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Foreword  
"Wind turbine performance decline" is a project funded by Energiforsk 
and the Swedish Energy Agency within the program Vindforsk.  

How much wind turbine performance declines with age is a question of great 
importance for the profitability of wind farms. In the long run it affects the 
required installed capacity to fulfil renewable energy targets. Previous large-scale 
studies of this type are very scarce why this report is an important contribution for 
investors and owners of wind turbine facilities.  

The project was carried out by Jon Olauson, Uppsala University, Mikael Bergkvist, 
Uppsala University, Per Edström, Sweco and Nils-Erik Carlstedt, Vindstat  

The reference group consisted of Åsa Elmqvist, Energiforsk, Jan-Åke Dahlberg, 
Vattenfall and Martin Löfstrand, OX2.  
 

 

Göran Dalén  
Chairperson, Vindforsk 

 

 



 WIND TURBINE PERFORMANCE DECLINE IN SWEDEN 
 

4 

 

 

 

Sammanfattning 

I denna rapport studeras prestandaförändringar hos vindkraftverk i 
Sverige. Under de första åren efter idrifttagning är produktionen närmast 
konstant, men sedan börjar den minska.  Verk byggda före 2007 tappar i 
snitt 0,15 procentenheter per år i absolut kapacitetsfaktor, vilket 
motsvarar en energiförlust om ca 6 % över livslängden. En gradvis 
ökning av stilleståndstiden står för 1/3 av minskningen och försämrad 
effektivitet för den resterande delen. I jämförelse med resultat från 
Storbritannien tappar svenska verk betydligt mindre prestanda.   

I princip alla tekniska system har någon slags försämring av prestandan över tid 
och det bör därför inte komma som någon överraskning att vindkraftverk 
producerar sämre mot slutet än i början av sin livslängd. Trots att mycket 
forskning har gjorts om t.ex. stilleståndstid och havererande komponenter finns 
förvånansvärt få arbeten om den generella produktionsminskningen över tid. En 
välgjord studie av de engelska forskarna Staffell och Green utgör det huvudsakliga 
undantaget. Det huvudsakliga målet med denna rapport är att studera om svenska 
vindkraftverk tappar lika mycket i prestanda som de i Storbritannien. 

Som underlag för studien användes produktionsmätningar från två olika källor: 
månadsdata från Vindstat och timdata från Cesar (elcertifikatsystemet). Efter att ha 
rensat bort ca hälften av mätserierna, framförallt mätningar kortare än fem år, 
återstod 1100 resp. 1300 tidsserier som användes i analyserna. Anledningen till att 
mätningar kortare än fem år inte beaktades var att inslaget av slumpen i de 
beräknade trenderna då bedömdes bli för hög. 

De studerade verkens konstruktionsår var mellan 1984 och 2010 medan 
datainsamlingsperioden var 1990–2015. Rådatat har gåtts igenom i detalj och i 
förekommande fall justerats. Några viktiga exempel på fall där data justerades är: 

• På grund av ekonomiska svårigheter har en del verk justerat ner effekten till 
1500 kW under senare år. En del verk har också höjt effekten genom 
mjukvaruuppdatering. Då dessa fenomen önskades exkluderas från 
beräkningen av trender användes en transformering för att räkna om 
tidsserierna till en konstant maximal effekt. 

• I vissa fall ändrades antalet verk som var kopplade till en Cesar-mätare under 
mätperioden. Dessa tidsserier delades då upp i två delar. 

• En mycket liten del av den totala datamängden var uppenbarligen felaktig och 
rensades bort.   

En korskörning av 97 mätserier från Vindstat, Cesar samt SCADA-data från 
Vattenfall visade på vissa skillnader i enstaka fall, men på det stora hela bedöms 
kvaliteten på materialet som hög. 

Eftersom vindklimatet varierar på både kort och lång sikt genomfördes 
normalårskorrigeringar med data från tre meteorologiska modeller: MERRA, ERA-
Interim och ConWx (CFSR och JRA-55 undersöktes också men bedömdes vara 
mindre lämpliga för ändamålet). Till skillnad från den engelska studien 
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analyserades inte trender i icke normalårskorrigerad produktion överhuvudtaget. 
Även om det inte är huvudsyftet med denna rapport gör det stora antalet 
studerade verk att en jämförelse av produktionsmätningar och produktion 
modellerad från meteorologiska data kan ha ett intresse i sig själv. Vi visar att 
mediankorrelationen i timvisa data är 0.86 för både MERRA och ConWx och något 
lägre (0.83) för ERA-Interim. För månadsvärden är motsvarande siffror 0.95 och 
0.96 för MERRA och ConWx. Även i andra studerade hänseenden presterar 
MERRA och ConWx likvärdigt medan ERA-Interim är något sämre.   

Tre olika statistiska metoder användes för att beräkna linjära trender i månadsvisa 
kapacitetsfaktorer (KF) som funktion av ålder. Den analysmetod som mest fokus 
lades på var linjär regression för enskilda vindkraftverk. Resultaten för de två 
andra metoderna (linjär regression för ”kohorter” med liknande startår samt den 
egenutvecklade metoden ”ekvivalent trend”) är dock mycket likartade, vilket visar 
på en robusthet i analysen. Alla analyserna utfördes på de sex möjliga 
kombinationerna av mätning och data för normalårskorrigering; Cesar/MERRA, 
Vindstat/ConWx etc. Resultaten för dessa sex olika kombinationer skiljde sig något 
mer än de för de olika statistiska metoderna, men inte mer än att tydliga mönster 
och statistiskt signifikanta resultat kunde erhållas. 

Med linjär regression för varje enskilt verk är KF-medianminskningen 0,10 
procentenheter per år (pe/år). För verk tagna i drift innan 2007 är median-
minskningen 0,15 pe/år, vilket exempelvis motsvarar en försämring av KF från 27 
% till 24 % över 20 år. Detta innebär att livstidsproduktionen är 6 % mindre än om 
verken producerat lika bra som när de var nya. Konfidensintervall för medel- och 
mediantrender beräknades med en ”bootstrap”-metod eftersom trenderna inte är 
normalfördelade. Det går med god marginal att påvisa att de negativa trenderna är 
statistiskt säkerställda. 

Eftersom de flesta verk har mindre branta trender de första åren är det mycket som 
talar för att resultaten för de äldre verken (drifttagna 2007 eller tidigare) är mer 
representativa sett över hela livslängden. Med andra ord är vår bedömning att 
även nyare verk kommer att börja tappa prestanda när de åldras även om så inte 
skett hittills. Huruvida denna bedömning är korrekt kommer vi dock säkert veta 
först om 10 - 15 år.  

I och med den unika databasen med timvisa mätningar var det möjligt att 
identifiera perioder av stillestånd hos verken (som inte beror på låg vindhastighet). 
I genomsnitt är stilleståndstiden 4,0 %, men värdet ökar med åldern; från ca 3,2 % 
när verken är relativt nya till närmare 6 % vid åldern 14-19 år. Denna ökning kan 
förklara ca 1/3 av den observerade produktionsminskningen. För verk som tappar 
mycket i prestanda bidrar ofta ökat stillestånd till en stor del av minskningen. Vi 
visar också att stilleståndstiden generellt är större under vintermånaderna, 
speciellt för verk i norr. 

Genom ett par olika varianter av multipel linjär regression studerades huruvida 
olika faktorer såsom startår, terrängtyp, fabrikat och ägandeförhållande har en 
statistiskt signifikant påverkan på trenderna. Valet av analysmetod berodde på att 
många av faktorerna är relativt starkt korrelerade (t.ex. är nyare verk ofta byggda i 
skogsmiljö) och en analys av faktorerna var och en för sig skulle därför kunna ge 
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missvisande resultat. För kategoriska variabler som terrängtyp och tillverkare 
behöver en ”baskategori” väljas och de övriga kategorierna jämförs sedan mot 
denna. Ingen annan faktor än startår visade på statistiskt signifikanta resultat för 
alla olika analyser som gjordes (som nämnts tidigare har äldre verk mer negativa 
trender). Det finns dock relativt tydliga indikationer på att: 

• Verk med högre KF har en mer negativ trend. 
• Verk i skog har en mindre negativ trend än verk i slättlandskap (baskategorin). 
• Verk från ”övriga tillverkare” tappar mer i prestanda än Vestas-verk 

(baskategorin). Övrigt-kategorin består av verk med annan tillverkare än 
Vestas, Enercon eller WindWorld. Eftersom de nyaste studerade verken har 
startår 2010 finns inte så många turbiner av t.ex. GE, Siemens och Nordex med 
i övrigt-kategorin; den består framförallt av verk som inte längre säljs på den 
svenska marknaden.  

En viktig aspekt med detta arbete är att kunna ge rekommendationer för 
vindenergi-beräkningar för nuvarande och framtida projekt. Vår uppskattning är 
att antagen försämring av KF bör ligga i intervallet 0,10–0,20 pe/år. Den mer 
optimistiska skattningen 0,10 motsvarar medianen för alla studerade verk, 0,15 
motsvarar medianen för verk drifttagna 2007 och tidigare (som alltså har 
producerat under en längre tid) och den konservativa uppskattningen 0,20 härrör 
från ett påslag för att verk med högre KF tycks ha något skarpare minskning i 
absoluta tal. 

För verk med KF 0,30 och 0,40 motsvarar en nedgång med 0,10–0,20 pe/år ett 20-
årigt (år noll till år 19) energitapp om 3,2–6,3 % resp. 2,4–4,8 %. Dessa nivåer är 
högre än vad som vanligen antas i vindkraftbranschen idag, men betydligt mindre 
än vad resultat från Storbritannien visade.  Det är viktigt att påpeka att de 
rekommenderade värdena inkluderar både ökad stilleståndstid och försämrad 
effektivitet. Man bör därför använda en antagen stilleståndstid som svarar mot 
början av livslängden (runt 3 %) snarare än medelvärdet, annars dubbelräknas 
inverkan från ökad stilleståndstid. 

