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Introduction
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What i1s a Fuel Cell?

ElectricityA
—_— e
Heat @ N

Chemical Energy = Electrical Energy
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Advantages and Usage of
Solid Oxide Fuel Cell

« Efficient power generation
(60 el%)

* Fuel flexible

 Low emissions

e Scalable

Truck or RV Combined Heat & Off-grid power
Auxilliary Power Power (CHP) generation
Units (APUS) 4
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Solid Oxide Fuel Cell (SOFC)

Cathode: O,+4e — 20~
Anode: 20*+2H,»2H,0+4¢e
Total reaction: O,+2H,— 2H,0

i
<Oxygen lons | |12 N
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<Oxygen ions 3 .
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Anode  Electrolyte Cathode
Fuel side Air side
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Solid Oxide Fuel Cell Stack

« Similar thermal expansion as the ceramics
used in SOFC

» Good electrical conductivity
« Formability
 Cheap to produce
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Cost analysis 1 kW Stack
50 000 Units

Publications by topic
SOFC XIV Glasgow

m Stacks & systems = Electrolytes

m Cathodes m Anodes
m Cells ® Interconnects = Interconnect

w Sealing, End plate etc = Assembly Hardware

Manufacturing cost analysis of 1 kW and 5kW solid oxide fuel cell (SOFC) for
auxillary power applications. 2014, Battelle.
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Problems at Interconnect level
Corrosion

poisoning the
cathode!

® Chromium evaporation: /
Cr,04(s) + 2 H,0(g) + 1.5 O,(g) — 2 CrO,(0OH),(9)

® Growing Cr,O4 layer

— In combination of Chromium evaporation leads to increased
Chromium consumption

— Increase in electrical resistance

Solutions:
New alloys & Coatings
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Possible ways to overcome Cr-evaporation

Change substrate composition:

CrOOHL(®) im0
C C C — 34
<— Cr,0, Decreases Cr-evaporation,
FeCrvin —> FeCrMn however, still too high!

Apply Co coatings:

Co (640nm) Cro; @ comn),0,
E Cr,0, Minimize Cr evaporation by
FeCrMn

FeCrMn —> presence of (Co,Mn);0,
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Possible ways to decrease oxide scale
growth rate
Apply Ce coating:

Ce (10nm
( ) . Co (640nm)

Ce (10nm)
FeCrMn — FeCrMn

Decrease in oxide scale growth

Apply Co coatings:

Co/ (640nm) Cro; (9) (Co,Mn);0,
¥ Cr,0; Minimize Cr evaporation by
FeCrMn

FeCrMn —> presence of (Co,Mn);0,
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Measurement Procedures
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Cr-evaporation
Experimental Setup

Samples Denuder tube,

Flow gas Flow restrictor
coated with Na,CO4(s)

CrO,(OH),(g) + Na,CO4(s) — Na,CrO,(s) + H,0(g) + CO,(qg)

After removing the denuder tube it is washed with deionized water and the
water is analyzed for chromate by spectrophotometry.

*Froitzheim et al. Journal of The Electrochemical Society, 157 (2010)
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Cr-evaporation
Experimental Setup

13
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ASR Measurement
Basic ldea

Contacting

Is difficult

Spinel oxide
Cr,04

Steel

Cr,04

Spinel oxide

Main
contribution to
/ resistance

14
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ASR Measurement
Electrode Preparation

1,0cm
) .
e _ Paint Sintering of
Pt-Sputtering with Pt-paste Pt-paste
— o > > >

Apply mask

1,0cm

Exposed
sample

i Wy
Sample mounted on Probostat, inclusive Pt-

Prepared
sample electrode
15




CHALMERS @ The High Temperature Corrosion Centre

UNIVERSITY OF TECHNOLOGY

Coatings

A mean to mitigate Cr-evaporation and decrease oxide
scale growth.
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Cr-evaporation
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Co+Ce coating perform as good as Co coating with regard to Cr-evaporation

Sanergy HT, 850°C, 6000mi/min
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Sanergy HT 3000h, 850°C, air 3% H,O 18
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Mass gain
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Sanergy HT 3000h, 850°C, air 3% H,O
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The long-term stability of Co/Ce
coatings
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LONG-TERM EXPOSURES
37 000 h
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Exposures

AlSI 441
Wt% Fe Cr Si  Nb Mn Ni Ti P C S N RE

Batchl1l Bal. 17.83 055 048 0.26 0.1318 0.139 0.024 0.012 0.002 0.0157 no

Batch2 Bal. 17.74 055 0.37 0.30 0.1922 0.1480 0.027 0.015 0.002 - no

Thickness: 0.2 mm
Coating: 10 nm Ce + 600 nm Co

Geometry: 3 x 4 cm (cut down to 3 x 2 cm for Cr-evaporation and 1.5 x 1.5 cm
for ASR measurements)

Exposures:
800 ° Cin a box furnace at Sandvik Materials Technology for up to 37 000 h

Analytical methods:

Cr- evaporation (in tube furnace)

Area Specific Resistance Measurements
SEM/EDX
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Different Furnaces

Box Furnace Tube Furnace
closer to stack conditions

+controlled atmosphere
(with adjustable humidity levels)

+ controlled flow rate

+high throughput - Expensive

- Stagnant not controllable air flow - Limited throughput

23
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Mass gains

ExXposure
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Mass gains SANDVIK
EXposure
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Mass gains SANDVIK
Exposure [
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Cumulative Cr-evaporation
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Cr-evaporation rate

1.85 * 104 mg cm2 h't average rate of
uncoated AlSI 441 (1000 h measurement)
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AISI 441, 800°C, 6000mI/min air
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Cr-evaporation rate

Uncoated AISI 441 (1000 h measurement)
Average rate: 1.85 * 104 mg cm? h-1
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Conclusions
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Conclusions - Long-term stability of Co/Ce
coatings

® Co/Ce coatings are highly effective against Cr-
evaporation and oxide scale growth

® After 37 000 h Co/Ce coated AISI 441 exhibits:

— Cr-evaporation rates comparable to initial rates
— ASR values well below 100 mQ cm?
— Approximately 17 — 20 pm thick Cr,O4 layer

Co/Ce coated AlISI 441 shows promising
long-term stability in air at 800 °C
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