 and Figure 32 shows simulation results from the first two hours of
simulation from an initial cold bed to steady-state operation. The fuel height in
each bed segment is initialized with a linearly decreasing height from 0.63 m to
0.063 m (triangular shape).

The last three segments, with auxiliary burner heat input, quickly increase in
temperature starting with vaporization of water (mmz0 going to zero),
devolatilization (mvel decreasing), and ignition in the last bed segment (large
increase in temperature and decrease in mchar). The furnace and fuel slowly begin
to warm up and vaporization of water in segment 7 then leads to devolatilization
in segment 8 (dry hotter fuel is transferred instead of wet). Char conversion slowly
moves up the bed with ignition in segment 9 after 29 minutes, ignition in segment
8 after 51 minutes, and ignition in segment 7 after 61 minutes. Steady state
temperatures are reached in a state with wet fuel on the first three segments (mH2z0
= 448 kg), devolatized fuel on the last four segments (partly devolatized in segment
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5), and almost complete char conversion after segment 8 (0.67 and 0.13 kg of char
left in segment 9 and 10, respectively). The fuel flow out of the last segment (going
into the slag discharge) is 0.035 kg/s and consist of 96.7 % ash.

A closer look at devolatilization reveals that it approximately starts at a fuel
temperature of 200 °C and ends at 600 °C as expected. Char conversion accelerates
at a fuel temperature above 800 °C. The furnace flue gas temperature T fumace settles
at a temperature of 1061 °C, which is approximately 100 °C higher than the
temperatures measured at Sysav. However, the measurement at Sysav is also
believed to be located closer to the top of the furnace, which could explain the
small cool down (higher temperature in simulation). Small drops in Tfgfumnace can be
observed each time the water in a fuel segment vaporizes (relatively cold vapor is
added to the flue gas). This effect is minimized with increasing number of bed
segments.
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Figure 31. Temperature and proximate masses in the bed fuel segments from complete grate boiler simulation
(subscript 1 is segment closest to fuel inlet). Flue gas temperature after combustion Tz furnace is also shown.

The burn-out location (flame front) is initially 0.1 before char conversion starts
(default value when there is no fire present). The value then goes to almost 1 when
the fire starts in segment 10 (1 corresponds to a burn-out location at the end of the
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bed) and slowly drops to a steady state value of 0.78 as the fire moves closer to the
fuel inlet (segment 7).

The total heat output Qneating slowly increases as the furnace is warmed up and
reaches a steady state value of 72.3 MW. Multiplying the fuel flow with an
expected LHV of 10.7 MJ/kg gives 74.9 MW, which is close to the obtained heat
output (note that there will be losses due to ash and unburnt fuel leaving the
grate).

The flue gas O2 mass fraction slowly decreases with increasing char conversion.
The mass fraction goes to zero during peaks in char conversion in segment 7 and 8,
where large amounts of char is quickly burned, while being limited by the sub-
stoichiometric conditions. This also produces large amounts of CO, which
consumes the remaining O: in the flue gas combustion above the bed. A smoother
response can be obtained using a higher bed discretization, as a segment either has
char conversion or not (larger volumes equals larger transients). The steady state
wet O2 mass fraction is 4.72 %, which is quite close to the expected 4.79 %.

flameFront

U}

T
o 25 50 75 100
Time [min]

—— Q_heating
1.2E8

8.0ETH

g 4.0E7TH

0.0E0

Time: [min]

T T T T T T T T T T T T T T T T T
0 25 50 75 100

Time: [min]

Figure 32. Burn-out location (flameFront), total heat output (Q_heating), and wet 02 mass fraction (02_wet)
from complete grate boiler simulation.

