Research for Sustainable Technologies

S. Madloch; M.C. Galetz

Effect of Pressure on Metal Dusting Initiation in CO-rich Syngas

KME-HTC Research Symposium 2018

Materials
Chemical Engineering
Biotechnology

Agenda

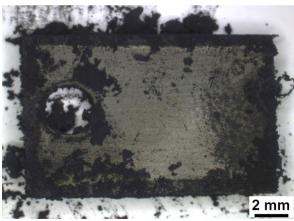
- Motivation and state of art
- Metal dusting: experimental setups at DFI
- Testing program, materials and coatings
- Results 1 bar, cyclic 1 bar, 18 bar
- Summary

Metal dusting

Carburization and decomposition of the material to graphite and metal powder

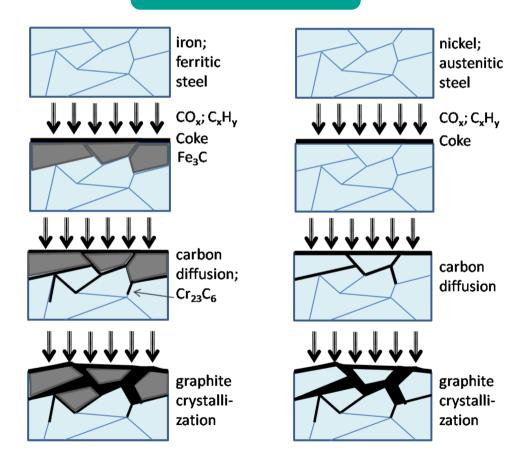
Conditions: - atmospheres with high

carbon content $a_C \ge 1$

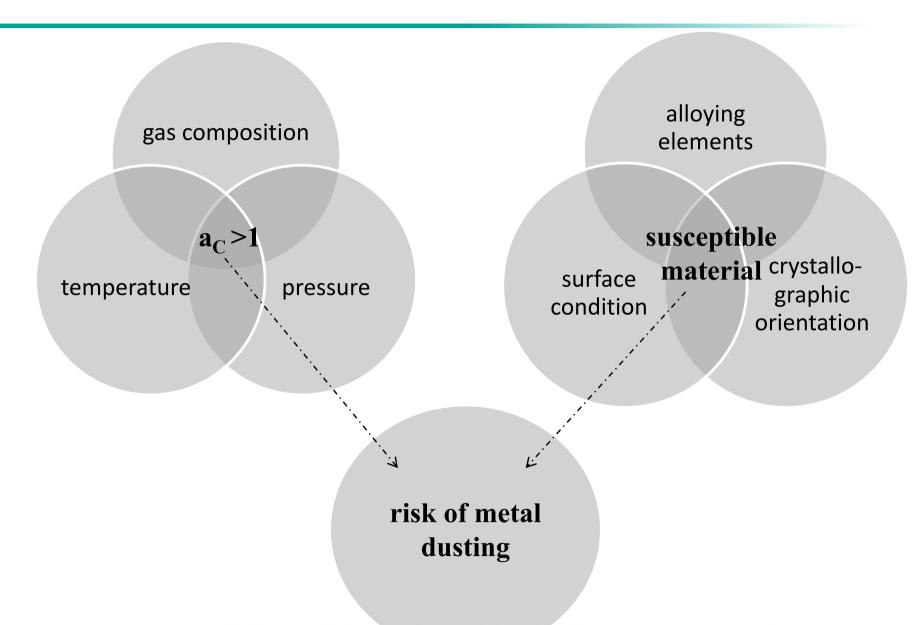

- temperature: 450 – 900°C

- H₂; CO; CO₂; CH₄; N₂;

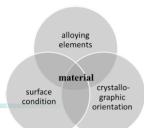
Industries: - petro chemistry

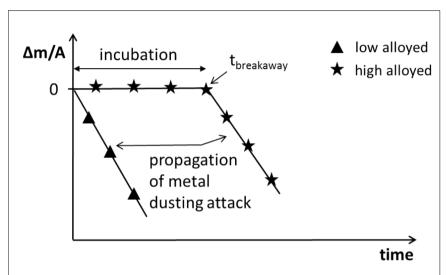

- coking plants

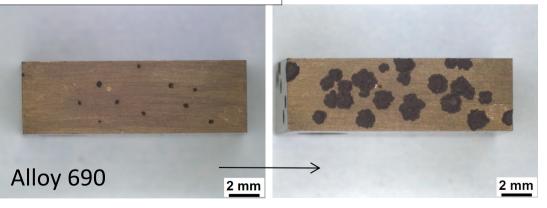
- steam reformer



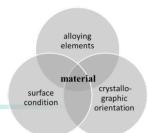
X15CrNiSi25-21H₂/CO/CO₂/CH₄/H₂O 620°C, 250h, 18 bar