I den här rapporten visas tydligt att svenska vindkraftverk tappar prestanda över 
sin livslängd. Spridningen mellan olika verk och parker är dock stor; vissa har en 
mycket brant försämring medan andra tickar på utan nämndvärda problem. Det 
första steget i att hitta förklaringar och möjliga förbättringsåtgärder har tagits i och 
med analysen av mönster i vilka verk som tappar mer än andra. Denna visar dock 
att skillnaderna i huvudsak är stokastiska givet de förklaringsvariabler som funnits 
tillgängliga. Vi vill därför starkt rekommendera att branschen tar upp 
stafettpinnen och fördjupar arbetet: varför är skillnaden i försämringen så stor 
mellan olika parker och vad kan göras för att hela Sveriges vindkraftsflotta ska 
prestera lika bra som de bättre parkerna?  
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Summary 

In this report, performance trends of Swedish wind turbines (WTs) are 
analysed. During the first years of operation, the production is nearly 
constant, but subsequently it begins to decline. WTs constructed before 
2007 lose around 0.15 capacity factor percentage points per year in 
absolute terms, corresponding to a life-time energy loss of 6%. A gradual 
increase of downtime accounts for around 1/3 of the decline and 
worsened efficiency for the rest. In comparison to results from the UK, 
Swedish wind farms deteriorate much slower. 

Two different measurement sets were used in the study: monthly data from 
Vindstat and hourly data from Cesar. After the removal of around half of the time 
series, mainly due to measurement lengths shorter than five years, 1100 plus 1300 
time series remained to be analysed. WT construction years were in the range 
1984–2010 and the data recording period 1990–2015. The raw data were reviewed 
in detail and, if appropriate, adjusted. Validation of 97 time series from Vindstat, 
Cesar and SCADA-data from Vattenfall revealed small differences for some WTs, 
but the data quality can, on the whole, be considered high. Since the wind speed 
varies on both short and long time scales, long-term correction (LTC) of the 
measurements were performed using data from different meteorological models.  

Three different methods were employed for calculating linear trends in capacity 
factors (CFs) versus age. Even if the results differ somewhat depending on the 
combination of dataset, LTC data and statistical method, the overall agreement is 
good, illustrating the robustness of the analysis. Based on linear regression for all 
individual WTs, the median CF decline is 0.10 percentage points per year (pp/y). 
For WTs deployed before 2007, the median trend is -0.15 pp/y, corresponding to a 
CF reduction from e.g. 27% to 24% over 20 years. Since all WTs have less steep 
trends during the first years of operation, it is reasonable to assume that the latter 
figure is a better estimate for the lifetime performance. Confidence intervals for 
mean and median trends were computed with a bootstrap method since the trends 
are not normally distributed. It is, with a good margin, possible to demonstrate 
that the negative trends are statistically significant.   

The unique dataset of hourly measurements enabled us to identify periods of 
downtime due to technical issues. Downtime was estimated at 4.0% for all data, 
but the share increase significantly with age. This increase contributes to roughly 
1/3 of the observed performance decline. For WTs with a sharp deterioration, 
increased downtime often contributes to a large share of the decline.  

By using multiple linear regression techniques, it was studied whether some 
factors impact the trends in a statistically significant way. It was found that no 
other factor than start year could fulfil this criteria for all analyses performed. 
There are however relatively clear indications that WTs with higher CFs have more 
negative trends, that forest farms decline less than farms in open terrain and that 
WTs from other manufacturers than Vestas, Enercon or WindWorld lose more 
performance than Vestas WTs. 
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An important aspect of this work is to give recommendations for wind energy 
calculations for current and future projects. Our best estimate is a decline in the 
range 0.10–0.20 pp/y including both increased downtime and worsened efficiency. 
We recommend that a value closer to the higher end should be used for high-CF 
turbines. For WTs with as-new CFs of 0.30 and 0.40, a decline of 0.10–0.20 pp/y 
corresponds to a 20-year (year zero to 19) energy loss of 3.2–6.3% and 2.4–4.8% 
respectively. These levels of energy losses are higher than normally assumed in the 
wind sector today. As compared to results from the UK, the decline is however 
considerably smaller.  

 

 



 WIND TURBINE PERFORMANCE DECLINE IN SWEDEN 
 

9 

 

 

 

Table of contents 

Abbreviations 11 
1 Introduction 12 
2 Literature review 14 

2.1 Overall deterioration of capacity factors 14 
2.2 Reduced efficiency 15 
2.3 Downtime 16 
2.4 Failing components 17 
2.5 Datasets for long-term correction 18 

3 Data 19 
3.1 Wind power datasets 20 
3.2 Data processing 21 

3.2.1 Vindstat 22 
3.2.2 Cesar  22 
3.2.3 Summary statistics 23 

3.3 Reanalyses 25 
4 Methods 29 

4.1 Long-term correction 29 
4.1.1 Power curves 30 
4.1.2 Estimation of mean wind speeds 31 

4.2 Quantifying trends 31 
4.2.1 Linear regression 32 
4.2.2 Chosen methods 35 
4.2.3 Normalisation of capacity factors? 36 
4.2.4 Downtime and efficiency 37 
4.2.5 Patterns in trends 38 
4.2.6 Statistical significance and uncertainty 40 

4.3 Machine learning 41 
4.4 Filtering 42 
4.5 Differences as compared to SG14 43 

5 Results 45 
5.1 Reanalyses 45 
5.2 Individual trends 46 
5.3 Trends for cohorts 50 
5.4 Equivalent trends 51 
5.5 Normalised performance decline 52 
5.6 Downtime vs efficiency 53 
5.7 Influential variables 55 

6 Concluding discussion 59 



 WIND TURBINE PERFORMANCE DECLINE IN SWEDEN 
 

10 

 

 

 

Acknowledgements 62 
References 63 
 

Appendix – Supplementary material 



 WIND TURBINE PERFORMANCE DECLINE IN SWEDEN 
 

11 

 

 

 

Abbreviations 

ACF Auto-correlation function 

AICc Bias-corrected Akaike’s information criteria 

CF Capacity factor 

CFC Long-term corrected CF with ConWx data as reference 

CFE Long-term corrected CF with ERA-Interim data as reference 

CFLTC Long-term corrected CF 

CFM Long-term corrected CF with MERRA data as reference 

ConWx Company providing weather services, e.g. data for long-term 
correction 

ERA ECMWF (European Centre for Medium-Range Weather Forecasts) 
Re-Analysis 

LTC Long-term correction, Long-term corrected 

MERRA Modern Era Retrospective-Analysis for Research and Applications 

PC Power curve 

pp/y Percentage points per year 

SCADA Supervisory control and data acquisition 

SG14 Study by Staffell and Green [1] 

WI Wind index (a LTC method) 

WT Wind turbine 
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1 Introduction 

Practically all technical systems are subject to deterioration of some degree [2], and 
it should come as no surprise that the performance of wind turbines (WTs), like 
e.g. gas turbines [3], decline over time. Although lot of research has been 
conducted on e.g. downtime and failing components, surprisingly little work has 
been devoted to the overall reduction of wind turbine performance with age; the 
thorough study on UK farms by Staffell and Green [1] (SG14) is the main 
exception. The primary objective with this report is to reproduce this study for 
Swedish conditions. We however use partly different (improved in some cases) 
methods and expand the scope by also considering factors explaining differences 
in trends and the evolution of downtime with age. The latter was made possible by 
a unique database of hourly observations for almost all Swedish wind turbines. 

The main conclusion from SG14 was that UK farms lose around 1.6% of the output 
per year (in relative terms), with average capacity factors (CFs) declining from 
0.285 when new to 0.21 at age 19. This decline is much steeper than what is 
accounted for in energy calculations performed before the deployment of wind 
farms in Sweden. If a similar pattern was to be seen for Swedish conditions, the 
assumptions would have to be changed considerably. Needless to say, this would 
have a profound impact on the profitability and may ruin the business case for 
many projects. As will soon be shown, Swedish farms have more gentle 
performance declines, but our results still call for a change of the assumptions used 
in the wind community. 

This report is structured in the following manner. A literature review is given in 
Section 2. In Section 3, the databases of wind power time series as well as the 
processing of the raw data are described. This section also contains a description 
and analysis of meteorological reanalyses used for long-term correction (LTC) of 
measurements. The different methods that were used are presented in Section 4 
and results are given in Section 5. In order to facilitate reading the report, some 
material is presented in an Appendix. This introduction section is finished with 
some clarifications regarding terminology and concepts.   

We refer to the entity for which a measurement is taken as a “unit”. In most cases, 
a unit corresponds to a single WT, but it can also be a small farm. Two different 
datasets of wind power generation were used in this study and each of these were 
long-term corrected with three different reanalyses. We thus have six possible 
combinations of datasets/reanalyses, which we refer to as “cases”. It is often 
desirable to study trends of units with similar start years. A cohort is, if nothing 
else is specified, all units for a given case with start years in a three-year sliding 
window. As an example, the cohort 1995 consists of units with start years between 
1994 and 1996. Note that the performance trend for a cohort can be computed 
either as e.g. the median of slopes for individual units in the cohort or as the slope 
from a regression of all CFs versus age. 

“Trend” and “slope” are used interchangeably to describe the linear change of 
long-term corrected CF versus age. In other words, the β1 in CFLTC =  β0 + β1∙age + ... 
where age is measured in years (the regression equation sometimes also contains 
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other terms, hence the “...”). The trend/slope is presented in percentage points per 
year (pp/y) in order to see the results more clearly, e.g. -0.20 pp/y if the fitted 
model is CFLTC = 0.31 – 0.0020∙age. The CF is however generally presented as a 
dimensionless number (not in percent). Note that the slope above, like generally in 
this report, represents changes in the absolute CF. Slopes in relative CFs 
(normalised to as-new CFs) are sometimes also considered.  

Two potential terminology pitfalls can be mentioned. When discussing new/old 
units, we refer to the start year and not the age. In other words, an old unit may 
e.g. be built in the 1990s and contains both low and high age observations. Also 
pay attention to the difference between a performance reduction of x% over 20 
years and an energy loss of x% over 20 years. The former means that the output at 
age 20 is x% lower than when new, the latter that the total energy production over 
20 years is x% lower than it would be had it been no performance reduction.  