The two-hour complete grate boiler simulation example took 190 seconds to
complete using Dymola 2018 on a ThinkPad T550 i7 2.60 GHz laptop. This is
approximately 38 times faster than real time, when the bed is discretized into 10
segments. More could potentially be done to increase the simulation speed, but the
results indicate the potential for higher discretizations within reasonable
simulation time.
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4.11 MODEL ROBUSTNESS

The component-oriented modelling approach, together with the physics-based
modelling of Modelica, makes it is quick and easy to build aggregated models of
very high complexity and fidelity by mere drag-and-drop or by parameterization.
The models presented in this project is an example of this, as the connection of
subcomponents based entirely on physical principles have resulted in a complete
and realistic representation of a grate boiler, without a significant amount of
tuning or simplifications. There are however also pitfalls with this approach, as
explained in the following paragraphs. But it is the authors conviction that these
issues can be resolved with additional unit testing and reasonable model
simplifications.

Figure 33 shows the solver statistics for the complete grate boiler simulation
model. For instance, the detailed grate boiler with “only” 10 bed segments contains
around 3,000 equations and several nonlinear equation systems which need to be
solved iteratively during each time step — the biggest system containing 46
unknowns before manipulation by the solver, and 19 after. The nonlinear equation
systems should — if possible — be reduced or removed to speed up simulation
time and increase model robustness. Complying with the staggered-grid scheme
mentioned earlier is one way to increase model robustness, i.e. by breaking up the
nonlinear equation systems by inserting dynamic states.

Nonlinear equation systems can be removed either by reformulating the model so
that explicit formulations are used rather than implicit, or by introducing
additional states. Reformulating the equations is generally the most promising of
the two, as additional dynamic states in the model can increase the simulation
time, especially if fast dynamics are added. However, it is often hard to find
explicit formulations except for systems that are already quite small. In the system
model at hand, scalar nonlinear equation systems, corresponding to enthalpy-
temperature calculations for the fuel medium, could be removed by adding a
corresponding explicit function, instead of the current situation, where the water
fraction and the dry fuel use two separate functions. For the largest nonlinear
system, there is little hope of finding a similar method, as it is introduced by the
complex radiative heat transfer model. In this case, a more promising approach
would probably be to search for ways to simplify the model (e.g. remove parts
with little influence over the overall behaviour), rather than reformulate it.

It is important to note that systems of nonlinear equations can occur on a
simulation model level and not necessarily on the component level. The connection
of two numerically sound models can result in, e.g., systems of nonlinear equations
if two so-called flow models are connected, or in high-index differential algebraic
systems if two so-called volume models are connected. This means that one should
take this into consideration when building models from components.
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Dymola Messages - [} e

Syntax Errar Translation Dialog Error Simulation Version Management

@ 0FErors 1\ 5Warnings (i) 12 Messages Clear

v (i) statistics ~
i) Original Model
Mumber of components: 381
Variables: 6340
Constants: 632 (1188 scalars)
Parameters: 2017 (3102 scalars)
Unknowns: 4231 (8080 scalars)
Differentiated variables: 409 scalars
Equations: 3261
Montrivial: 2648
i) Translated Model
Constants: 2962 scalars
Free parameters: 549 scalars
Parameter depending: 1512 scalars
Continuous time states: 299 scalars
Time-varying variables: 3697 scalars
Alias variables: 3650 scalars
Assumed default initial conditions: 13
Mumber of mixed realfdiscrete systems of equations: 0
Sizes of linear systems of equations: {2, 8, 4,8, 8,2,8,8,4,8,4,8,8,4,2,2,8,4,2,2,2,4,2,2,2,2,2,2,2,8 444242222

Sizes after manipulation of the linear systems: {0, 7, 2,7, 7,0, 7,7, 2,7, 2,7,7,2,0,0, 7, 2,0,0, 0, 2,0,0,0,0,0,0,0, 7, 2,2, 2,0, 2,0,0, 0, 0}
Sizes of nonlinear systems of equations: {3, 1,3, 1,3, 1,3,1,3, 14,3, 1, 3,1,3,1,3, 1,3, 1,%,6,8,6,8,6,8,6,8,6,8,8,6,8,6,8,6,8,6,6, %4 4
Sizes after manipulation of the nonlinear systems: {1, 0, 1,0, 1,0, 1,0,1,0, 1,0, 1,0, 1,0, 1,0, 1,0, 13, 1, 1, 1, 1, 1, 4, 1, 1, 1, 1, 1, 1, 4, 1, 1, 1, 1, 1, 1, 1, 1}