2 mechanism

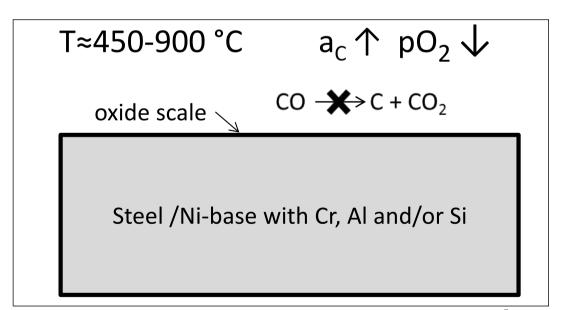




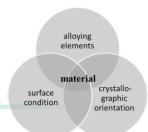
Metal dusting degradation:



Low alloyed steels offer no protection against MD



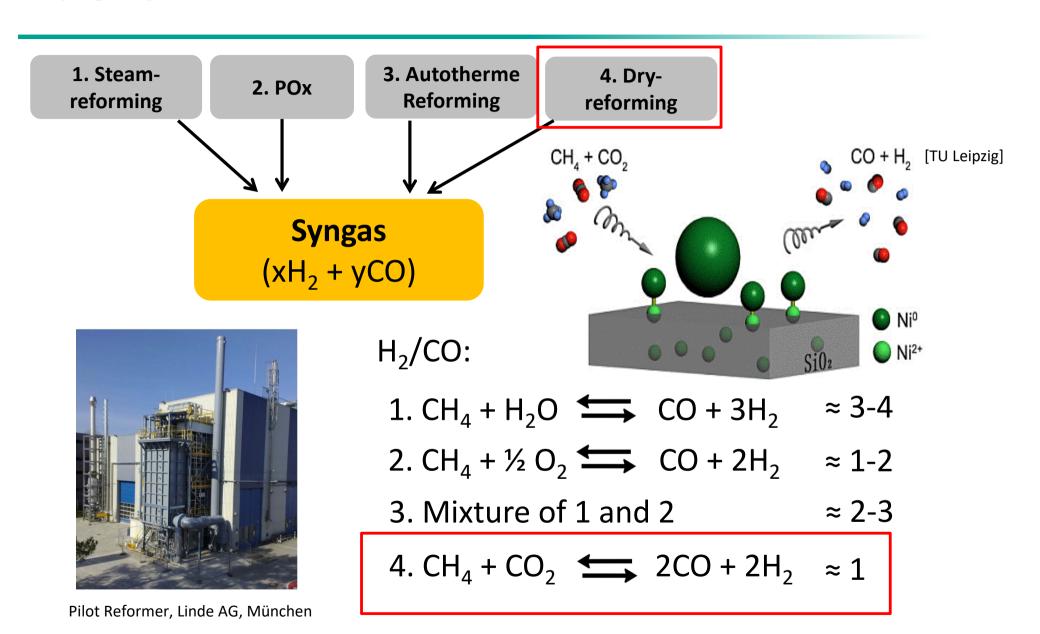
High alloyed materials show an incubation time until start of pitting and subsequent propagation of MD attack.



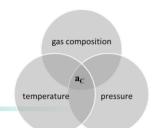
- Metal dusting "resistant" materials must contain high amount of oxide forming elements (Cr, Al, Si).
- Ferritic materials of high Cr content show better resistance against MD due to higher diffusion of Cr at MD temperature in ferritic compared to austenitic microstructure.

Barrier for initial reactions (no catalytic CO-dissociation \rightarrow no carbon deposition)

Criteria for "metal dusting resistant" materials:


formula	source
Cr _{equiv.} = Cr % + 2·Si % > 22	Schueler, R.C., Hydrocarbon processing, 1972
Cr _{equiv.} = Cr % + 2·Si % > 24	Schillmoller, C.M., Chem. Engineering, 1986
Cr _{equiv} = Cr % + 3 · (Si % + Al %) > 24	Parks, S.B; Schillmoller, C.M., <i>Hydrocarbon</i> processing, 1996
Cr > 28 % in Ni-base (independent of AI) high AI level helps to decrease the amount of carbon deposition on the surface.	Röhnert, D.; Schütze, M.; Weber, T., <i>NACE</i> Corrosion, 2007
Cr % + Al% > 33	Hermse, C.G.M.; van Wortel, J.C., <i>Eurocorr</i> , 2008

→ many alloys that fulfill the criterion still fail under certain conditions!


What parameters *really* influence the occurrence of metal dusting?

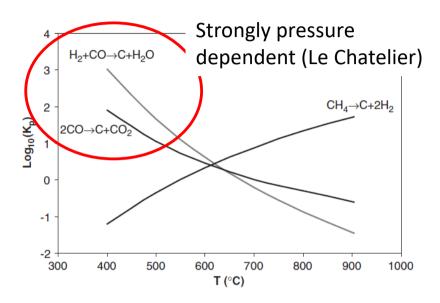
Syngas production

Factors influencing the carbon activity a_c

Gas composition:

 H_2 , CO, CO_2 , CH_4 , H_2O Low in pO_2 – high enough for oxide formation of Cr, Si, Al

Temperature:


MD temperatures often too low for sufficient diffusion processes in order to develop protective scales.