Finally, age is measured in years: 0 for the first operational month, 1/12 for the 
second, etc. When referring to age in integer years, age 3 for example represents 
the average of monthly observations for ages between 3 and 3+11/12. 
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2 Literature review 

Per definition, a trend in the properly long-term corrected1 CF of a wind farm can 
stem from a trend in downtime and/or a trend in the efficiency of the plants. A 
negative trend could thus be attributed to i) more frequent and longer stops due to 
technical failures and maintenance and ii) a gradual deterioration of the power 
curve due to e.g. worsened aerodynamic performance and increased friction in the 
mechanical components.  

We begin by reviewing the literature on the combined effect of these two factors, 
i.e. studies on the overall deterioration of capacity factors. In Section 2.2, some 
studies on reduced efficiency are presented. Sections 2.3–2.4 deal with the 
downtime due to technical failures and failing components of WTs respectively. 
The review is concluded with an examination of some studies on datasets for long-
term correction. 

2.1 OVERALL DETERIORATION OF CAPACITY FACTORS 

The main inspiration for this work is SG14 [1], which were in turn inspired by, and 
used largely the same dataset as, Hughes [4]. These studies looked at the general 
trend of wind farm performance in the UK. As pointed out in SG14, there seem to 
be no earlier studies of long-term loss of output in the open literature. As of 
November 2016, none of the 70 publications2 currently citing SG14 presents any 
new analysis of CF deterioration. Our review of studies on this topic is therefore 
limited to the above-mentioned works and an informal study for the Danish case 
by Bach [5]. Given the attention the works by Hughes and SG14 have attracted, it is 
likely that similar studies will be performed for other regions in the near future.  

In SG14, up to eleven years of monthly capacity factors for 282 farms in the UK 
were analysed. Results were presented for both raw and LTC data, using a few 
different statistical methods. The linear trend was in average -0.43 pp/year in 
absolute terms or -1.6 pp/y relative the average UK capacity factor. From Figure 9b 
in SG14, it seems that the average CF increases sharply during the first 1–2 years of 
operation, declines relatively slowly during age 2–9 years, declines more steeply 
during age 9–18 and even more steeply for age 18–20. This pattern is compatible 
with the results in Figure 10b in SG14, where farms built 2005 and later have lower 
linear decline rates than older farms. 

Two non-peer-reviewed studies of CF decay, neither of them using any standard 
LTC technique, are presented in Refs. [4] –[5]. In the former, CF decay was 
calculated for the UK and Denmark using an error components model with fixed 
effects. For UK onshore farms, the capacity factors were found to decline from a 
peak of 24% at age 1 to 11% at age 15. By weighting the results by capacity, the CF 
at age 15 was as low as around 3% (which raises the question whether the method 

                                                             
1 If a long-term correction is not performed, a trend in the CF of a farm could stem from a long-term 
trend in the wind climate. Furthermore, if the reference time series used in the LTC is flawed, a 
spurious trend in the long-term corrected CF time series might be observed.  
2 Search on Google Scholar, 2016-11-21 
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used is indeed appropriate). In comparison to the fixed effect model in SG14, the 
deterioration is much more severe. For onshore farms in Denmark, the capacity 
factor falls from 22% to 18% at age 15. For offshore farms, the CF falls from 39% at 
age 0 to 15% at age 10. Using a different approach, Ref. [5] got much smaller 
deterioration rates for the Danish case; for onshore farms the deterioration of 
normalised CFs was 0.3–0.4 pp/y. Furthermore, this deterioration could be fully 
explained by the reduced mean wind speed seen during the studied period. As for 
onshore farms, the steep decline for offshore turbines looks alarming but cannot be 
found in clusters with the same year of installation. Bach therefore concludes that 
the seemingly dramatic decline of offshore performance is due to a flaw of the 
approach of analysing all farms together. 

2.2 REDUCED EFFICIENCY 

A reduced overall efficiency is one of the two fundamental mechanisms that can 
explain a possible negative trend in wind farm output. Shin and Ko [6] studied 
empirical power curves (PCs) derived with the method specified in the IEC 61400-
12-2 standard, i.e. using nacelle anemometry. Four years of usable data for eleven 
WTs in South Korea were analysed. By feeding the empirical PCs with wind 
speeds from a (constant) Rayleigh distribution, the long-term corrected CFs were 
obtained for each year. The linear CF trends ranged from -0.98 to +0.34 pp/y in 
absolute terms. Eight out of the eleven WTs had negative trends.  

Dalili et al. [7] considered three mechanisms deteriorating the aerodynamic 
performance of WTs: icing, insect contamination and erosion of the blade surface. 
Icing of the blades can cause severe production losses and decrease component 
lifetimes due to imbalanced operation. Insects, or other contamination, can increase 
the surface roughness near the leading edge of the aerofoil, leading to flow 
separation and a deteriorated performance. The most common solution to reduce 
the effects of insects and air pollutants on the blades is to wait for rainfall to wash 
the blades. Erosion of the blade leading edge by sand and water droplets can also 
increase the surface roughness and reduce power output.  

Soltani et al. [8] studied the effects of surface contamination on WT performance by 
comparing characteristics of a clean blade section to ones with different types of 
roughness tapes (in a wind tunnel). The main sources of increased surface 
roughness are stated to be insects, ageing, sand impact and rain contamination. 
Ageing can give rise to cracks which deteriorates the aerodynamic performance. 
Results from similar tests were presented in Ref. [9], where it was concluded that 
leading edge roughness can give rise to considerable reduction of the lift coefficient 
and change the angle where stall occurs. Contaminants can therefore cause severe 
degradation of performance, particularly for stall-regulated turbines. 

Khalfallah and Koliub [10] performed measurements on operating turbines (100–
300 kW) near Hurghada, Egypt. During the nine month test period, significant 
amounts of dust built up on the blades (no raining occurred during the period, 
neither were the blades washed), causing a gradual deterioration of the measured 
power curve through increased drag and reduced lift. At the end of the test period, 
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the “mean power loss” was over 50% for the two stall regulated turbines. The pitch 
regulated turbine was affected to a much smaller degree (less than 20% loss).  

2.3 DOWNTIME 

Operation and maintenance can constitute a significant part of the lifetime cost of a 
wind farm, especially for offshore farms [11]. A review of the O&M costs is not 
within the scope of this study, since we are primarily interested in the downtime 
and efficiency of the turbines. 

According to Ref. [12], downtime of WTs can be classified as follows: 

• High-wind stops 
• Temperature related stops (WTs cannot operate at ambient temperatures 

below minus 15–30°C) 
• External grid related stops 
• Disturbances (these problems can be solved without on-site labour) 
• Technical failures (these are the ones included in the component breakdown in 

Section 2.4) 
• Service 
• Icing 
• Other, e.g. research. 

When comparing downtime data from different sources, it is important to know if 
all the abovementioned factors are included or if some of them are not. In Finland, 
technical failures and disturbances accounted for 61% and 29% respectively of the 
total downtime of 3.0% [12]. For comparison, the same figures for Sweden were 
between 41–64% and 18–35% for the years 2000 through 2006 [13].  

The total downtime due to technical failures is the product of the failure rate and 
average downtime per failure. In Finland, the downtime increased for turbines 
older than 14 years although, interestingly, the number of errors did not increase 
significantly. This might be due to difficulties to find components for older 
turbines, and that it might be questionable whether it is profitable to perform 
expensive repair work for old turbines.  The sample size of older turbines was 
however small, so one should draw conclusions with caution.  

A commonly used explanation model for the failure rate is the “bathtub curve” 
[14]–[17]. This means that during the early period of a farm’s life, the failure rate is 
high (teething issues). This phase is followed by a longer period of random failures 
at a low rate. Finally, towards the end of the lifetime, failures become more 
common. The bathtub model seems to be somewhat compatible with the results in 
SG14. According to Hahn et al. [18] it can be expected that the failure rate due to 
“wear-out failures” does not increase before the 15th year of operation and they 
state that the technical availability is now as high as 98%. Faulstich et al. [17] on the 
other hand noticed an increase in failure rate after year 11 and gave availability 
figures in the range 95–99% for European onshore WTs. A way to increase the 
availability is condition monitoring [19], [20]. This method, which has become 
more widely used in recent years, allow the operator to reduce overall costs by 
performing maintenance or replacing parts before failure.  
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Table 1. Subassembly breakdown of downtime due to technical failures. Some results are digitized from 
figures in the respective publications. 

 Ribrant & 
Bertling 
[21]  

Stenberg 
[12]  

WMEP [17]  WindStats 
(from [14]) 

LWK [8] 

Country Sweden Finland Germany Germany Schleswig 
Holstein, 
Germany 

Period 2000–2004 1996–2008 1989–2006 1999–2008 1993–2004 

Turbines 527–723 Ca 10–70 Up to 1500 Up to 
20,0003 

158–643 

Gearbox 19% 18% 10% 25% 23% 

Blades/pitch/hub 9% 11% 16% 17% 13% 

Electric system 14% 10%4 15% 16% 17% 

Generator 9% 9% 10% 16% 11% 

Control system 18% 4% 11% 5% 4%5 

Hydraulics 4% 15% 5% 6% 5% 

Yaw 13% 4% 8% 5% 4% 

Sensors 5% 7% 6% 3% - 

Brakes 1% 10% 6% 2% 10% 

Drive train 2% - 5% 4%6 9%7 

Other 3% 11%8 8% 2% 4% 

 

In conclusion, the average downtime reported in literature is in the range 1–6%, 
with 3% typically taken as industry standard [22], [23]. There is some evidence that 
the failure rate increases for turbines older than around 10–15 years, but the 
increase is not very sharp. The downtime per failure can also be longer for older 
turbines due to e.g. lack of spare parts. It does however not seem plausible to 
explain the relatively steeply decreasing trend in capacity factors seen in SG14 
solely with a gradual increase of downtime. 