MNumber of numerical Jacobians: 1
i) Initialization problem

Sizes of nonlinear systems of equations: {2, 2,2, 2,2, 2,2, 2,2, 2,2, 2,2, 2,2, 2,2, 2,2, 2,11, 11, 11, 11, 11, 11, 11, 11, 11, 11}
Sizes after manipulation of the nonlinear systems: {1, 1,1, 1,1, 4, 14,1, 1, 4, 14,1, 41,1, 1,1, 14,1, 1,1, 1, 1,1, 1,1, 1, 1,1, 1}
Mumber of numerical Jacobians: 20 v

Figure 33. Solver statistics for complete grate boiler simulation model.

Another issue is the sensitivity of the model to change in parameters or inputs. In
general, the aggregated model seems to be very sensitive to boundary conditions
— not particularly in terms of initialization problems but rather in the way that
even small step changes in e.g. input values can result in failure to simulate the
model. This sensitivity has made it quite difficult to perform the intended open-
loop and closed-loop simulations with the complex model.

The types of errors detected during the solution are typically related to logarithm
of negative temperature, invalid water/steam table lookup values and negative
mass fractions. These are typically the consequence of inadequate unit testing and
lacking robustness of sub-models.
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5 State Estimation

5.1 METHODS FOR STATE ESTIMATION

State estimation has the goal of reconstructing the internal states of a process based
on the available measurements. This task is performed by an observer. Several
different kinds of observers exist, which type to use depends on the characteristics
of the process in question. Algorithms based on the Kalman filter are traditionally
used for this purpose. For linear processes, the Kalman filter, which itself is linear,
is optimal in the sense that the deviations between estimated and true states are
minimized. For nonlinear processes, more advanced observers are often required.
The Extended Kalman Filter (EKF) and the Unscented Kalman Filter (UKF) are two
methods that can be used in this case.

Common for all flavours of the Kalman filtering methods is the requirement of an
observable model of the process at hand. The internal states of this model, which
are the basis for the state estimation, mimics the states of the real process. The
observability requirement, as well as performance considerations, will in practice
limit the number of states that an observer model used in this setting can have. For
the detailed process developed in this project, observability analysis of a test model
with a single bed segment revealed that usage of the model in a Kalman filter
would be completely infeasible. More specifically, to achieve observability for just
one bed segment with 15 states, approximately 10 measurement signals were
needed. This analysis was conducted by looking at the observability Gramian of
the linearized system, which for stable systems is positive definite whenever the
system is observable [Skogestad et al., 2005].

When faced with the problem of having a model which is too complex for a
traditional observer implementation, two alternative methods for the estimation
task were considered, both of which are based on implementing a simpler model.

1. Developing a simplified, physics-based model of the process, capturing the key
feature of how the flame front is affected by changing input signals, and how it
in turn influences the available measurements. This model could be used as
observer model in a setup where the detailed grate boiler model would be
used as a plant.

2. Using the detailed model to derive a black-box model relating the flame front
position to the available measurements in the process.

It was decided that the second alternative should be implemented, using an
artificial neural network (ANN).

5.2 NEURAL NETWORKS

Some background and theory for artificial neural networks, and their application
in state estimation of dynamical systems is presented in this section. For a more
detailed explanation of the area of nonlinear system identification, see e.g. [Ljung,
1999].
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Artificial neural networks were developed to mimic the information processing
capabilities of a nervous system [Rojas, 1996]. They consist of a collection of
neurons which are usually situated in layers. The neurons of each layer receive
input signals from each neuron of the previous layer, which together with a bias
are used to construct a weighted sum. This sum is used as input to a predefined
function, the output of which is propagated to the neurons of the next layer.
Feeding the first layer of neurons is a number of input signals, while the outputs
from the last layer of neurons determine the output from the network. One
normally separates the last layer of neurons from the rest by calling it the output
layer, while all other layers are denoted as hidden layers. By finding suitable
values of the weights and biases, a neural network can be used to approximate any
continuous function [Hornik, 1991].