Pressure:

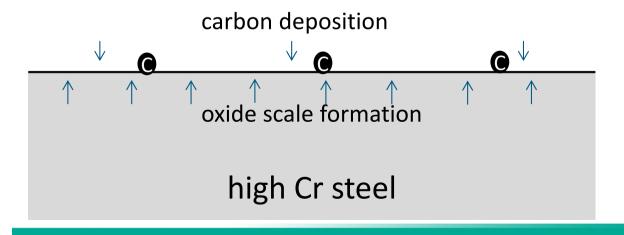
Commercial Ni-base alloys show lower incubation times in metal dusting conditions of **identical** a_c but at higher system pressures.

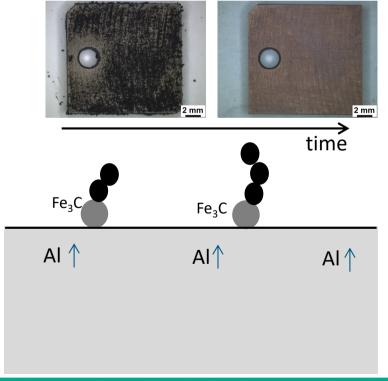
Natesan, K.; Zeng, Z., Development of Materials Resistant to Metal Dusting Degradation, U.S. Department of Energy, 2006.

Influence of pressure → lack of understanding

Young, D.J., *High Temperature Oxidation and Corrosion of Metals*, 2008

$$a_c = K \cdot \frac{p_{H2}p_{CO}}{p_{H2O}} = \exp(\frac{-\Delta G^0}{RT}) \cdot \frac{p_{H2}p_{CO}}{p_{H2O}}$$

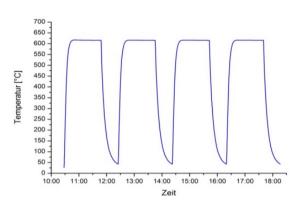

$$a_c = K \cdot \frac{p_{CO}^2}{p_{CO2}} = exp(\frac{-\Delta G^0}{RT}) \cdot \frac{p_{CO}^2}{p_{CO2}}$$



- Thermodynamics: pO₂ high enough for oxide formation and also a_c > 1
 → coking
- Competition between oxide scale formation and C-deposition
- Initiation of MD is dependent on a_c and the number of catalytically active surface sites, which are limited. → kinetically controlled threshold for carbon deposition

This work:

- → fixed gas composition, temperature,
- → variation of **system pressure**



Metal dusting: experimental setups at DFI

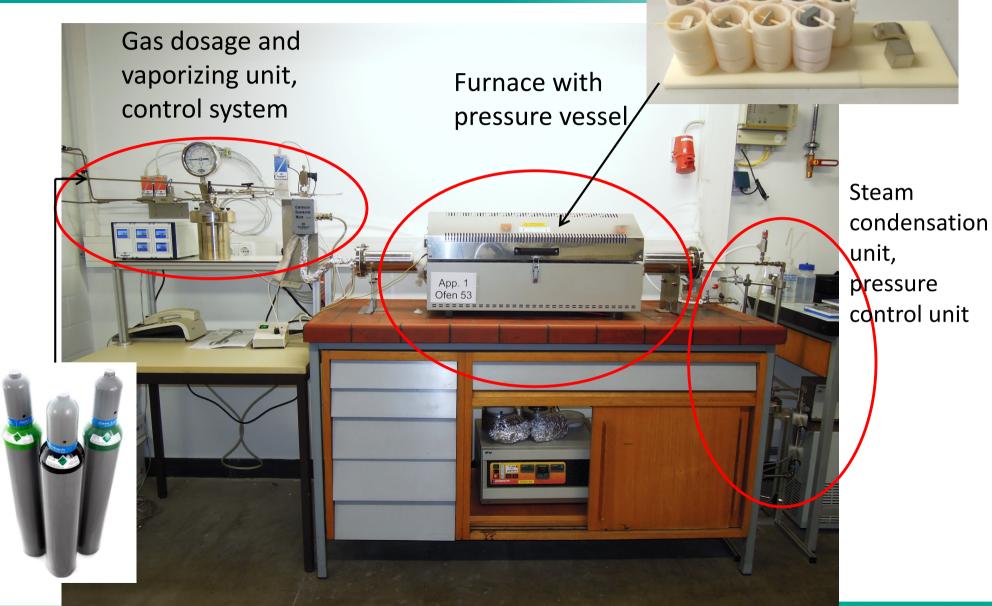
3 setups for metal dusting testing

T = 450- 900 °C (usually 620 °C) gas mixtures contain **CO**, **H**₂, H₂O and/or CH₄, CO₂ flowing gas conditions

isothermal

- standard test
- quasi-isotherm
 system is cooled
 down for
 inspection

high pressure


- system pressure up to 18 bar
- dosage- and vaporizing unit produces accurate steam content under high pressure

thermo-cyclic

- Control system enables automated time-temperature programs (hot and cold dwell times adjustable, no. cycles...)
- according to ISO 13573 (T_{cold}<50 °C)

Metal dusting: high pressure setup

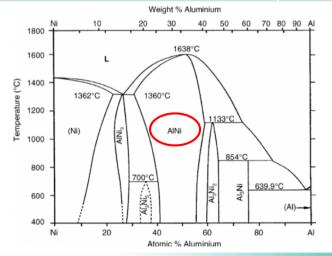
Testing program, materials and coatings

Exposure of several commercial alloys in identical gas composition and temperature but different system pressures.