2.4 FAILING COMPONENTS 

In this section, subassembly breakdowns of the downtime due to technical failures 
are reviewed. Results from five studies in Sweden, Finland and Germany are 
compiled in Table 1. In general, the databases which the studies draw upon have 
flaws of different kinds (e.g. changes in the reporting system) so the results must 
be interpreted with care.  The definitions of the subassemblies are not always clear-
cut and can be overlapping. Footnotes are given in case a different terminology is 

                                                             
3 Only a relatively small (and decreasing) share of the turbines report detailed down-time statistics. The 
data given is for those with details. 
4 Electric system + grid connection 
5 Converter 
6 Main shaft/bearing 
7 Main shaft 
8 Whereof structure 4% and heating 3% 
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used in the studies. Some results are digitized by us from figures which gives small 
additional uncertainties. 

The results differ somewhat between the studies, but generally the subassemblies 
contributing mostly to the downtime are the gearbox, the electric system, 
rotor/pitch-systems and the generator. Hydraulics constitutes a surprisingly large 
share of the downtime in Finland, but this might be due to a limited sample size. In 
Ref. [24], references for further reading on component failures are given. 

2.5 DATASETS FOR LONG-TERM CORRECTION 

The wind speed time series used for LTC of a measurement can come from 
meteorological models (reanalyses) or long-term measurements. In recent years, 
the former has become the standard in the wind energy sector. The time series 
should preferably have a high correlation to the measurements and be consistent in 
time, i.e. not contain erroneous trends or step changes. A compilation of some 
studies on reanalysis performance can be found in Ref. [25] and an overview of 
available reanalysis datasets is given in Ref. [26]. 

A conclusion from the reviewed literature [26]–[30] is that no model is consistently 
best in terms of correlation and consistency. However, it seems that the newer 
datasets generally perform better than NCEP/NCAR [27], [28] and that 
downscaling using the WRF model [31] can sometimes improve the results [27].  

Liléo and Petrik [28] concludes that the strong upward trends for some 
NCEP/NCAR and CFSR grid points is probably a signature of inconsistencies in 
the models. Brower et al. [30] found that MERRA had discontinuities and 
statistically significant trends for several of the considered grid points. A lesson 
one can learn from the trend analyses in Refs. [26], [28] and [30] is that it is 
probably wise to use two or more independent datasets for LTC; if the results do 
not differ too much, they can be considered robust.  
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3 Data 

In this chapter, the different datasets of wind power generation are presented and 
our processing of the data is described (Section 3.1 and 3.2 respectively). The 
chapter is concluded with a description and analysis of five reanalyses of potential 
interest for long-term correction of the raw data. Figure 1 gives a summary of all 
data-processing steps (including those presented in Section 4). 

 

 
Figure 1. Overview of all data-processing steps. References to sections in this report are given within 
parenthesis.  

Raw monthly
Vindstat data (3.1)

Raw hourly
Cesar data (3.1)

Remove som units (3.2), e.g. due to:

• Less than 60 months data
• Capacity factor below 0.1

Data processing (3.2), e.g. 

• Remove strange data
• Deal with the ”1500 kW issue”

Long-term correction using three
different reanalyses (4.1)

Identify downtime
(4.2.4)

Monthly
Vindstat data

Monthly Cesar data
(with and without

downtime removed)

Hourly
Cesar data
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3.1 WIND POWER DATASETS 

Two datasets were primarily used in this study: Vindstat monthly data9 and 
hourly data from the Swedish electricity certificate system Cesar10. Due to non-
disclosure agreements, the data can unfortunately not be shared.  

Energimyndigheten (the Swedish Energy Agency), Elforsk and Vindforsk have 
financed the collection of data from operational WTs since 1988. Since the practical 
work is now carried out by the company Vindstat AB, we refer to this database as 
“Vindstat”. Before 2002, the collection was manual, but since 2002 an automatic 
system is used to collect data for each WT daily. Between 1991 and 2003, an 
investment support was available for constructing wind farms. A prerequisite for 
obtaining support was to report generation data to Vindstat. Consequently, almost 
all older WTs are connected to this system. In 2003, the investment support was 
replaced by the current electricity certificate system and reporting to Vindstat was 
no longer mandatory. New WTs are therefore not always included in the Vindstat 
database; as of the end of 2015, 1945 out of around 3200 WTs were included in the 
database (3114 out of around 6000 MW). Monthly data from Vindstat between 
January 1990 and December 2015 were used in the analyses. 

The Cesar database contains hourly meter readings for all WTs connected to the 
electricity certificate system. Since the certificates give an additional revenue of 
around 15–20 €/MWh11, almost all WTs are included. Certificates are issued for 15 
years except for WTs deployed before 2003, which only got certificates from 2003 
to 2012 (2014 in some cases). This implies that the longest time series available in 
Cesar is around 13 years and that data for older WTs are not available for their 
early ages. Most often (94% of the time series), each WT is reported separately to 
Cesar but sometimes production for a whole farm is reported in aggregation. In the 
continuation of this report, we refer to the entity for which measurements are 
taken as a “unit”. A Vindstat unit is thus always a single WT, but for Cesar it can 
be either a WT or a small farm. Both hourly and monthly Cesar measurements, 
ranging from May 2003 to December 2015, were used in the analyses.  

In addition to the large datasets from Vindstat and Cesar, detailed data on three 
farms owned by Vattenfall were available. These time series, containing two years 
of 10-min data on generation and downtime, were used for validation. Downtime 
data for nine WTs from OX2 were also available.  

Metadata such as coordinates, installed capacities and rotor diameters were 
compiled from Vindstat reports12, the Cesar database described above and the 
electricity certificate system13.  

                                                             
9 Available from http://vindstat.com/ (Accessed: 2016-11-21). We however used an Excel spreadsheet 
provided by Nils-Erik Carlstedt, one of the project members. 
10 This dataset was provided by Energimyndigheten (the Swedish Energy Agency). 
11 Currently (Feb 2017), the certificate price is however below 10 €/MWh. 
12 Monthly and yearly reports are available at http://vindstat.com/ (Accessed: 2016-11-21).  
13 Excel spreadsheet of ”Godkända anläggningar” obtained from 
http://www.energimyndigheten.se/fornybart/elcertifikatsystemet/marknadsstatistik/  (Accessed: 2016-
11-21). 

http://vindstat.com/
http://vindstat.com/
http://www.energimyndigheten.se/fornybart/elcertifikatsystemet/marknadsstatistik/
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Regarding the locations of the units, additional sources were sometimes used, 
including internet searches on particular farms. The accuracies of the locations 
differ; for many WTs, exact coordinates were available but in some cases, only the 
centre coordinate of the farm. For other units still, relatively crude coordinates 
from the Vindstat reports or the location of the nearest village were used. For the 
purpose of long-term correcting the monthly generation data, all coordinates can 
however be considered sufficiently accurate.     

Rotor diameters and hub heights were not available in the Cesar metadata. A first 
idea was to try to couple the units in the Cesar and Vindstat databases. Since many 
Cesar units are not present in the Vindstat dataset, these variables were instead 
estimated with a machine learning model trained on Vindstat data, see Section 4.3. 

3.2 DATA PROCESSING 

In this section, the processing of the raw data is described. First, steps common for 
both datasets are given. Subsequently, unique measures for Vindstat and Cesar are 
described. Some graphical examples of time series that have been altered are given 
in Appendix Section 2.1. A comparison of metadata and monthly CFs from Cesar, 
Vindstat and Vattenfall is given in Appendix Section 3. 

The removal of units is a trade-off between quality and quantity of the resulting 
datasets. Almost half of the units were removed due to measurement periods 
shorter than 60 months (five years). Lowering this threshold would give more data, 
but the trends for units with short measurements would be less reliable and 
meaningful. A more thorough motivation of the chosen threshold is given in 
Appendix Section 1.1. Apart from units with short measurement periods, a few 
WTs with installed capacity below 99 kW or average CFs below 0.1 were removed 
since these were not considered representative for commercial WTs.  

When analysing trends in performance, data corresponding to age 0–3 months and 
higher than 20 years were removed. The reason for not removing all data for the 
first year (as in SG14) was that WTs generally have full performance after four 
months. A likely explanation to the difference is that SG14 analysed measurements 
for farms while we have data for individual WTs in most cases.   

For various reasons, the installed capacity can change during the measurement. 
This is most easily detected with hourly data, but can sometimes also be seen in the 
monthly time series. Depending on the reason for the change, different actions 
were taken: 

• In the Cesar database, the number of WTs connected to a meter changed in a 
few instances. These time series were split and each segment was analysed 
separately (segments shorter than 60 months were however removed).  

• Some WTs have a smaller increase in the rating, e.g. from 1800 kW to 2000 kW. 
We interpret this as a software update which allows a higher output. More 
common is that turbines have been rated down to 1500 kW around year 2012–
2015. The reason for this is the low electricity prices in recent years and that 
lower fees have to be paid for WTs with rating 1500 kW or lower. For WTs that 
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have been rated up or down, a transformation was used for the period with 
higher rating, see Appendix Section 1.2. 

• Especially for older units, it is relatively common with long periods (several 
months) with maximum output at a lower level than the rated capacity. If this 
lower level is not 1500 kW, we interpret this as down-rating due to technical 
problems. The time series were thus left without any change.  

For both Vindstat and Cesar, problems in the reporting system can cause several 
months of data to be reported later. Relatively often, the production for the faulty 
period is given as an average for the whole period. This might not appear as a 
major problem, but as the example in Figure 2 illustrates, the linear trend of long-
term corrected data may change considerably. The solution to this issue is to 
identify periods with averaged measurements and then to perform the LTC for the 
whole period in aggregation (i.e. not month by month as is otherwise done).  

 

 
Figure 2. Effect of averaged data on trend estimate. The upper panel shows measured, monthly data during 
three years and the same time series with the last eight months averaged. In the lower panel, the resulting 
long-term corrected series are given (LTC of each month separately). The “true” linear trend is -0.6 pp/year, 
but with averaged data a trend of +0.3 pp/year results. By performing the LTC for these eight months in 
aggregation, the issue is resolved. 