The weights and biases for each node are determined using a learning algorithm.
By feeding the neural network with input signals were the correct output signal is
known, the learning is handled as an optimization problem, with the objective of
minimizing the difference between the output of the network and the correct
output signal.

For the task of state estimation of a dynamical system, it is important to note that a
neural network only functions as a static map between inputs and outputs. This
means that it cannot be used as it is to represent a system with internal dynamic. A
common method for circumventing this is to consider a sampled system and to
introduce delayed versions of the input signals, together with the input signals at
each sample time.

5.3 TOOLS AND WORKFLOW

The training of the neural network was performed in Python using the package
NeuroLab [NeuroLab 0.3.5 documentation]. Simulation results for the complex
model from Dymola was imported, sampled and scaled in Python and then used
as input and target data in the neural network training. The capabilities of the
neural network parametrization derived in training was evaluated by simulating
the neural network with a different set of inputs, corresponding to other
simulation results for the complex model. The weights and biases of the network
were saved to a mat file.

For the implementation of the neural network observer with the complex model,
the Modelica package NeuralNetwork [Codeca and Casella] was used. A network
corresponding to the one trained in NeuroLab, was set up, importing the weights
that were saved. To support this, the scaling of all variables was also implemented
in Modelica.

5.4 NEURAL NETWORK TRAINING

Training data was generated in Modelica using amplitude modulated pseudo
random input signals (APRBS). Based on analysis of the dynamics of the model,
the dwell time of the signal was determined to be in the range of 1800-3600
seconds. To ensure that varying flame front positions would be present in the data,
a trapezoid signal with a lower frequency was superimposed to the primary air
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flow signal. Further extension of the training space was considered in terms of
multiplying all inputs with a table-based gain, which would correspond to
different loads of the plant. However, this was not implemented due to time
constraints and stability issues with the model. The training scenario is initialized
with the bed cold, followed by a ramp in fuel flow and grate speed. After the ramp
and a period of constant inputs, the training is started 9000 seconds into the
simulation and is conducted for 91 000 seconds or approximately 25 hours. Input
signals, measurement signals and the flame front position during training are
displayed in Figure 34.

—— Primary air flow —— Secondary air flow
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Figure 34. Air flows and fuel flows during neural network training and resulting flame front position.

During the training phase, the sum of the squared errors (SSE) in flame front
position was minimized, using the Broyden-Fletcher-Goldfarb-Shanno (BFGS)
algorithm, which is the default method in NeuroLab. It uses the corresponding
function from SciPy [SciPy.org] for this purpose.

Different parameterizations in terms of sample time, number of input signals,
number of delays and number of neurons, were considered in the neural network
training. The considerations made for each of these are presented below. In all
cases, the hyperbolic tangent sigmoid function is used in the hidden neuron layer
and a linear function is used in the output layer.

e Sampling time: the sample time was determined to be in the order of
magnitude of 100 seconds, corresponding to the typical speed of the flame
front dynamics in the model. A different approach, with sampling time
determined by the time constant of the total system, was also considered, but
this yielded less satisfactory results. After comparing the results from
generated neural networks with different sampling times, a network with a
sampling time of 120 second was chosen.
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Input signals: the input signals to the neural network were decided based on
matching the available measurements in the real plant, according to the list
below.

X Primary air flow

% Secondary air flow

x Flue gas temperature

x  Flue gas mass flow

x Flue gas oxygen content

Number of delays: delayed versions of all input signals with one and two
samples (together with signals without any delay) were used, resulting in 15
input signals in total for the neural network. This strategy was based on
common practice in neural network modelling. Specifying the delays of
different inputs differently, depending on the dynamics of the system was also
considered, but the results from these experiments were inferior.