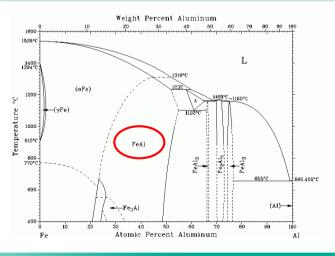
atm. pressure test

high pressure test

CO-rich syngas (CO,
$$H_2$$
, CO_2 , CH_4 and H_2O) 620°C 1000 h


1 bar
$$pO_2 = 1,2 E-24$$

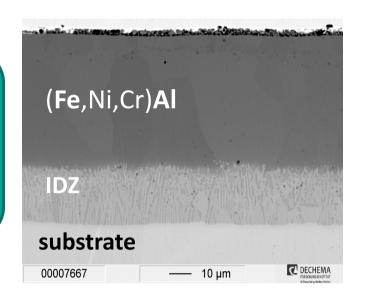
 $a_C = 9,4$

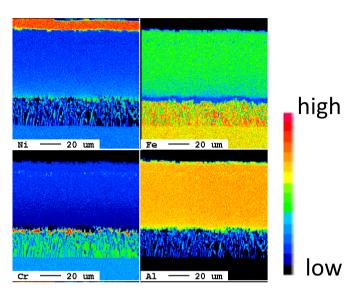

18 bar
$$pO_2 = 2.8 E-23$$

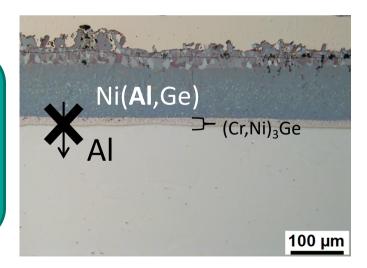
 $a_C = 163$

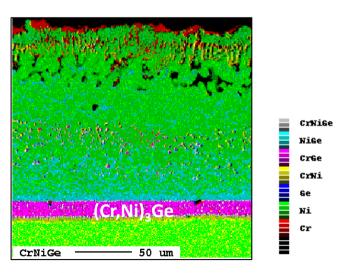
Testing program, materials and coatings

Materials and coatings	Alloy type (important alloying elements in brackets, not complete)
NiCr15Fe/ Alloy 600	Ni-base (15% Cr)
NiCr15Fe/ Alloy 600 Ge-modified aluminide coating	Ni-base (15% Cr) with NiGeAl-diffusion coating
NiCo29Cr28Si/ 2.4880	Ni-base (29% Co; 28%Cr; 2,75% Si)
X6CrNiTi18-10/ 1.4541 aluminide coating	Fe-base (18% Cr) with FeAl-diffusion coating
X8NiCrSi38-18 / 1.4862	Fe-base (18% Cr; 2% Si)
X10NiCrAlTi32-20/ Alloy 800H	Fe-base (20% Cr; 0,3% Al)
Kanthal APMT	Fe-base (21% Cr; 5% Al; 3% Mo)

