() SINTEF

Prediktivt underhåll- Erfarenheter frånMonitorX

analysis

Thomas Welte

2018-03-20 Workshop: Digitaliseringen inom energisektorn

Outline

• SINTEF

• MonitorX project

- MonitorX: Results and
 - experience

Lessons learned

SINTEF

Thomas Welte

SINTEF – One of Europes largest research institutes

Applied research, technology and innovation

Expertise and competance from marine to space:

Renewable energy

Marine

Industry

Building and infrastructure

Materials

ICT

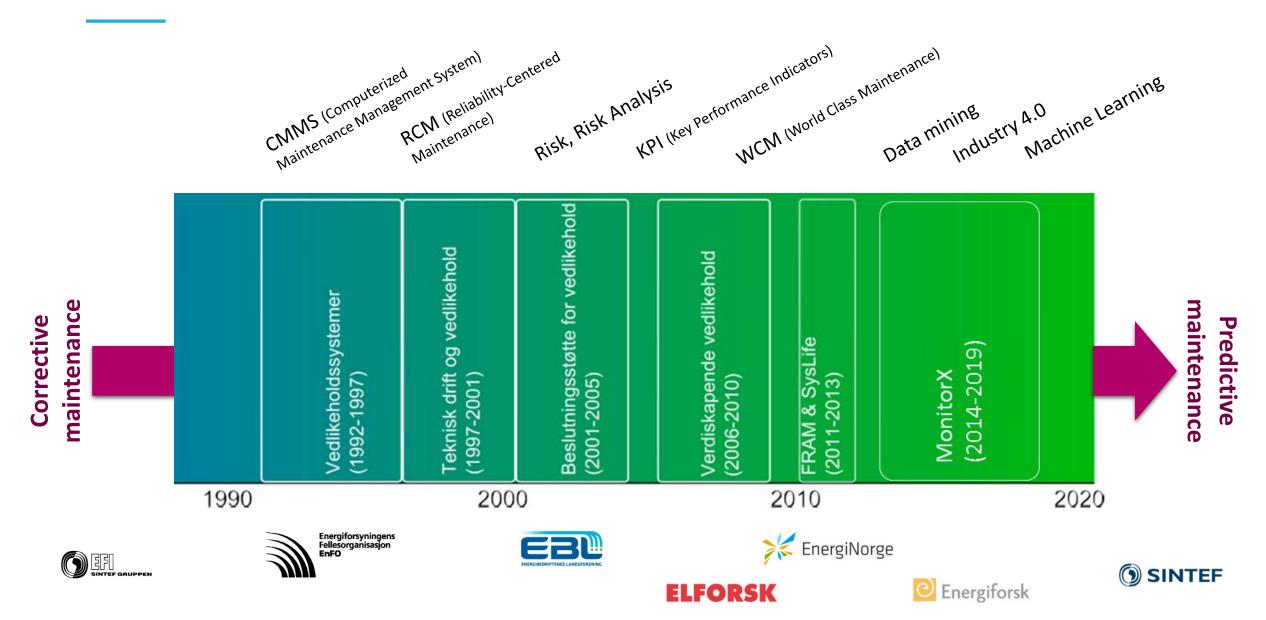
Micro and nano technology

Bio technology

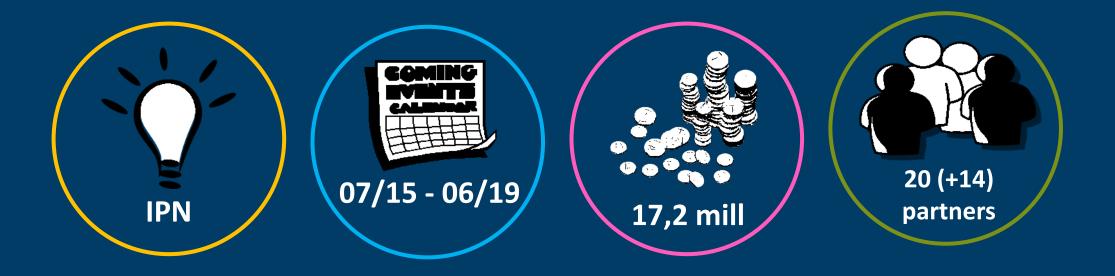
Climate and environment

Oil and gas

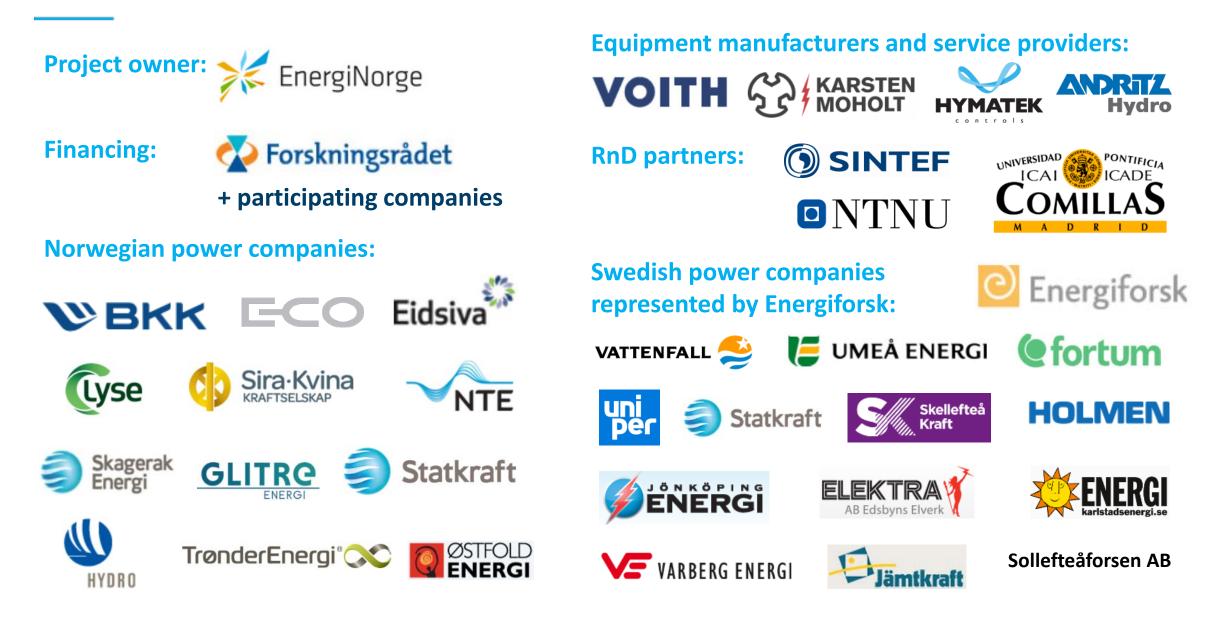
Health and welfare


Society

The MonitorX project


Thomas Welte

Maintenance hydro – Projects, topics, methods

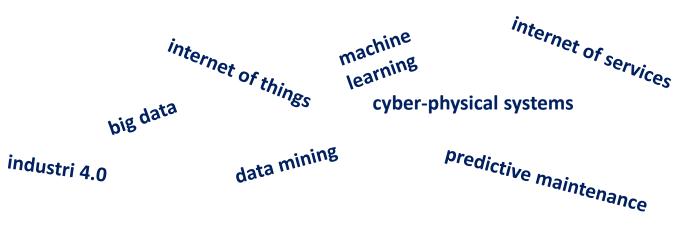

MonitorX

Optimal levetidsutnyttelse av vannkraftanlegg basert på overvåking av teknisk tilstand og risiko (Optimal utilization of hydropower asset lifetime by monitoring of technical condition and risk)

MonitorX – Project partners

MonitorX - Background

- Many measurements available already today
 - SCADA / control system (+ additional equipment/sensors)
 - These data are potential data sources for other purposes than control only
- Today, these data are not much used for decisions related to maintenance and reinvestment
- Power companies have a potentially large benefit when using these data



Hydropower plant 2017

MonitorX - Aims

Results

- Models, algorithms and corresponding software prototypes for optimal lifetime utilization
- Demonstrate practical application in selected power plants (cases)

Benefits

- Reduced maintenance costs by ... :
 - ... avoiding (catastrophic) faults ...
 - ... avoiding unnecessary component replacements ...
 - ... prioritizing the most critical components for maintenance ...
 - ... optimized maintenance ...
- … through early warnings of ageing and potential faults.