Number of neurons: experiments were conducted with the number of neurons
varying between 12 and 24 in a single layer. Tests with fewer neurons were
also conducted, with less success. No clear trend in the capability of the
resulting observer based on the number of neurons in this range could be
observed, the best results were achieved with a network with 20 neurons.

The output from the neural network together with the flame front position for the

data set that it was trained on is displayed in Figure 35. The network generally
manages to follow the actual position very well, but some spikes in the results can
be observed.
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Figure 35. Neural network output for training data.

68



GRATE BOILER MODELING FOR SOFT SENSOR BASED CONTROL

5.5 VALIDATION

The validation of the different neural network configurations was performed by
comparing the network output with the flame front position in simulation for two
different scenarios; one with random inputs like the training data but using a
different seed and one with simple step responses. The results for these
experiments are presented in Figure 36 and Figure 37. The neural network
manages to capture the general dynamic responses of the system in the experiment
with random input signals, but with spikes at some points in time that would need
to be filtered away before potential use in feedback control. The step response
experiment shows that the performance of the network for different steady state
working conditions is quite varied. For the first two operating points, significant
static errors can be seen, while for the last two, the estimations are very close to the
true values.
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Figure 36. Comparison between neural network output flame front estimation and true value during
experiment with random inputs.
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Figure 37. Comparison between neural network output flame front estimation and true value for step
response experiment.

The validation revealed the difficulty of training a network so that it works well in
the entire space of possible working conditions. In this project, this problem was
accentuated by the following model specific issues:

e The robustness problems of the model in simulation, which specifically made
training problematic, as this requires excitation of the model in many different
operating conditions.

e The complex and different dynamic responses to changes in input signals.
Believed to mostly be an artefact of the discretization of the bed, the response
to boundary condition changes can be quite violent in terms of temperature
changes in the different sections of the bed. In some situation the system also
appears to reach a cyclic behaviour, where the flame front moves back and
forth, instead of reaching a steady state, when certain combinations of
boundary conditions are used. An obvious way to reduce this problem is to
increase the spatial discretization of the bed and introduce vertical
discretization.

It is however believed that, with additional efforts to improve the neural network
setup, such as sampling time and number of delays for each input signal,
significantly better results would be possible.
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6 Extended Grate Boiler Control

The overall purpose of this project is to improve grate combustion by controlling
the flame front to optimize the utilization of the grate. This is a general desire from
the industry using grate boilers.

The closed-loop boiler control must be able to utilize the additional information
about the flame front, provided by the soft sensor and this can be done, for
example, by taking the following pragmatic approach

1. If the flame front is too close to the slag discharge, reduce the fuel flow and
increase the primary air flow.

2. If the flame front is too close to the fuel inlet, increase fuel flow and decrease
primary air flow.

A suggested extension of the generic control scheme in Figure 14 is shown in
Figure 38. The blue dashed contour indicates the added changes.

Load = fuel
Fuel flow setpoint
o
Load = SA
Load feadfon | fx) SA flow setpoint
(1] Load = pressure Load/fuel controller Load = O,
Load [ £ I [ |—tc m’;’;"m 3 []
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02
Load = PA
Steam pressure °F
1 — Feenfnrw PA flow setpoint
Load/PA controller i o
PD I () correction facl
o
Flame front setpoint — PID xl— -1

Flame front estimate

Figure 38. Extended grate control, utilizing flame front information.

The flame front estimate is compared with a flame front setpoint. Obviously, the
two must have identical units which could be a distance (meters) from fuel inlet or
a percentage of the grate length (e.g. 80 %). The deviation between setpoint and
measurement is used in a PID controller (8), e.g., with an output in the range +0.2.
A control signal >1 means that the flame front is too close to the fuel inlet and a
control signal <1 means that it too close to the slag discharge. The control signal is
then either added to or subtracted from 1 to generate two multiplicative correction
factors to apply to the fuel and primary air flow setpoints, respectively.
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6.1 CLOSED-LOOP CONTROL

To show its validity, a comparison between the generic control scheme, shown in
figure 14, and the extended scheme shown in figure 38 has been performed on the
simplified grate model. Although it doesn’t display all the transient details and
nonlinearities of the complex model, the differences in step responses will justify
the proposed concept.