3.2.1 Vindstat 

Five prototype units, only operating during a few years in the 90’s, were removed 
from the analysis. A few obviously erroneous capacity factors (below zero or above 
one) were also removed. For a few units, the reported start date was slightly later 
than the first month with data. In these cases, the start date was changed.  

3.2.2 Cesar 

If problems occur in the reporting system so that no measurements are supplied to 
Cesar, this can be corrected afterwards by adding a ”fictive” plant. The time series 
of the fictive plants are different in nature and were handled differently in the data 
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treatment. Sometimes, the fictive time series are appropriate, hourly data. These 
were simply added to the original data. In other cases, the fictive time series is a 
duplicate of already available data and was discarded. Finally, the fictive data can 
be reported as a mean of a longer period or as a very high value followed by zeros. 
The total energy is then correct, but the time series cannot be used for analyses of 
hourly data.  

For the around 6% of the units where measurements correspond to several WTs in 
aggregation, ranges of start dates are sometimes given since it takes some time to 
erect all turbines. Data for months before the completion of the whole farm were 
then discarded.  

After consultation with the reference group, it was suggested that periods with 
missing data longer than around one week should be interpreted as turbine 
downtime. By cross-validating units with long data gaps with the corresponding 
Vindstat units14, it was however found that all these had actually generated 
electricity during the periods of missing data. We thus do not add zeros to these 
periods. 

For some units, zeros are reported at the end of the measurement period. These 
data can of course correspond to actual downtime, but can according to 
Energimyndigheten also be e.g. reports from an intermediary actor that does not 
correspond to downtime. For units with start year before 2003, certificates are no 
longer obtained after 2012 (or 2014 in some cases). When trailing zeros were 
present for such units after 2012 or 2014, we removed this data. For newer units, 
trailing zeros were not removed.  

All time series were manually inspected. If the reported installed capacity differed 
substantially from those seen in measurements (excluding possible peaks due to 
fictive plants), the installed capacity was changed. 

3.2.3 Summary statistics 

Table 2 shows the number of units in the two datasets and how many of these that 
were removed for various reasons. Table 3 shows some statistics for the 
observations that were used in the final analysis, i.e. after some units and some 
data were removed. Figure 3 gives the number of units with different start years 
and the number of observations for different years and ages. Figure 4, finally, 
shows histograms of observation lengths and monthly capacity factors.  

For Vindstat, in average 1.5% of the monthly data is missing (gaps in the time 
series). For Cesar, the corresponding value is 0.15%. Missing data induces an 
additional uncertainty in estimation of long-term means [32] and trends, but this is 
not expected to be a major issue in our case.    

                                                             
14 29 Cesar units with gaps longer than one month were studied. Out of these, we were able to identify 
22 in the Vindstat database, but only 13 had concurrent data since many units quit reporting to Vindstat 
in 2003 when the certificate system started. For all 13 units, monthly Vindstat production data was 
available during the periods with missing data in Cesar. 
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Table 2. Number of units in the different datasets before and after the removal of units for various reasons. 

 Vindstat Cesar 
All units 1990 2755 
Experimental units -5  
Outside Sweden -2  
<60 months data -872 -1358 
P<99kW  -43 
Mean CF<0.1 -7 -41 
Split time series  +4 
Remaining 1104 1317 

 

Table 3. Statistics of the datasets used in the analyses, i.e. after removal of short time series, erroneous data 
etc. Note that for Cesar, the number of wind turbines (WTs) is larger than the number of units. 

 Vindstat Cesar 

Number of units  1104 1317 

Number of WTs 1104 1537 

Total capacity 1.2 GW 1.9 GW 

Temporal resolution Monthly Monthly / 
Hourly 

Number of observations 143,000 142,000 / 
103 millions 

Construction years 1984–2010 1988–2010 

Data recording period 1990–2015 2003–2015 

 

 
Figure 3. Statistics on monthly data for Vindstat (upper row) and Cesar (lower row). Note the negative step 
change in Vindstat observation numbers in 2003, which is due to removal of the reporting requirement for 
obtaining support. The bars for start year 1990 in the leftmost panels also contain a few units with earlier start 
years. 
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Figure 4. Histograms of observation lengths (left) and monthly capacity factors (right) for Vindstat (upper 
panels) and Cesar (lower panels). The observation lengths are given as the number of months with data 
divided by twelve. The mean (μ) and median (m) capacity factors are given in the right panels.   

3.3 REANALYSES 

Four third-generation reanalyses were considered for the long-term correction of 
monthly measurements: MERRA [33], ERA-Interim [34], CFSR [35] and JRA-55 
[36]. The reason for not choosing the new version of MERRA (i.e., MERRA-2) is 
that Ref. [37] and preliminary studies by us show no improvement over the first 
generation for Sweden. CFSR data was ruled out at an early stage since the time 
series are not entirely consistent in time; from 2011 and onwards, only outputs 
from the operational model CFSv2 are available.  

In addition, EMD-ConWx15 (from now on only ConWx) data for grid points 
relatively close to all units were downloaded. A maximum distance of 20 km was 
allowed but the mean distance was 6 km. ConWx, which in contrast to the other 
datasets is not freely available, is a mesoscale dataset produced by downscaling 
ERA-Interim. In the following, we for simplicity refer to ConWx as a reanalysis. 

Time series from MERRA, ERA and JRA for the whole of Sweden for 1990–2015 
were downloaded, i.e. the 26-year period with available wind power 
measurements. ConWx data was however only available from 1993 and onwards. 
Furthermore, ConWx is only available for latitudes below 66.5° so a few units were 
not covered. Some metadata for the reanalyses are given in Table 4.   
  

                                                             
15 http://emd.dk/files/windpro2.9/EMDConWx_MesoScale_data.pdf Accessed: 2016-12-22 
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Table 4. Metadata for the four reanalyses considered for long-term correction of measurements. 

 MERRA ERA-Interim JRA-55 ConWx 

Temporal resolution 1 h 6 h 6 h 1h 

Spatial resolution 0.5° × 0.67° 0.75° × 0.75° 0.56° × 0.56° 0.03° × 0.03° 

Time period 1990–2015 1990–2015 1990–2015 1993–2015 

Heights 50 m 10 m 10 m 25, 50, 75, 
100, 150 m16 

 

In the following paragraphs, correlations between the reanalyses in terms of 
monthly output and trends are presented. In Section 5.1, results are given on the 
performance of the different reanalyses for long-term correction. For each onshore 
and near offshore point in a regular grid (not coinciding with the native grid of the 
reanalyses), time series of “fictive” monthly generation for 1993–2015 were 
calculated. The wind speeds were first bilinearly interpolated in horizontal and 
linearly scaled to a mean wind speed of 7 m/s. Time series of generation were 
subsequently calculated using the power curve from a 2.5 MW wind turbine with 
100 m rotor diameter. Similar calculations were performed for the 144 available 
ConWx coordinates. 

In Figure 5, the correlations between monthly outputs from the different reanalyses 
are shown. MERRA, ERA and ConWx are generally in good agreement, but JRA 
has much lower correlations to the other reanalyses. Average correlations are given 
in Table 5. Note that the high average correlations for ConWx are partly due to the 
higher weight on southern grid points (compare upper and lower row in Figure 5). 

 

 

 

                                                             
16 Data is also available for other heights. 



 WIND TURBINE PERFORMANCE DECLINE IN SWEDEN 
 

27 

 

 

 

 
 

 
Figure 5. Correlations between fictive, monthly generation time series calculated from the different reanalyses 
(1993–2015). Note from the lower panels that there are two units on Åland (an island belonging to Finland) in 
the Vindstat dataset.  

 
Table 5. Average correlations between fictive, monthly generation calculated from the different reanalyses 
(1993–2015, see Figure 5 for the considered grid points).  

 ERA-Interim JRA-55 ConWx 

MERRA 0.85 0.59 0.96 

ERA-Interim  0.74 0.93 

JRA-55   0.78 

 

Linear trends of monthly generation were subsequently computed for all grid 
points. The trends for JRA are considerably larger in magnitude and more or less 
uncorrelated to the trends from the other reanalyses. Trends for MERRA and 
ConWx are relatively strongly correlated (0.73), but in general somewhat more 
positive for ConWx. Interestingly, the trends for ConWx and ERA are only weakly 
correlated (0.32) although ConWx is based on ERA data. A plausible explanation is 
that ERA is given for 10 m, i.e. considerably lower than the 100 m ConWx level 
which was used in the calculations above.  
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From the analyses above and from a preliminary assessment of the correlations 
between reanalyses outputs and actual measurements, it was decided not to use 
JRA data. Results based on LTC with MERRA, ERA-Interim and ConWx will thus 
be given in the remainder of this report. 
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4 Methods 

In this chapter, most of our methods are described. For better readability, some 
methods are however presented in Appendix Section 1. First, long-term correction 
is introduced. Second, the methods used for quantifying trends are given. Sections 
4.3–4.4 are devoted to machine learning and filtering. The chapter is concluded 
with a list of differences between our methods and those used in SG14. 

4.1 LONG-TERM CORRECTION 

In order to remove the effects of variability in the wind climate, long-term 
corrections of measurements can be performed. If this is not done, artificial trends 
in wind power performance might be present. A simple but very useful approach, 
especially for LTC of monthly generation data, is the “Wind Index” (WI) method17 
[39]. For a given unit, the mean wind speed is first estimated, see Section 4.1.2. The 
reference wind speed time series (reanalysis data in our case) is linearly scaled to 
this mean. Subsequently, a “fictive” generation time series is computed using the 
power curve of the WT in question. The WI of a particular month is defined as the 
average fictive generation of that month divided by the average of the whole time 
period. By dividing measured monthly generation by the corresponding WI, a 
long-term corrected time series results, see e.g. Figure 2 on page 22. In the 
following, let CFraw denote the raw, monthly CF time series. Let furthermore CFLTC, 
CFM, CFE and CFC denote the long-term corrected CFraw (LTC in general and with 
MERRA, ERA-Interim and ConWx respectively). 