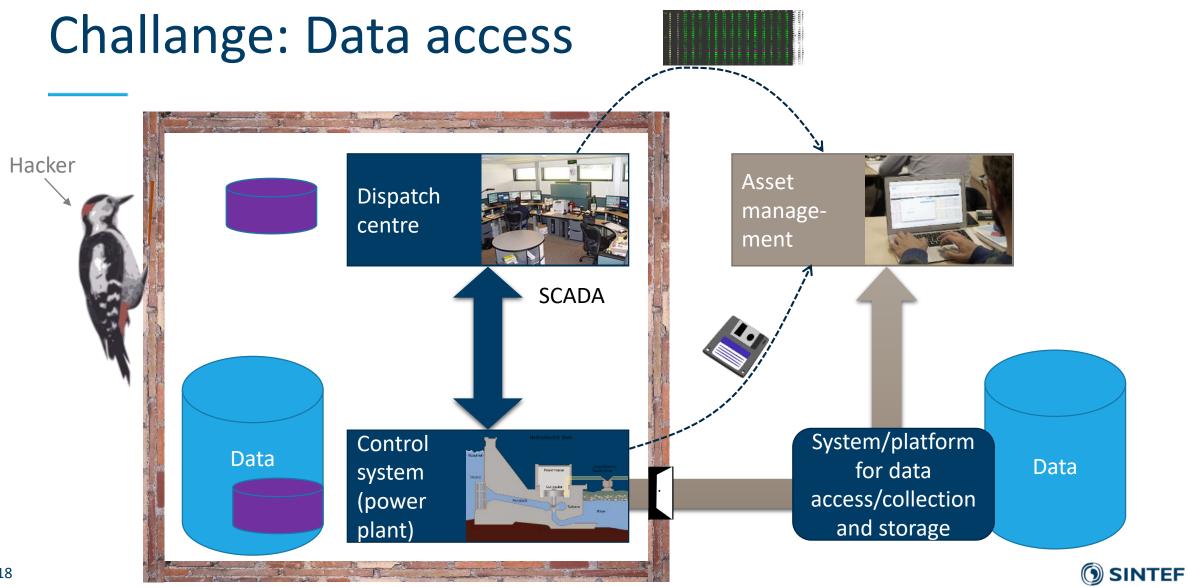
Knowledge gain

- How can hydropower plant operators utilize the mentioned concepts and methods for maintenance of their plants?
- What are the possibilities, challenges and restrictions?
- How can monitoring data be used to carry out maintenance more predictive?

MonitorX – Project phases

MonitorX – Cases (ongoing)

	Scope	Aim	Partners
1	Rotor fault detection	Detecting rotor inter-turn faults in generator rotor windings	NTNU, Vattenfall, Eidsiva, Statkraft
2	Condition monitoring of pumps	Detecting faults and degraded condition for pumps (leakage water, cooling water) in hydropower plants	NTNU, SINTEF, Vattenfall, TrønderEnergi
3	Condition monitoring headrace tunnel	Detecting tunnel collapses (rock falls,)	Andritz, Sira-Kvina
5	Audio Surveillance	Normality control, audio cavitation detection, audio exploration	Andritz, Statkraft, NTNU, SINTEF
6	Bearing monitoring	Detect condition changes and faults	SINTEF, Comillas, BKK
7 / 8	Kaplan hydraulic system monitoring	Detecting condition of Kaplan hydraulic mechanism	Comillas, Glitre
778	Rapian nyuraune system monitoring	Detecting oil leakages	Comillas, Skellefteå
10	SCADA data collection system in Brattset power station	Establish good and continuous access to SCADA data	Voith, TrønderEnergi


MonitorX: Results and experience

Thomas Welte

Model development $\leftrightarrow \rightarrow$ Data collection

C10. Data collection from power plant's control system (i)

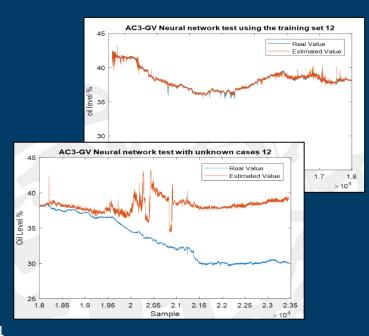
• Aim: Make signals that are colected/used in SCADA and power plant available to the plant operator (for other purposes than control).

• Status

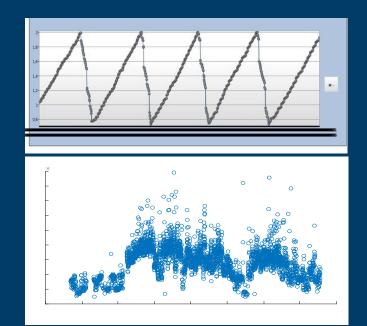
- Data collection system up and running since March 2017
- 1100 signals from the power plant's control system are available with the system
- Data access established for MonitorX project participants (NTNU, SINTEF, etc.)