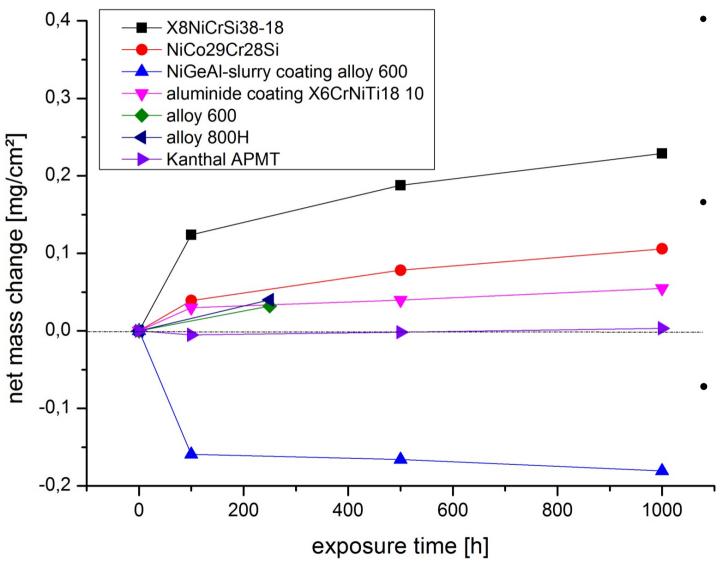



...and others


Testing program, materials and coatings

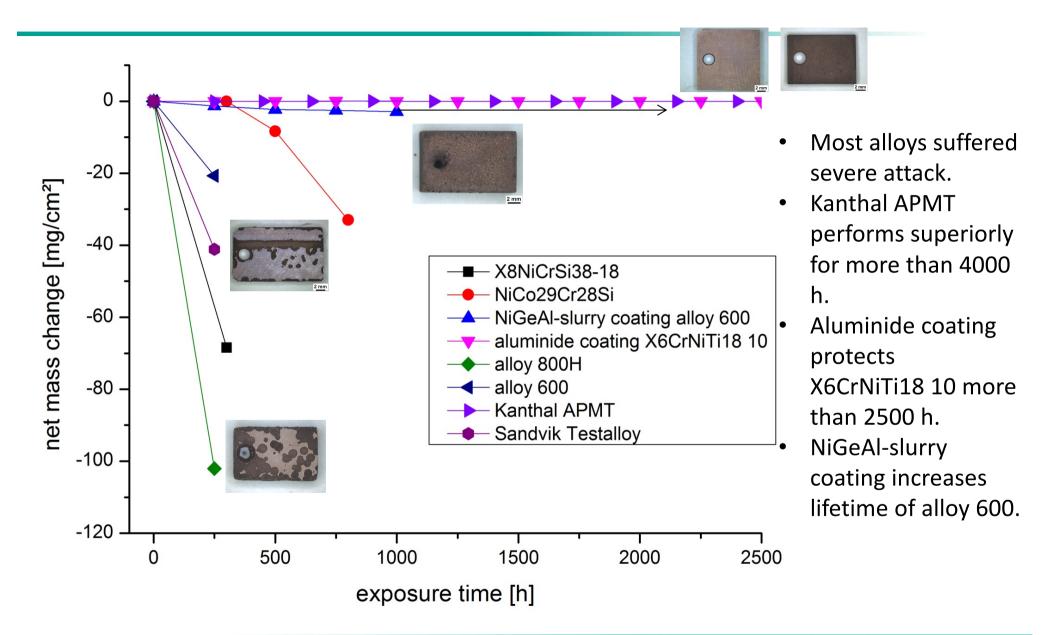

Pure aluminide coating (pack cementation)

Ge-modified aluminide coating (slurry diffusion)

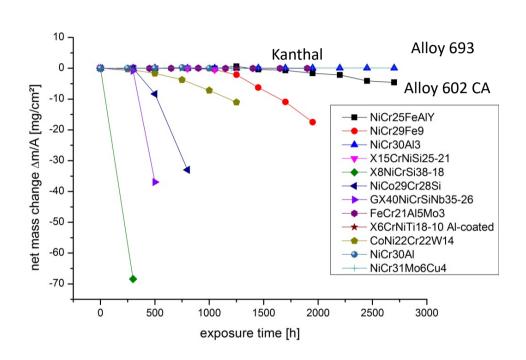


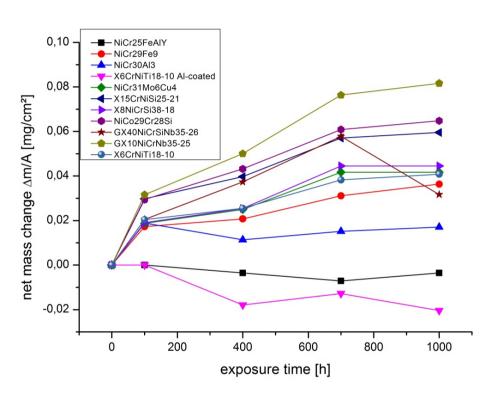
Agenda

- Motivation and state of knowledge
- Metal dusting: experimental setups at DFI
- Testing program, materials and coatings
- Results
- Summary

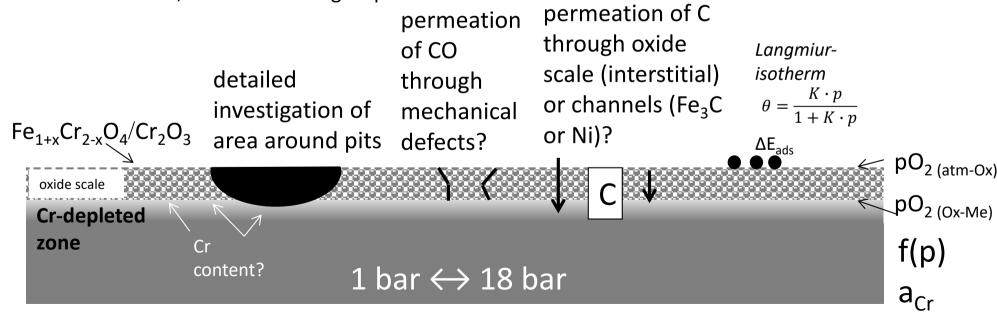

Metal dusting test $-H_2$ -CO-CO₂-CH₄-H₂O -620°C -1 bar

- All alloys and the aluminide coating show very low mass gains.
 Oxide scale growth follows parabolic behavior.
 - The slurry coating shows slight weight loss after the first exposure due to spallation of undiffused particles.
 - No coking or metal dusting observed.