For MERRA and ERA-Interim, the raw wind speeds were taken directly from one 
model height (see Table 4) and subsequently linearly interpolated to the desired 
mean. For ConWx, the time series were first interpolated to the hub heights each 
time step using model outputs from different heights and the power law [40]. In 
principle, it should be possible to achieve better results for e.g. MERRA by first 
calculating the hourly wind speed at hub height from 10 and 50 m data before 
linearly interpolating to the desired mean wind speed; during some hours/seasons, 
the wind shear is higher than others which could then be captured. If one studies 
the wind shear calculated from 10 and 50 m MERRA data, this variable is however 
more or less constant in time, so the results would change very little had the power 
law first been employed. As a result of neglecting the varying wind shear, seasonal 
bias sometimes exist for CFM and CFE. With ConWx data, on the other hand, the 
calculated wind shear has a much more realistic pattern with large differences 
between different meteorological conditions. Despite this, CFC also has seasonal 
variations for some units. 

In Figure 6, the national, yearly WI between 1993 and 2015 is shown. The WI is 
calculated as the capacity weighted average of WIs of units in the Vindstat dataset. 
In SG14, results were given both with and without LTC of the data. Based on 
Figure 6, analysing the trends on CFraw would not be meaningful for Sweden; the 
wind climate has changed so much during the last years that strong artificial 

                                                             
17 Several different WI definitions exist, see e.g. [38].  



 WIND TURBINE PERFORMANCE DECLINE IN SWEDEN 
 

30 

 

 

 

trends in performance would be present. One can also note that although the 
different WIs generally agree well, the MERRA data gives somewhat lower values 
for the last years.  

 

 
Figure 6. National, yearly wind index calculated as the capacity weighted average of WIs in the Vindstat 
dataset for 1993–2015.  

4.1.1 Power curves 

Power curves (PCs) are necessary inputs to the WI calculation. Instead of using 
actual PCs of all different WTs, a simplified (in terms of workload) approach was 
taken. Four different PCs for WTs with specific ratings (installed capacity over 
rotor area) ranging from 229 to 497 W/m2 were obtained and normalised to the 
installed capacity. For each WT, the PC was subsequently estimated by linear 
interpolation depending on the specific rating. An example is given in Figure 7. 

 
Figure 7. Example illustrating how a power curve for a wind turbine with specific rating of 280 W/m2 is 
interpolated from two actual power curves. 

 

We thus assume that WTs with similar specific rating have sufficiently similar 
normalised power curves. A closer examination revealed that the exact shape of 
the PC has very little impact on the monthly WI as long as the wind speed time 
series are scaled to give a certain long-term CF, see Figure 8. The assumed CF, 
however, has a relatively strong effect on the WI variability. A lower CF gives 
larger variations in the WI and conversely. If, for example, the true long-term CF is 
underestimated and a trend in the wind climate exists, the LTC will 
overcompensate for this trend, resulting in an opposite but artificial trend in WT 
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performance. This is why the estimation of the true CF, see next subsection, is so 
important for trend analyses. We therefore believe that the methodology in SG14 
(estimation of true mean wind speeds directly from coarse MERRA data) is 
inappropriate18.  

 

 
Figure 8. Impact from rotor diameter and assumed capacity factor (CF) on the wind index (WI). As long as the 
CF is the same, the diameter has negligible impact (left panel). The assumed CF, however, has a profound 
effect on the WI (right panel); a lower CF gives considerably larger variability. 

4.1.2 Estimation of mean wind speeds 

As shown in Section 4.1.1, an appropriate estimation of the “true” long-term mean 
wind speeds is crucial for calculation of the WI. Our take on this matter was to first 
estimate the long-term CF from the recorded data and subsequently find the 
corresponding mean wind speed given the WT characteristics and distribution of 
wind speeds at the actual site. 

In order to obtain more robust results, the long-term CF was estimated in two 
steps. First, the whole time series of monthly measurements was long-term 
corrected using the mean of CFraw as the long-term CF estimate. Subsequently, the 
mean of preliminary long-term corrected observations for age 0.33–3.33 was 
calculated. This is our final estimate of the long-term CF which is used for 
calculating the WI and corresponding CFLTC time series.  

If not enough measurements were available for age 0.33–3.33, the first 36 monthly 
recordings were used. Since the performance generally decline somewhat over 
time, this estimate was adjusted upwards based on the observed median trend for 
units in the same cohort (similar start years). 

4.2 QUANTIFYING TRENDS 

As demonstrated in Refs. [1], [4], [5], several different methods exist for calculating 
trends in wind farm performance, e.g. regression of all CFs against age, average 
trends for individual units, a capacity-weighted fit of individual trends against 
                                                             
18 Since SG14 obtained almost identical results with and without LTC, the methodology for estimating 
mean wind speeds is however not likely to affect their results to any larger degree. 
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start year, full fixed effects regression and regression of CFs against age for cohorts 
of units. All methods can in principle be used on both CFraw and CFLTC. 

Which of these are most suitable for Swedish conditions and the available data? As 
already discussed in Section 4.1, LTC of the measurements is, in our opinion, 
necessary for obtaining trustworthy results for Sweden. Methods not employing 
LTC were thus discarded. 

Quite remarkably, SG14 obtained almost identical trends with regression of all CFs 
against age as with the other methods. This implies that the CFs of wind farms in 
the UK (of a certain age) have not increased considerably over time; since the data 
for newer farms are dominated by low-age observations, the estimated trend 
would be more negative with this than the other methods had the CFs increased. 
Modern Swedish wind farms, on the other hand, have considerably higher CFs 
than older ditto, see Figure 9. Regression of all CFs against age is therefore not 
relevant for Swedish conditions. 

 

 
Figure 9. Historical capacity factors (CFs) of wind farms in Sweden; mean estimated CFs (before farm 
construction) depending on year of deployment (left panel); national, long-term corrected, CF (right panel). 
Data from Ref. [41]. 

4.2.1 Linear regression 

In this section, linear regression is described relatively briefly and informally. The 
exposition focus mostly on regression diagnostics and is based on Refs. [42], [43]. 
The statistical model for a straight line is given by 

 𝑌𝑌 = 𝛽𝛽0 + 𝛽𝛽1𝑋𝑋 + 𝜀𝜀 (1) 

where Y is the dependent variable (CFLTC in our case), X is the independent 
variable (age), β0 and β1 are the intercept and slope and ε is a Gaussian random 
variable with zero mean and variance σ2. Given a set of X and Y observations, β0 
and β1 can be estimated by minimising the residual sum of squares (RSS) 

 
𝑅𝑅𝑅𝑅𝑅𝑅 = �(𝑦𝑦𝑖𝑖 − �̂�𝛽0 + �̂�𝛽1𝑥𝑥𝑖𝑖)2

𝑁𝑁

𝑖𝑖=1

 
(2) 

where xi and yi are observations from X and Y and the hat symbols over the β’s 
denote that these are estimates of the true (but unknown) parameters. In order to 
draw conclusions from a straight line fit, several assumptions need to be made [42]. 
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If some of these are severely violated by the data, the linear model might be 
inappropriate and/or the calculated confidence intervals erroneous. 

1) Existence – For any value of X, Y is a random variable with finite mean and 
variance. This is not an issue for our data. 

2) Independence – The Y-values are statistically independent.  

3) Linearity – The mean of Y is a straight-line function of X. If this does not hold, 
patterns in the residuals results. 

4) Homoscedasticity – The variance of Y has the same expected value independent 
of the value of X.  

5) Normal distribution – For any fixed value of X, Y has a normal distribution. 

Point 4 and 5 can equivalently be interpreted as normally distributed and 
homoscedastic residuals. The residuals were analysed in order to answer whether 
our data reasonably well fulfil these requirements. First, the residuals were plotted 
against the predicted value. For illustration, some synthetic examples are given in 
Figure 10. These plots give information on the appropriateness of the linear model 
and can be used to detect heteroscedasticity of the residuals.  

 

 
Figure 10. Synthetic examples of capacity factor (CF) time series and linear fits (upper row) and the 
corresponding residual vs predicted CF (lower row). In all cases, the CF decreases from 0.3 at month 1 to 0.2 at 
month 100 (plus some random noise). In the leftmost panels, the deterioration is not linear and consequently 
the linear trend is not appropriate for quantifying the performance decline. In the middle panels, the variance 
is larger at the end of the measurement period. The trend is not systematically affected, but confidence 
intervals cannot be properly determined.  

 

Second, the autocorrelation function (ACF) was studied. The ACF is the correlation 
of a time series with itself, shifted in time with different lags. As an example, the 
residuals from fitting a straight line to CFraw will almost certainly have relatively 
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strong autocorrelations since there is a seasonality in wind power. With CFLTC, this 
pattern is ideally removed. As already mentioned, seasonal biases were however 
present for some units also after LTC, which could be e.g. due to seasonal patterns 
in wind shear, air density, icing losses and maintenance. As the fictive example in 
Figure 11 illustrates, neglecting the seasonality may produce erroneous trend 
estimates. See also Appendix Section 4.2 for an example with real data.  

 

 
Figure 11. Fictive example demonstrating that if a seasonal pattern exists, the straight line trend estimate 
might be erroneous. By including a seasonal component in the regression, this problem is alleviated (see 
below). 

 

Our solution was to also consider a straight line model with a seasonal component:  

 𝐶𝐶𝐶𝐶𝐿𝐿𝐿𝐿𝐿𝐿 = 𝛽𝛽0 + 𝛽𝛽1𝑎𝑎𝑎𝑎𝑎𝑎 + 𝛽𝛽2cos (2𝜋𝜋 ∙ 𝑎𝑎𝑎𝑎𝑎𝑎) + 𝛽𝛽3sin (2𝜋𝜋 ∙ 𝑎𝑎𝑎𝑎𝑎𝑎) + 𝜀𝜀 (3) 

By including both a sine and a cosine term, the magnitude and phase of the 
seasonal pattern can be represented. For each unit, the model (with or without 
seasonal component) with lowest biased corrected Akaike’s information criteria 
(AICc) [44] was chosen. Adding components also for harmonics (4π, 6π, ...) can 
sometimes be motivated [45], but was found unnecessary in our case.  