Recent developments

 Power companies establish and start to use systems/digital platforms for large scale collection, storage and analysis of (SCADA) data

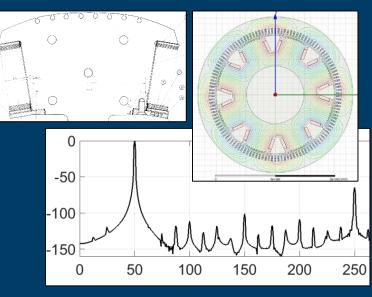

SINTEF

Which data? Resolution?

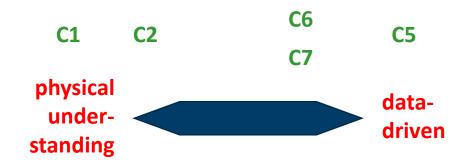

MonitorX cases C6 & C7

Bearing and Kaplan condition monitoring

• 1 hr average values



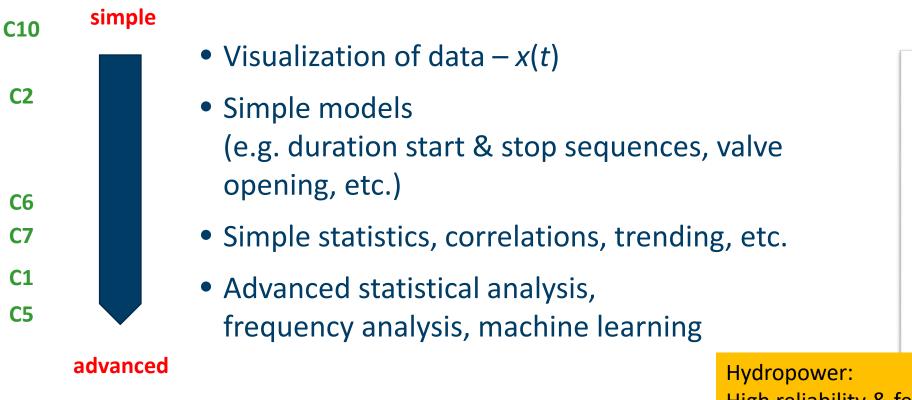
- MonitorX case C2 Monitoring of drainage pump behaviour
- 1 ... 10 sec. values


MonitorX case C1 Detection of rotor inter-turn faults

• (min. 2 ...) 4 kHz

Types of models?

TECNOLÓGICA

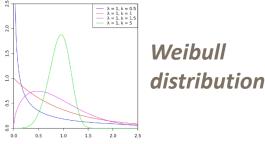

TECHNICAL REPORT

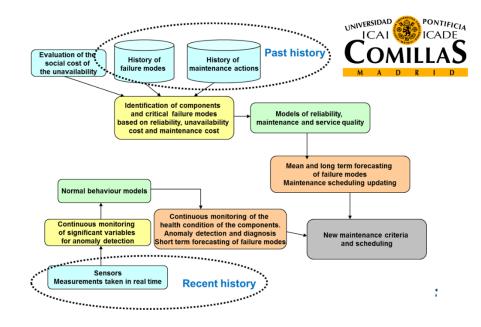
A2 1 MonitorX framework

Prof. Dr. Miguel A. Sanz-Bobi

ared by IIT for SINTEF and Energi Nor

view of analytics methods supporting Anomaly detection and Cond


Hydropower: High reliability & few faults → Normal behavior models → Anomaly detection