6.2 LOAD CHANGE WITHOUT FLAME FRONT CONTROL

Figure 39 shows the responses from a step change in boiler load reflected in the
following process variables. The control structure is the generic grate boiler control
shown in Figure 14.

3. The topmost figure shows the flame front, defined as the distance from the fuel
inlet, is constant, 10 meters, until the load step at t=200 seconds. The dynamic
coordination of air and fuel inputs causes the flame front to retract a bit before
starting a steady increase. If the model is simulated for long time, the flame
front will converge on a value of about 10.3 meters (not shown).

4. The second figure shows that the fuel, primary and secondary air flows all
jump to a higher than initial value. The transient behaviour of fuel and
primary air after the load step is caused by the load feedback controller. The
transient behaviour of the secondary air flow is caused by the oxygen
controller.

5. The third figure shows the flue gas oxygen contents and its corresponding,
unchanged, setpoint. The oxygen controller manages to maintain the O2
contents after the load change.

6. The bottom figure shows the flue gas temperature and the boiler load
(expressed as heat release) and its setpoint. The load follows its reference
nicely (see discussion about simplified model) while the temperature
overshoots and slowly converges to a temperature higher than the initial value.
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Figure 39. Closed-loop control without flame front control.

Apart from the uncontrolled flame front the generic grate control works well,
despite of its simplicity.

6.3 LOAD CHANGE WITH FLAME FRONT CONTROL

Figure 40 shows the responses from the same step change in boiler load as shown
in Figure 39. The difference is the control of the flame front with the extended grate
control from Figure 38.

The topmost figure shows the flame front position and its setpoint of 10 meters.
After the load change at t=200 seconds the flame front is disturbed by the jump in
fuel and air flow and after a transition of 5-10 minutes the flame front is returned
to its setpoint. The flame front controller in this case is tuned by trial and error in
the simulation and keeps the flame front within 1 centimetre of its setpoint. This
control quality should of course not be expected in a real plant.

The remaining plots in figure 40 show that fuel and air flow, Oz contents, heat
release and flue gas temperature show similar stable behaviour as in the closed-
loop response without flame front control.
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Figure 40. Closed-loop control with flame front control.
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7 Summary and Conclusions

A highly complex grate boiler model has been developed, using physics-based
modelling. The model contains a bed model discretized along the grate,
combustion models, a discretized grate model and boundary conditions for fuel,
gas and heat flows.

A soft sensor has been implemented based on an artificial neural network, trained
using simulation results from the complex model. Validation of the soft sensor
shows that it is likely possible to extract the flame front position from the available
measurements.

A reference control system has been implemented and extended to enable use of
the estimated flame front position. Its usefulness is verified using a simplified grate
boiler model.

7.1 CONCLUSIONS

7.1.1 Modelling

The project has shown that physics-based modelling in Modelica is a viable
method for representing the complex processes that occur in a grate boiler. As
measurements of key signals was not available, such as fuel composition, fuel flow
and flame front position, a detailed quantitative validation of the model was not
possible, but the qualitative behaviour is reasonable. The modelling effort has
revealed both strengths and difficulties in this modelling approach. The main
takeaway is the potential of the method, as the connection of subcomponents based
directly on physical principles with very little simplifications, have resulted in a
highly complex model, which displays a behaviour that is aligned with the authors
expectations of the process. The main difficulty has been the robustness problems
in simulation of dynamic scenarios. The nature of these problems is a combination
of the following:

e Nonlinear equations: With highly nonlinear equations such as radiant heat
transfer, chemical reaction rates, pressure/flow relations connected without
dynamic states to “separate” them several nonlinear equations must be solved
simultaneous during each solver step. The solution of these equation systems
usually relies on a quasi-Newton solver, requiring at least C1 continuity and
much care should be taken when implementing discontinuities like IF-
statements, MAX/MIN functions etc.