The assumption of normally distributed residuals was evaluated with normal 
probability plots. Furthermore, the leverage and DFBETA, which are commonly 
used techniques to detect outliers, were calculated. The leverage indicates the 
extremeness of an observation in the range of X-values [42]. In our case, high 
leverage stem from short measurement periods before or after a long period of 
missing data. The DFBETA measures the effect on the fitted model parameters 
from removing an observation. In contrast to the leverage, both X and Y values 
influence the DFBETA.  

As shown in Appendix Section 4.2, the normality and independence assumptions 
were violated for some units. In particular, for units with several consecutive 
downtime months, the residuals will be autocorrelated and the residuals for the 
downtime months more negative than a normal distribution would suggest. The 
main impact from these violations is that confidence intervals for the trend cannot 
be properly determined. Since such intervals for individual units is not the primary 
focus of this report, this was not seen as a major issue. Violation of the linearity is 
more serious, since the linear slope might then not be representative for the true 
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change in performance (see Figure 10). We therefore also, for comparison, 
calculated “equivalent trends”, see next sub-section.   

4.2.2 Chosen methods 

The methods that will be used in this work are described in the following 
paragraphs. For all trend calculations, only ages between four months and 20 years 
were considered.  

For each method, analyses were made for Vindstat and Cesar data and with 
MERRA, ERA-Interim and ConWx as long-term reference, i.e. for six different 
cases. This provides additional information on the uncertainties of the trend 
estimates.  

Method 1: Individual trends. For each unit, the linear trend of CFLTC was 
calculated. As mentioned in the previous section, the best (in terms of lowest AICc) 
of the following two models were chosen for each unit 

 𝐶𝐶𝐶𝐶𝐿𝐿𝐿𝐿𝐿𝐿 = 𝛽𝛽0 + 𝛽𝛽1𝑎𝑎𝑎𝑎𝑎𝑎 + 𝜀𝜀 (4) 

 𝐶𝐶𝐶𝐶𝐿𝐿𝐿𝐿𝐿𝐿 = 𝛽𝛽0 + 𝛽𝛽1𝑎𝑎𝑎𝑎𝑎𝑎 + 𝛽𝛽2cos (2𝜋𝜋 ∙ 𝑎𝑎𝑎𝑎𝑎𝑎) + 𝛽𝛽3sin (2𝜋𝜋 ∙ 𝑎𝑎𝑎𝑎𝑎𝑎) + 𝜀𝜀 (5) 

Distributions and summary statistics of the individual trends (β1) are presented 
both for all units and for different cohorts depending on start year. If nothing else 
is specified, we use a three years sliding window (start year 1989–1991, 1990–1992 
etc.) in order to not get too few units in each cohort. 

Method 2: Combined trends for cohorts. For each cohort, i.e. all units with certain 
start years coming from a certain dataset and long-term corrected with a certain 
reanalysis, the model was:  

 
𝐶𝐶𝐶𝐶𝐿𝐿𝐿𝐿𝐿𝐿 = 𝛽𝛽0 + 𝛽𝛽1𝑎𝑎𝑎𝑎𝑎𝑎 + �𝛽𝛽𝑛𝑛𝐼𝐼[𝑛𝑛]

𝑁𝑁

𝑛𝑛=2

+ 𝜀𝜀 
(6) 

where n is the unit number of the N units in the cohort and I[n] is an indicator 
(dummy) variable taking the value one for observations for unit n and zero for all 
other observations. The parameters β2–βN thus controls the level of all units except 
one (since we also have an intercept β0) and β1 represents the slope for the whole 
cohort. The latter is of course the parameter we are primarily interested in.  

Method 3: Equivalent trends. When studying regression diagnostics, it was found 
that Method 1 was suitable for most units. In some cases, the trend was however 
not truly linear and e.g. a parabolic curve would fit the data better. Applying 
different model orders for different units would however be hard to interpret, 
especially since both the lowest and highest ages vary substantially between the 
units. In other words, a single parameter (the slope) describing how performance 
change over time was desired for each unit.  

An alternative metric was therefore developed. We consider the first 24 
observation months as the baseline and the equivalent trend line was forced to 
have the same average value during these months as the observations. 
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Furthermore, the average value of all ages should be the same. The conditions that 
must be satisfied can be expressed as 
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𝑁𝑁

𝑛𝑛=1

 (7) 

where a is age, n is the month index and N is the total number of observations. 
Rearranging the equation system gives two equations for the two unknown 
variables so a unique solution exists. A fictive example is given in Figure 12. A 
more realistic example of when the linear and equivalent trends differ is when the 
monthly generation is zero or very low for observations with intermediate ages.  

 

 
Figure 12. Fictive example demonstrating the difference between linear trend and equivalent trends. In this 
example, the data clearly suggests that a linear regression is not suitable. The yellow line gives the equivalent 
trend; a unit with this production would produce an equal amount of energy as the fictive data for the first 24 
months as well as for all ages. 

4.2.3 Normalisation of capacity factors? 

A fundamental choice is whether to study trends in absolute or normalised CFs. 
For instance, if one farm with CF 0.20 at age 1 has CF 0.15 at age 20, is a farm with 
CF 0.40 at age 1 more likely to have CF 0.35 or 0.30 at age 20? In order to answer 
whether trends are more consistent in absolute or relative terms, a test was 
performed. For each cohort of Vindstat data, the trend of absolute and normalised 
CFs were computed for each unit. Subsequently, a leave-one-out-cross-validation 
(LOOCV) method was employed to predict the average CF during the last 30 
months based on early age samples of the unit in question and the median trend of 
the other units in the cohort.   

The standard deviations of the prediction errors were very similar when using 
absolute and normalised CFs, around 0.02 in absolute terms. In other words, the 
method employed seems to be of little importance for the robustness of the results. 
A problem with using normalised data is however that some units start reporting 
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as late as age 10–15. How should the CFs be normalised in these cases? If one uses 
the first months with data, the normalised generation might be overestimated. If 
one uses some assumption on how much the performance has deteriorated 
between age 0.33 and the age of the first months with data, the results are 
influenced heavily by this assumption. We therefore perform all trend analyses 
with absolute CFs and consider these results as the most robust and important.  

For the benefit of the reader, the results were however also transformed to 
normalised form. Two options in these normalisations are to use the estimated 
long-term CF for each unit or, as SG14, the average for all units. A disadvantage 
with the former approach is that some units with low CFs will be very influential 
for the overall results. The latter approach is more robust but fails to represent the 
evolution of CFs in Sweden. We take a middle ground and normalise with the 
cohort average of estimated long-term CFs before deterioration (see Section 4.1). It 
should be stressed again that these calculations requires assumptions to be made 
when low-age observations are not available. The normalised trends are thus 
somewhat more uncertain than their absolute counterparts.  

4.2.4 Downtime and efficiency 

There is no reliable information on failing components for all units and thus it is 
not possible to study in detail why performance declines. However, an allocation 
of a negative trend between increased downtime and worsened efficiency in 
general (i.e. poorer power curve) is possible. The original plan was to use 
downtime data from the Vindstat dataset to do this. Internal discussions however 
revealed that this data is not reliable for all WTs and consequently another 
approach, based on hourly Cesar data, was taken. 

The evolution of downtime over time was studied by analysing the share of zero 
production in the hourly data. Only periods of zeros which are assumed to be due 
to actual downtime were considered, i.e. low-wind periods with zero production 
should not be considered downtime. The methodology for finding such periods 
was the following: 

1) Calculate hourly, fictive output based on ConWx data and the unit 
characteristics (see Section 4.1). 

2) For periods with zero actual production for ≥ 5 hours, calculate the 
corresponding mean production of the ConWx series. 

3) The period is considered as downtime if at least one of the following 
conditions are fulfilled: 

a. The period is longer than one week 

b. The period is ≥ 12 hours and the corresponding ConWx mean is at least 5% 
of the rated capacity. 

c. The period is ≥ 5 hours and the corresponding ConWx mean is at least 15% 
of the rated capacity. 
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Note that high-wind stops are not properly handled, i.e. these may falsely be 
classified as downtime due to technical problems. Such stops are however very 
rare in Sweden. 

In general, there is a trade-off between false positive and false negative downtime 
classifications. If, for example, the threshold of 5 hours is lowered to 3 hours, 
additional downtime events will be correctly captured at the expense of increasing 
the number of events falsely classified as downtime. The parameters were trimmed 
using one year of recorded downtime data for nine WTs, provided by OX2. An 
example of the results is shown in Figure 13. Relative to the recorded downtime for 
all WTs, there was 9% false negative and 8% false positive errors with the chosen 
parameters. Note, however, that only stops that lasted whole hours were 
considered since it is not possible to detect shorter stops in hourly Cesar data. 
These short stops consist around 10% of the total downtime for the OX2 WTs. If the 
occurrence of short stops change with age in the same way as longer stops, the 
influence from changed downtime on the overall performance trend will thus be 
somewhat underestimated. 

   

 
Figure 13. Illustration of method for identifying downtime. During day 3.5–5.5, the measured output was zero 
but ConWx fictive output was relatively high. Consequently this period was classified as downtime. The zero 
output period at the end of day 6 was (correctly in this case) not considered downtime since the ConWx 
output was also very low during these hours.  

 

The methodology was applied to the 94% of all units in the Cesar dataset 
corresponding to only one WT; for units with more than one WT, it is not possible 
to identify downtime periods if not all WTs have zero production simultaneously. 
Linear trends were subsequently calculated for monthly averages of both the 
original data and for data with the identified downtime periods removed. The 
difference between these trends is our estimate of the contribution from changes in 
downtime to the overall trend. Per definition, the remaining trend is explained by 
changes in the efficiency, e.g. a lowered aerodynamic efficiency if the trend is 
negative. 