Classic statistical reliability methods vs. monitoring

iea wind

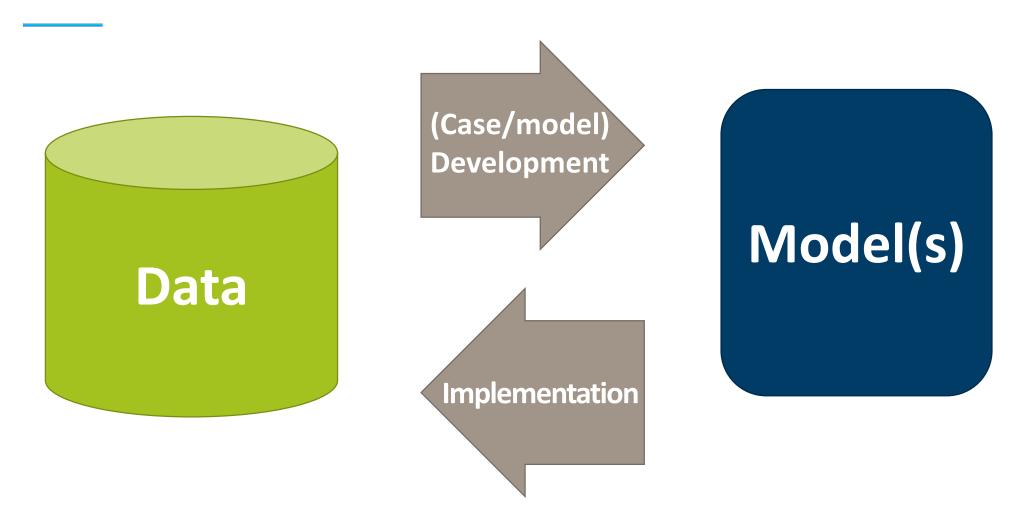
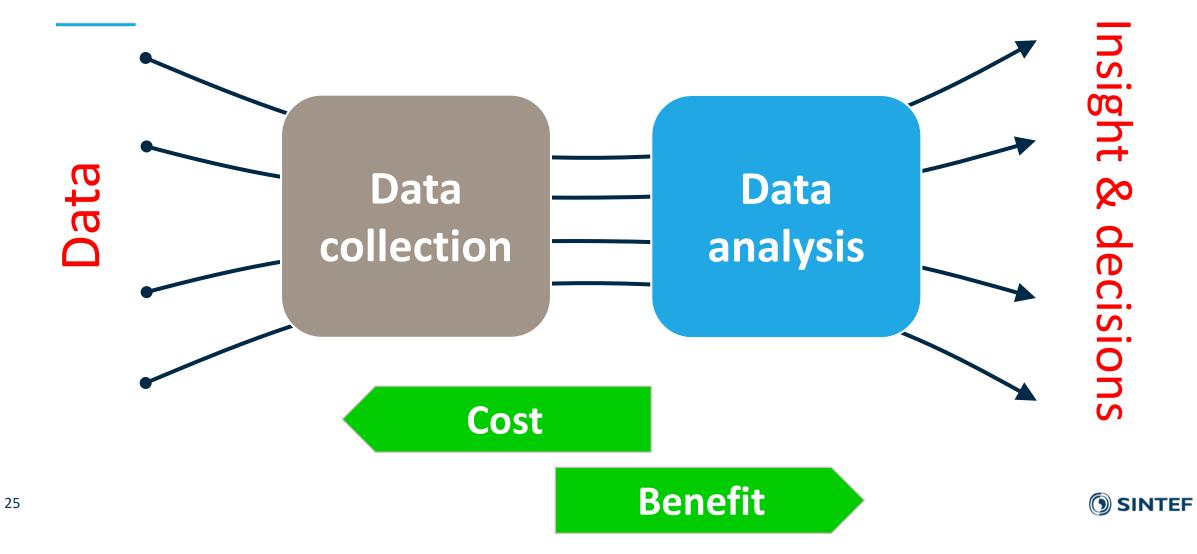
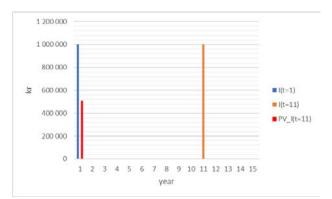

- Choice depends on intended application (type of decision, size of population, time horizon, etc.)
- Statistics useful to "build" good data-driven monitoring models

	Table 10: Prediction horizon of differe				ent models		EXPERT GROUP REPORT ON		
1	Model	short term ← prediction			horizon→ long term		RECOMMENDED PRACTICES		
		< <mttf*< td=""><td>< MTTF</td><td>MTTF</td><td>$\geq 2 \text{ MTTF}$</td><td>1</td><td colspan="2">17. WIND FARM DATA COLLECTION AND RELIABILITY ASSESSMENT FOR O&M OPTIMIZATION</td></mttf*<>	< MTTF	MTTF	$\geq 2 \text{ MTTF}$	1	17. WIND FARM DATA COLLECTION AND RELIABILITY ASSESSMENT FOR O&M OPTIMIZATION		
5	Stochastic models								
1	Failure rate models						FIRST EDITION, 2017		
1	Lifetime distributions				Table 11: Prediction capability depending on size of group				
5	Stochastic degradation			Model			small \leftarrow size of population \rightarrow large		
1	models						single unit, item	group, population	
1	Physical models			Stochastic models					
1	Machine learning		Failure ra	ate models					
*Condition	ndition monitoring systems that provide warnings and alarms hour:			ur: Lifetime	Lifetime distributions				
				Stochasti	Stochastic degradation models				
23	3		Physical	Physical models					
				Machine	Machine learning				