Metal dusting test - H₂-CO-CO₂-CH₄-H₂O - 620°C - 18 bar

Metal dusting test - H₂-CO-CO₂-CH₄-H₂O - 620°C - 18 bar vs. cyclic 1 bar


Isothermal test 18 bar

Thermocyclic test 1 bar

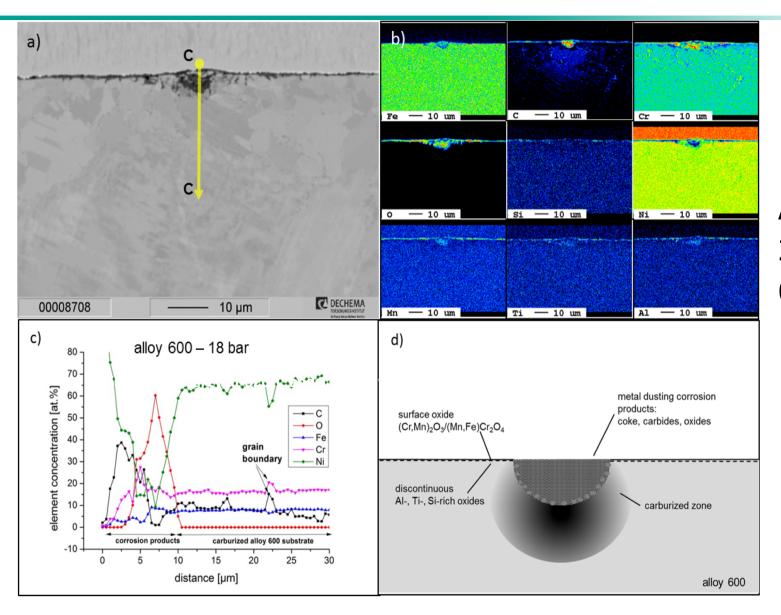
Impact of pressure: Competition between oxide formation and C-deposition

- Oxide scale → oxide composition, pressure dependency of oxide formation → growth stress & isostatic compression, crack initiation, transport properties, permeation of carbon through oxide layers?
- Subsurface region \rightarrow Cr content below oxide scale, conditions for oxide formation altered by pressure, higher a_{cr} in substrate necessary at high pressures?
- **Surface reactions** → effect of pressure on surface coverage and surface energy, catalytically active sides, rate determining step

Impact of pressure: Thermodynamics

CO-rich syngas (CO,
$$H_2$$
, CO_2 , CH_4 and H_2O) 620°C 1000 h

Gas phase

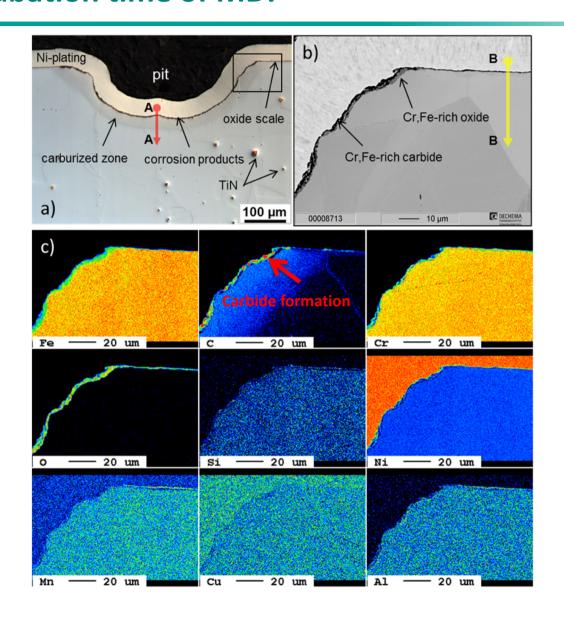

1 bar
$$pO_2 = 1,2 E-24$$

 $a_C = 9,4$

18 bar
$$pO_2 = 2.8 E-23$$

 $a_C = 163$

	ΔG 1 bar [kJ/mol]	AG 18 bar [kJ/mol]	
$2Cr_{(s)} + 3CO_{2(g)} \rightarrow Cr_2O_{3(s)} + 3CO_{(g)}$	-278.8	-278.8	Reactions "Le Chatelier's principle"
$2Cr_{(s)} + 3H_2O_{(g)} \rightarrow Cr_2O_{3(s)} + 3H_{2(g)}$	-292.5	-292.5	
$2Cr_{(s)} + 3CO_{(g)} \rightarrow Cr_2O_{3(s)} + 3C_{(s)}$	-328.8	-393.3	
$\frac{27}{2}\text{Cr}_{(s)} + 3\text{CO}_{(g)} \rightarrow \text{Cr}_2\text{O}_{3(s)} + \frac{1}{2}\text{Cr}_{23}\text{C}_{6(s)}$	-519.4	-583.8	


Pit Propagation

Alloy 600 250h, 620°C, 18 bar

Exposure tests reveal a strong impact of the system pressure on the incubation time of MD.

Alloy 800H 250h, 620°C, 18 bar

Summary

Tests revealed a **strong impact** of the **system pressure** on the onset of metal dusting. **At 1 bar no attack.**

2 mm

Pressure more severe than cyclic loading.

250 h 1 bar 2

250 h 18 bar

Al containing alloys such as Kanthal APMT or alloy 693 do not show pits in the high pressure test (now) for more than 4000 h.