e Model topology: Following the staggered-grid approach when constructing
large models is usually beneficial for the simulation time, initialization and
robustness of a model. It basically means that the nonlinear equations
mentioned above are decoupled in an alternating grid of so-called flow models
and volume models and often only the volume models contain dynamic states.
When aggregating a large model from components, however, it can be a
challenge to strictly follow this scheme.
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e Model stiffness: One challenge of rigorously following the staggered-grid
scheme is that many dynamic states are introduced. If the time constants of
these dynamics differ by several orders of magnitude simulation speed will
slow down.

e  Unit testing: Years of experience in component-oriented modelling has shown
that rigorous testing of submodels or components is paramount! A component
flaw (discontinuity, limited validity range, coding error etc.) can remain
undetected during many applications of the component in question. However,
at some point — usually in a complex context — it will surface making
debugging tedious.

Despite the mentioned difficulties with the model, a highly flexible modelling
approach has been introduced which allows us to easily reconfigure the model or
adapt it to any other plant. For example, fuel drying, pyrolysis, combustion,
radiative heat transfer etc. have been implemented in a way by which it is easy to
replace the model equations with simpler or more complex equations using a
“building block” approach.

7.1.2 Soft Sensor

The following general steps are suggested for implementing a soft sensor in a real
plant:

1. Develop a model of sufficient complexity to capture all relevant dynamics of
the process, in all relevant operating conditions.

2. Tune the model to match measurement data from the plant.

3. Develop a simplified model; black-box, grey-box or physics based, which
captures the relation between flame front position and measured signals, based
on the behaviour of the complex model.

4. Extend the control system of the plant with flame front information provided
by the simplified model.

To some degree depending on the method for deriving the simplified model, the
complex model is generally needed for increasing the amount of information that
can be conveyed to the simplified model, compared to using measurement data
alone. If for instance a neural network is used, it would be challenging to use
measurements from the real plant as training data. The reason for this is that it
would be infeasible to use PRBS signals as inputs to the real plant, which means
that the training data in this case would be close to normal operation. This in turn
could easily result in insufficient excitation of the system in the training phase
which would result in unreliable estimations from the neural network in operation.
The complex model is also important for validating the performance of the
simplified model.

In this project, the limited amount of tuning that was possible makes it hard to
know whether the complex model is sufficient to represent the dynamics of the
real plant. This is of crucial importance if a neural network is used as the simplified
model, as any significant mismatch between the model and the plant could result
in large errors in the estimations.
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The simplified model is needed for the practical implementation. Since it is derived
from the complex model it cannot produce better estimations than that model
does, but the complex model will often be too complex for implementation in a
control system, as was observed in this project and the unscented Kalman filter
that was the initial observer approach. The validation of the simplified model
against the real plant could be performed by manually monitoring the flame front
position at discrete points in time and comparing this data with the output of the
soft sensor, when it is fed with measurements from the plant.

The neural network approach used for the simplified model in this project has
proven to be a relatively easy to use method for estimating unknown process
states. Taking results from simulation of a Modelica model in Dymola into
NeuroLab, generating the weights and biases for the network and then bringing
this data back into the Modelica environment constituted a relatively smooth
workflow. The method itself seems capable of retrieving the desired states from a
simulation model, but this has been somewhat hard to verify due to problems with
generating enough training data and insufficient time to find the optimal setup for
the network. The observability of the flame front position, however uncertain, still
is an important result from the project as it indicates that other methods also could
be used to determine the position.

The limitations in the results achieved with the work-flow presented above in this
project should be seen in the light of the small amount of measurements that were
both available in the plant and used in the observer model. For a plant with more
available measurements, both the task of model validation and deriving an
observer could potentially be simplified significantly. Furthermore, providing just
a rough estimate of the flame front position, e.g., too far back, normal, or too close
to slag discharge, and using this information in feedback control, would be an
improvement in itself.