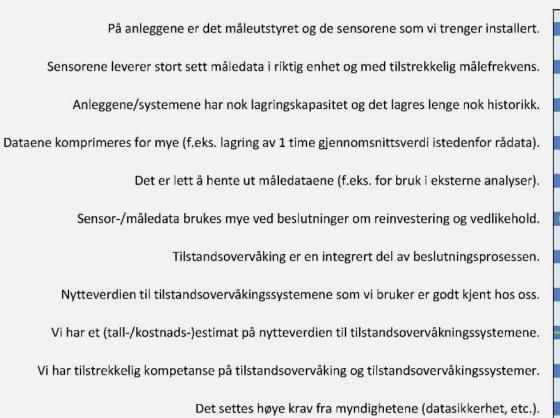
Cases/models: Development vs. implementation

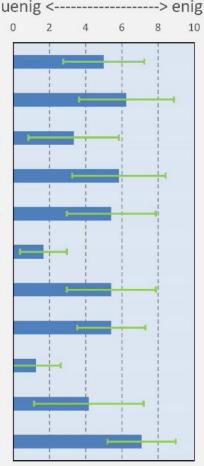
Data collection vs. data analysis


Potential benefits of monitoring

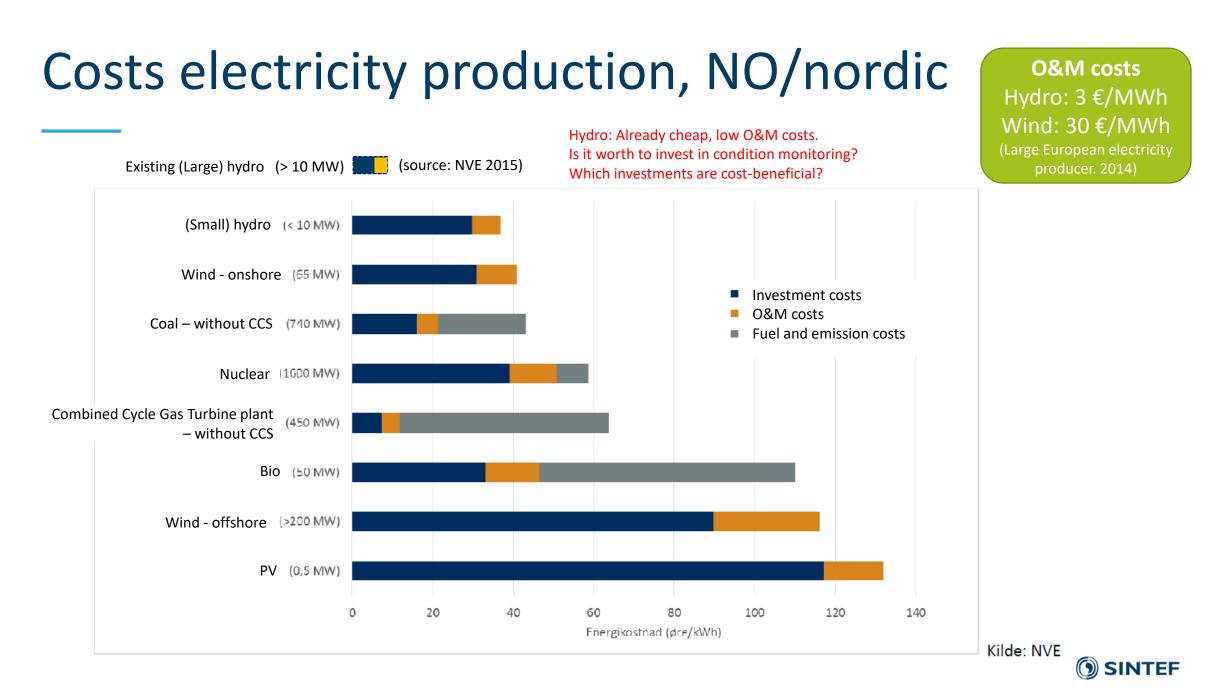
- Less manual inspections and power station visits
- Early warnings of potential faults, resulting in fewer (very expensive) corrective maintenance tasks
- Higher availability since maintenance can be carried out in periods when power plant is not needed for power production
- New possibilities to control effects of operationrelated loads on machinery
- Lifetime extension through better follow-up of real condition

Source: Wikipedia

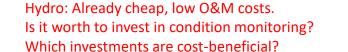



Status condition monitoring (2015)