Aluminide diffusion coatings offer protection of highly affected alloy 600 substrate from MD. No coke formation.

MA.	SULSTAN		MIN	WAY.
Ni -	— 20 um	Fe	—— 20 u	m
			MAX.	WARY.
Cr -	— 20 um	Al	— 20 u	m

	_∆ G ^{1 bar} [kJ/mol] ∆ ^{G 620°C}	ΔG 18 bar [kJ/mol]
$2Cr_{(s)} + 3CO_{2(g)} \to Cr_2O_{3(s)} + 3\;CO_{(g)}$	-278.8	-278.8
$2 \text{Cr}_{(s)} + 3 \text{H}_2 \text{O}_{(g)} \ \rightarrow \text{Cr}_2 \text{O}_{3(s)} + 3 \text{ H}_{2(g)}$	-292.5	-292.5
$2Cr_{(s)} + 3CO_{(g)} \rightarrow Cr_2O_{3(s)} + 3C_{(s)}$	-328.8	-393.3
$\boxed{\frac{27}{2} \text{Cr}_{(s)} + 3\text{CO}_{(g)} \ \rightarrow \ \text{Cr}_2\text{O}_{3(s)} + \frac{1}{2} \text{Cr}_{23}\text{C}_{6(s)}}$	-519.4	-583.8

Long way to go to understand MD or the impact of total pressure

Thank you very much for you attention

DryRef2 - Energy-efficient production of synthesis gas by dry reforming at industrial scale; subproject: Metal Dusting

S. Madloch, M. C. Galetz e-mail: madloch@dechema.de Funded by: BMWi

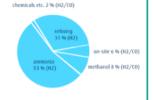
Project funding reference number: 03ET1282E Period: 01.04.2015 – 30.09.2017 Supported by:

Federal Ministry
of Economics
and Technology

on the basis of a decision
by the German Bundestag

Dry Reforming Process

Pilot plant, Linde AG


The demand of hydrogen and synthesis gas for several chemical synthesis processes increase every year. Common techniques for hydrogen production such as steam reforming or partial oxidation (POx process) are based solely on fossil feedstock.

The focus of the DryRef2 project is developing the dry reforming technology for the production of CO-rich synthesis gas at industrial scale. A pilot plant has been installed on the Linde AG site in Munich. The process consumes $\mathrm{CH_4}$ and $\mathrm{CO_2}(\mathrm{CO_2}\text{-recycling/-import})$ and has an improved efficiency by operation at elevated pressure and low steam content. Such syngas is highly aggressive for reactor components due to its ability to induce metal dusting.

For the process, a new generation of catalysts, which is not based on the common Nisystem, has been developed. The new catalyst system, which is fabricated by BASF SE, performs stable at 20 bar for >500 h at very low steam/carbon (S/C) ratio without deactivating coke formation. Catalyst screening is conducted by hte GmbH, while KIT contributes reaction simulations.

 $CH_4 + CO_2 \rightarrow 2CO + 2H_2$

Dry reforming reaction in an ideal case (real process conditions contain low steam content and $\text{CH}_{4^-}/\text{CO}_2$ slip)

Worldwide hydrogen and synthesis gas demand.

Total installed syngas capacity ≈70 mill. Nm³/h (2011). [1]

[1] A. Behrens (Linde AG), NGCS 11; Tromsö/ Norway 2016

Process design Pilot testing

Catalyst Scale up

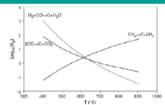
Catalyst screening Testing

Reaction Simulation

Material Selection Testing

Subproject: Metal Dusting

Metal dusting is a severe form of high temperature corrosion, that occurs in carbonaceous environments with carbon activities >1 in the temperature range of 450 - 900 °C. Dissociation of carbon containing gas species, catalytically induced by Fe, Ni, Co and their alloys, result in carbon uptake and subsequent graphite precipitation in the micro structure of the material. The mechanical stresses induced by the precipitates lead to the full disintegration of the metal.


In the downstream section of the dry reforming process, CO-rich syngas under high pressure passes through the whole metal dusting temperature range. This provides a high risk for metal dusting and thus increased requirements on the metal components.

The two following reactions are the main carbon producing processes:

$$H_2 + CO \rightarrow C + H_2O$$
 (1)
2 $CO \rightarrow C + CO_2$ (2)

pressure

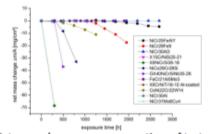
According to Le Chatelier's principle, increasing pressure shifts the equilibrium toward product side (volume decrease).

Equilibrium constants for gas phase carbon producing reactions. [2]

Alloy specimens after metal dusting test at 620 °C.

Material selection:

Austenitic steels FeCrAlMo alloys Ni-base alloys Co-base alloys Aluminide coatings


Austenitic steel X6CrNiTi18-10 after 1050/1000 hours exposure in high pressure test (left) and thermo cyclic test (right)

[2] Young, Zhang, Geers, Schütze; Mat. Corrosion (2011)

Exposure setup of high pressure tests

Net mass change vs. exposure time of tested alloys

High pressure testing

Dry reforming product gas: CO-rich syngas, low steam content

620°C 18 bar

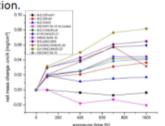
 $a_c = 163$

Test conditions according to dry reforming downstream section. High alloyed materials fail after few hundred hours exposure time.