7.1.3 Flame Front Position Control

An extension to the generic grate control scheme has been proposed utilizing the
estimated flame front position. A PID controller can use the estimate to produce a
multiplicative correction of fuel and primary air flow setpoints, increasing the
primary air to fuel ratio if the flame front is too close to the slag discharge.

A comparison of closed-loop simulations with the preliminary grate boiler model
with and without flame front position control proved the validity of the proposed
control concept.

7.2 FUTURE WORK

7.2.1 Modelling

First and foremost, the robustness issues of the model should be addressed. This
should be a combination of improving the numerical properties of the (sub)models
and of simplifying the existing model.
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Numerical Improvements
In terms of numerical improvements, the following could be considered.

¢ On a component level, the entire range of sub-models, components and
functions in the grate boiler model library should undergo rigorous unit
testing to reveal situations where the numerics of the model code in question
have hard times. For example, the char conversion model must be able to
produce numerically valid results regardless of the boundary conditions
applied to it — even with wrong boundary values (negative temperature, mass
fraction etc.). This sort of robustness will ensure that bad calculations are not
propagated onwards to adjacent models. Additionally, exceeding the scope of
validity for a given model or function could produce a warning.

e On an overall model level great care should be taken about complying with the
staggered-grid scheme to avoid direct connection of volume models since this
can result in initialization problem. Also, connection of nonlinear flow-models
should be avoided and should, preferably, be de-coupled with a dynamic
element.

Model Simplifications
In terms of model simplifications, the following could be considered.

e Heat transfer model: A highly complex radiative model is used to represent the
heat transfer between combustion, bed and furnace walls. The model
introduces a large nonlinear equation system. By simplifying this area of the
model, performance and stability improvements could be achieved.

e The simulation results in this project show that the different processes
considered in the bed segment seldom occurs in parallel, meaning that most of
the submodels in each bed segments are inactive during most of the
simulation. The observations suggest that alternative modelling approaches
might be more suitable in terms of simulation speed. One option is a moving
boundary model, where the sequences are assumed to happen in series. This
kind of model would have significantly fewer states than the current
implementation.

7.2.2 Soft Sensor

The next step towards implementing a soft sensor in a real plant would be to
investigate the implementational steps presented in Section 7.1.2 more thoroughly.

Perhaps most important of these is an improved validation of the complex model
of the plant. However, only a limited amount of dynamic measurement data is
typically available for this kind of plant, which will be a challenge in the validation
process. As correct estimation of the flame front position specifically is crucial for
the success of the overall method, one suggestion is to adapt the model to a plant
where this is already measured, to verify that the modelling approach captures the
dynamics of the flame front to an acceptable degree. Without this measurement
available, regular manual inspection through the looking glass during a limited
time (e.g. once every few minutes for a few hours), could be considered as an
alternative way of producing data for comparison with the output of the model. To
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analyse the neural network approach specifically, more systematically and
rigorously trained network models need to be evaluated in a larger set of operating
conditions. That would reveal if the measurements used in this project are
sufficient to estimate the flame front position with sufficient accuracy in all
relevant working conditions. The effect of adding more measurement signals could
also be worth investigating, as it is expected that this will simplify the task.

As the results of this project indicate that the flame front position is in fact
observable based on the available measurements, other estimation techniques
should also be considered, which do not have the same requirements as a neural
network in terms of training.
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CRATE BOILER MODELING
FOR SOFT SENSOR BASED CONTROL

In response to the increasing flexibility requirements of thermal power plants,
this report describes how an improved flame front position control can be
achieved for grate boilers. The flame front position affects the performance of
the plant significantly, but it is generally not measured directly, as this requires
cameras and advanced image processing. A soft sensor, which uses existing
measurements to estimate the flame front position, is therefore suggested.

Utilizing the physics-based modelling approach of Modelica, a detailed
grate boiler model has been developed for this purpose. By combining the
model with black-box modelling techniques, a soft sensor implementation is
presented. Experimental results in simulation indicate that methods based on
this approach could be used to improve the control of grate boilers, without the
need for new expensive equipment.
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