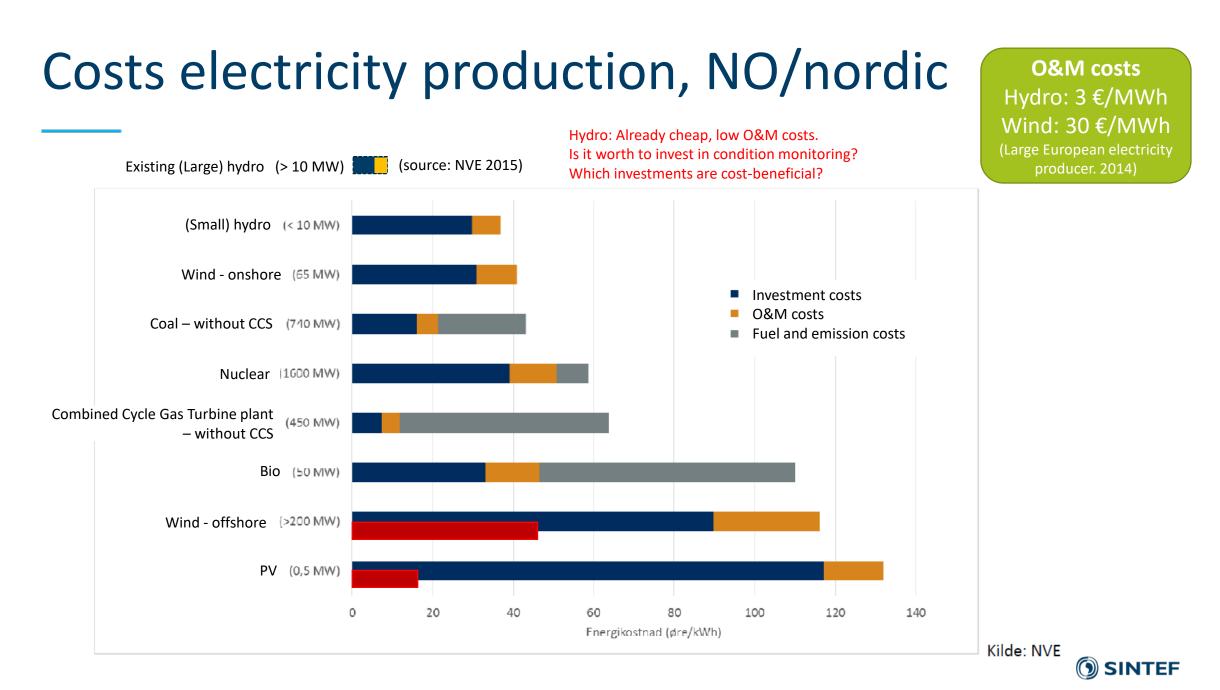
MonitorX survey 2015:


General topics included:

- 1. Measurements and sensors
- 2. Storage
- 3. Data collection and IT infrastructure
- 4. Availability of and access to collected/stored data
- 5. Analysis
- 6. Use in decision making (reinvestment/maintenance)
- 7. Benefit and cost-benefit evaluation
- 8. Competence and requirements



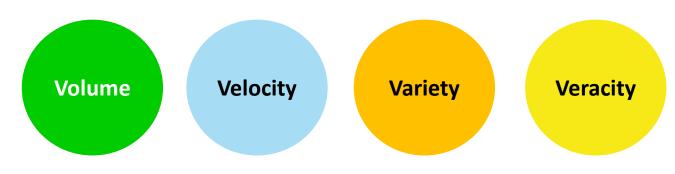
() SINTEF


NVE 2015: http://publikasjoner.nve.no/rapport/2015/rapport2015_02a.pdf

Costs electricity production, NO/nordic

O&M costs Hydro: 3 €/MWh Wind: 30 €/MWh (Large European electricity producer. 2014)

NVE 2015: http://publikasjoner.nve.no/rapport/2015/rapport2015_02a.pdf


Data quality

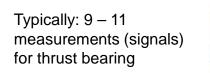
Veracity

- Can you trust the data?
- Data quality
 - Completeness
 - Correctness / calibration
 - Contradiction
 - ...