Huge influence of pressure on materials' incubation times.

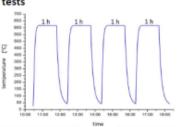
Most stable alloys will be considered for application in dry reforming downstream section.

Thermo cyclic testing


Dry reforming product gas:

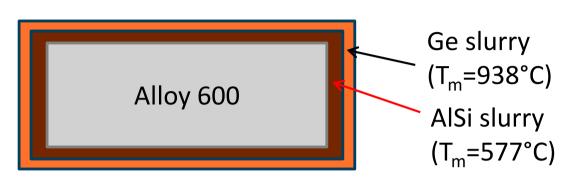
CO-rich syngas, low steam content 620°C

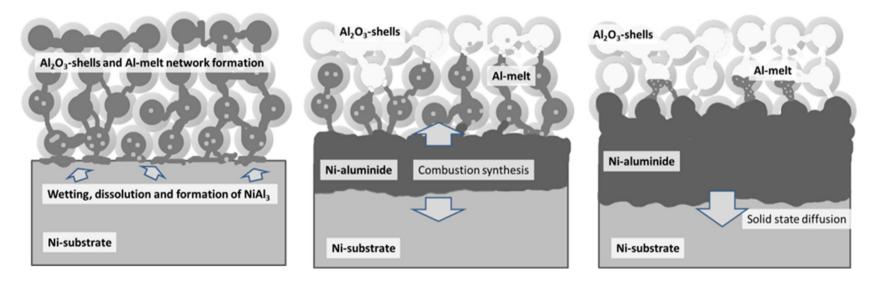
1 bar


 $a_c = 9.4$

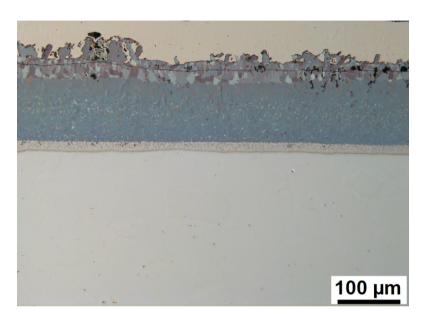
Thermo cyclic conditions promote oxide scale spallation.

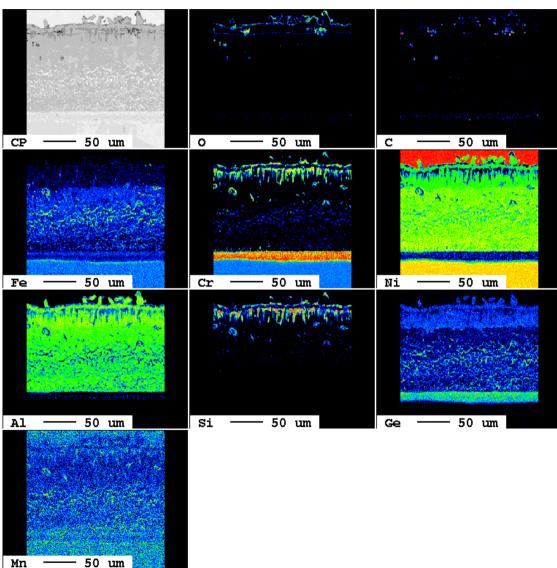
Exposure setup of thermo cyclic

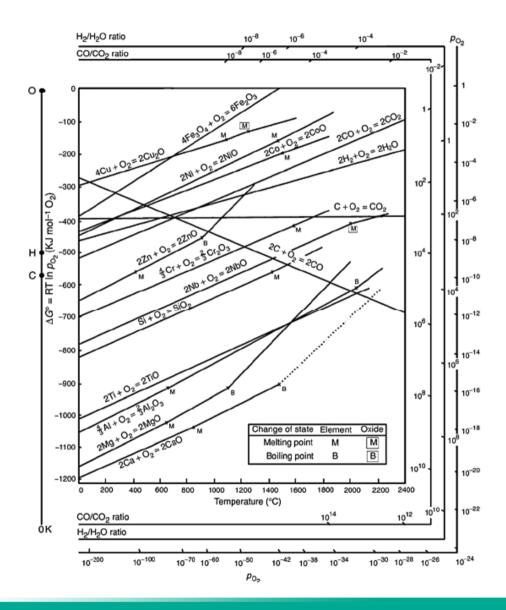

tests


Net mass change vs. exposure time of tested alloys Successive thermal cycles [ISO 13573]

Back up Slurry aluminization




Galetz, M.C.; Montero, X.; Mollard, M.; Günthner, M.; Pedraza, F.; Schütze, M., Intermetallics, 2014


Back up NiGeAl-slurry coating

NiGeAl-coating after exposure in high pressure setup for 1000 h