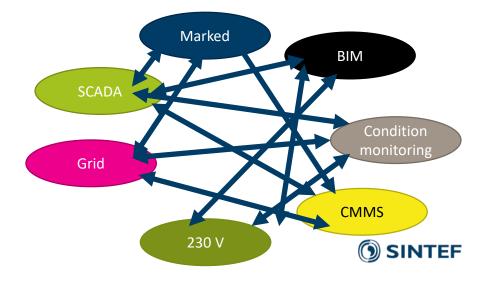
31464	18:00	- 19:0	0	40,637	634	61,888542	
31465	19:00	- 20:0				61,166146	
31466	20:00	- 21:0	0			62,521875	
31467	21:00	- 22:0				62,247881	
31468	22:00	- 23:0	0			61,708333	
81469	23:00	- 00:00				61,176563	
31470 2011-02-04	00:00	- 01:0				60.286979	
31471	01:00 32	136	18:00		19:00		
31472	02:00 32	137	19:00		20:00		
31473		138	20:00		21:00		
31474	04:00 32	139	21:00		22:00		
31475		140	22:00		23:00		
31476		141	23:00		00:00		
1410	32	142 2011-02-04	00:00		01:00		
	32	143	01:00		02:00	40,243648	
	32	144	02:00		03:00		60,664583
	32	145	03:00		04:00		61,648438
	32	146	04:00		05:00		
	32	147	05:00		06:00	40,73496	62,098438
	32	148	06:00		07:00	39,830945	
	32	149	07:00		08:00	42,842457	65,471875

The four V's of Big Data

IBM, 2017, The four V's of Big Data

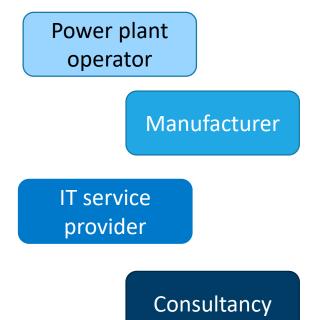

	20.00	 21.00	91,002961	 30 212430	00,002400	31,202431
	21:00	22:00				51,262497
	22:00	23:00				
	23.00	00.00				
2010-02-15	00.00	01:00				
	01:00	02:00				
	02:00	03:00				
	03:00	04:00			50,962498	
	04:00	05.00	41,982427	56,212498	50,962498	51,262497
	05:00	06:00				
	06:00	07:00	41,982427			51,262497
	07:00	08:00	41,982427		50,962498	51,262497
	08.00	09.00	41,982427			
	09,00	10.00				
	10:00	11:00	41,982427		50,962498	51,262497
	11:00	12:00				
	12:00	13:00				
	13:00	14.00				
	14.00	15:00				
	15:00	16:00				
	16:00	17:00				
	17:00	18:00				
	18:00	19.00				
	19:00	20:00				
	20:00	21:00				
	21:00	22:00				
	22.00	23.00				
	23:00	00.00				
2010-02-16	00 00	01:00				
	01:00	02:00				
	02:00	03:00				
	03:00	04.00				
	04:00	05:00				
	05:00	06:00				
	06:00	07:00				

Needs for standardization


- Different designation
- Exchange of information between different systems
- New working group at Energi Norge

Martin Hviid Nielsen Rådgiver mhn@energinorge.no 93877418 Pressebilder Signal designation with signal connection information Signal designation Signal designation Signal name Signal connection id (Sign. Conn. char.) EBL-code, RDS PP, KKS,

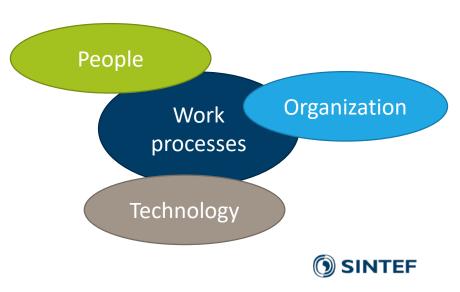
Temperature measurement	Signal name SCADA
Statorkjerne spor 4/5 PK 4 TH	STATORKJSP4/5
Statorkjerne spor 4/5 PK 4 BK	STATORKJSP4_5
Statorkjerne spor 64/65 PK 14 TH	STATORKJSP64/65
Statorkjerne spor 64/65 PK 14 BK	STATORKJSP64_65
Statorkjerne spor 136/137 PK 25 TH	STATORKJSP136/137
Statorkjerne spor 136/137 PK 25 BK	STATORKJSP136_137
Statorkjerne spor 4/5 PK 14 TH	STATORKJSP4/5.1
Statorkjerne spor 4/5 PK 14 BK	STATORKJSP4/5.2
Statorkjerne spor 136/137 PK 14 TH	STATORKJSP136/137.1
Statorkjerne spor 136/137 PK 14 BK	STATORKJSP136_137.1
10 temp. measurements –	- 6 different names!



Responsibility, competence and work processes

Responsibility

• In-house / external


Competence

- Technical (mechanical, electro, ...)
- IT/data science
- Management

...

Work processes

New technology
 → New ways of working

Teknologi for et bedre samfunn