4.2.5 Patterns in trends 

Although not the primarily objective of this report, it is of course interesting to 
study whether any clear patterns can be seen in the trends. Preliminary results 
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indicate that older WTs have a faster decline of performance than newer. There are 
also other factors that can potentially impact the trends: 

• Latitude – Wear and tear might be more severe for WTs in the north where 
icing is a bigger issue. 

• Ownership type (private, cooperation, power companies etc.) – Some owners 
may e.g. have less ambitious maintenance schemes which could impact the 
deterioration rate. 

• WT manufacturer – Possibly, some WTs age better or worse than other. 
• Main terrain type – WTs in forest may, for instance, behave differently than 

WTs close to the coast. 
• Mean capacity factor at early ages – Since we study the slope in absolute CFs, 

the start level might have an impact (a WT with higher CF to start with might 
lose more output in absolute terms). 

• “Tip low” – The distance between ground and lowest blade tip position, i.e. 
hub height minus rotor radius. 

• Longitude, installed capacity and length of the time series were also included. 

In total, seven continuous/discrete and three categorical predictor variables 
(ownership, main terrain type and manufacturer) were thus considered as 
candidates for explaining the slopes. Each of the categorical predictors were 
transformed to dummy variables as described in Section 4.2.2, yielding in total ten 
dummy variables plus the baseline. The baseline was chosen as the most common 
category for each categorical predictor, see Table 8 on page 56. Separate analyses 
were made for trends calculated from CFM, CFE and CFC. Since several of the 
metadata fields were only available in the Vindstat dataset, Cesar units were not 
studied.  

In the analyses, it is important to (at least try to) separate the effects from the 
different variables. Newer WTs, which generally have less negative slopes, are for 
example more often installed in forested areas. If the start year was not to be 
considered, it is likely that one would come to the potentially false conclusion that 
forest farms deteriorates less than farms deployed on farmland. We thus used 
different forms of multiple linear regression to estimate the effects of all variables 
simultaneously. It should be recognised that no hypotheses were formulated so the 
results must be interpreted with some caution. In particular, one should keep in 
mind that association does not necessarily imply causality [42]. 

A few extreme observation potentially get very large influence on the regression 
results which was not desired. We therefore used winsorisation (see e.g. Ref. [46]) 
of the slopes. Limits of two standard deviations from the mean were used and we 
thus replaced slopes smaller than μ-2σ (around -0.77 pp/y) with μ-2σ and slopes 
larger than μ+2σ (around +0.56 pp/y) with μ+2σ.  

Four different multiple linear regression models were set up for explaining 
differences in slopes: 

1) A model with all linear terms. 

2) A model with selected (see below) linear terms. 
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3) Separate models for each predictor variable, only controlling for start year. As 
an example, the coefficient for latitude was taken from the fitted model 
𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑎𝑎 =  𝛽𝛽0 + 𝛽𝛽1 ∙ 𝑠𝑠𝑠𝑠𝑎𝑎𝑠𝑠𝑠𝑠 𝑦𝑦𝑎𝑎𝑎𝑎𝑠𝑠 + 𝛽𝛽2 ∙ 𝑠𝑠𝑎𝑎𝑠𝑠𝑙𝑙𝑠𝑠𝑢𝑢𝑑𝑑𝑎𝑎.  

4) A model with selected linear and interaction terms (see below). 

For choosing predictor variables in method 2 and 4, a forward and backward 
selection procedure based on AIC was employed. Beginning with a constant 
model, terms were allowed to enter the model if the AIC was reduced with 0.3 or 
more. Terms could subsequently be removed if the AIC was not increased with 
more than 0.1. Suitable threshold values for AIC (i.e. 0.3 and 0.1) were determined 
by using a training and a test set in the same manner as described in Section 4.3. 
For the final model, all data were however used. 

Interaction terms in method 4 were calculated with Burrill’s partial 
orthogonalisation method [47]. Suppose we have two predictors, U and V. The 
“raw” interaction term is defined as U.V = U∙V (elementwise multiplication). The 
orthogonalised interaction term UV is subsequently taken as the residuals (ε) from 
the linear model U.V = β0 + β1∙U + β2∙V + ε. The term UV thus has zero mean and 
correlates zero with U and V. It was found that orthogonalised interaction terms 
yielded better models than raw interaction terms; the (adjusted) R squares were 
higher and the errors/residuals were lower both when evaluating the models with 
a dedicated dataset and when looking at the fit for all data. 

4.2.6 Statistical significance and uncertainty 

In order to properly determine confidence bounds for the performance slopes of 
individual units, several criteria need to be fulfilled as described in Section 4.2.1. 
Since the trends of individual units is not the main concern of this report, we did 
not calculate such bounds.  

For aggregated results, confidence intervals and statistical significance are however 
highly interesting. Two examples are: 

• Calculate confidence intervals for the mean and median trends of all or subsets 
of all data. 

• Is it statistically significant that the trends of newer units are more positive 
than for older? 

Since the distribution of trends is not normal (extreme trends are more common 
than they would be had the distribution been normal), we used bootstrap resample 
methods for calculation of confidence intervals and statistical significance, see e.g. 
Refs. [48], [49]. A bootstrap sample is a random sample with replacement of equal 
length as the original data. As an example, (2, 3, 2, 1, 5) could be a bootstrap 
sample from (1, 2, 3, 4, 5).  

Confidence intervals were obtained by drawing 5000 resamples from the original 
data. The means and medians of these resamples constitutes the empirical 
bootstrap distributions of these quantities. The 2.5th and 97.5th percentiles of the 
distributions are taken as the 95% confidence interval. Because of the relatively 
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large datasets, the results are generally similar to those obtained from assuming a 
normal distribution. 

For comparing two different means or medians (see Section 5.2), a similar method 
was used. Let us for instance consider the median trends for units with start year 
2010 (237 units) and start years 2009 or lower (1080 units). The median trends 
are -0.02 and -0.10 pp/y respectively, i.e. a difference of +0.08 pp/y. 5000 resamples 
were drawn in which 237 and 1080 trends were randomly picked from all 1317 
available. The 5000 resulting differences in the medians of these resamples were 
computed and the 95% confidence interval of the difference can be estimated as 
(-0.037, 0.041). The median trend for units with start year 2010 is thus higher than 
for older units on the 95% confidence level. 

It is important to stress that the “statistical uncertainty” is only part of the total 
uncertainty; given a set of data the statistical confidence interval and/or 
significance can be calculated, but it is possible that systematic errors exist in the 
data that makes these metrics invalid. As an example, during some periods, 
monthly average CFs are not available but rather the average from several months 
in aggregation. At least for the Vindstat database, such periods are not evenly 
distributed in time, so before this issue was properly handled, a bias was 
introduced in the mean and median trends. Another example is that relatively 
many WTs have recently been rated down to 1500 kW for economic reasons which 
also introduces an error if not properly accounted for. As described in Section 3.2, 
we have tried our best to process the data properly and eliminate any sources of 
bias, but one can of course not be entirely sure that something has not been 
overlooked. Furthermore, differences exist in the trend estimates from using 
different datasets and reanalyses for LTC. These differences can be seen as an 
additional source of information on the uncertainties.  

4.3 MACHINE LEARNING 

A gradient boosting machine learning technique [50] was used for estimating the 
rotor diameters and hub heights for units in the Cesar database. For an accessible 
introduction to machine learning, see Ref. [51] (or Ref. [41] Chapter 3.6 for a five-
page introduction). In the following paragraphs, only a few important aspects are 
discussed. 

One advantages with machine learning techniques in general is that non-linear 
interactions can be captured. In order to not overfit the models, a subset of the data 
needs to be set aside for determining a suitable model complexity. This validation 
dataset can also be used for estimating the performance of the model. If the 
training dataset was to be used for evaluation, overoptimistic results would most 
likely be achieved.  

In order to estimate rotor diameters and hub heights for Cesar units, the installed 
capacity, deployment year and mean capacity factor were used as predictors. Two-
thirds of the Vindstat dataset (randomly sampled) were used for training the 
models. The remaining samples were set aside for evaluating the model 
performances. The correlation between predicted and actual rotor diameters was 
0.99 and the mean absolute error (MAE) 1.7 metres. For hub heights, the 
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correlation was 0.95 and the MAE 5.0 m. For the purpose of LTC, these errors can 
be considered small enough. Scatter plots of observed over predicted values in the 
evaluation dataset are given in Figure 14. After suitable model complexities were 
determined and the performances evaluated, the final models were trained on all 
Vindstat data.   

 

 
Figure 14. Scatter plot of observed and predicted rotor diameters and hub heights (validation data). A gradient 
boosting machine learning model with installed capacity, deployment year and mean capacity factor as 
predictors was used. 

 

A gradient boosting model was also considered for explaining the slope using 
several variables as predictors (see Section 4.2.5). Since the model did not 
performed substantially better than the multiple linear regression model with 
interaction terms and that the results are somewhat harder to interpret, it was 
decided to not present these results.  

4.4 FILTERING 

When evaluating the correlation between monthly WIs and actual generation, it 
might be useful to remove observations corresponding to very low CFLTC since 
these are likely due to high downtime or other technical problems. The same 
applies for studies of the variability of CFLTC as a metric for reanalysis performance. 
One way to do this would be to simply remove observations corresponding to 
CFLTC below e.g. 50% of the mean value. The problem with this approach is that the 
performance of the unit might decline with time and thus some observations will 
be removed although the CFLTC for these months are similar to the neighbouring 
months. We therefore instead employ a filtering technique which is illustrated in 
Figure 15. 
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Figure 15. Illustration of filtering for identifying unusually low observations of long-term corrected capacity 
factors with MERRA as reference (CFM). First, CFM is separated into its low- and high-frequency components; 
CFM,LF and CFM,HF respectively, where CFM,HF = CFM - CFM,LF. An observation is classified as extreme when CFM,HF 
is below a certain percentage of CFM,LF. In this example, at least sample 1 and 57 would be considered 
unusually low and removed from the analysis.   

 

The low-frequency component was derived from CFLTC by using a windowed-sinc 
filter applied in both directions. In order to avoid artefacts at the endpoints, the 
time series were first padded with the mean of the first and last three samples 
respectively. The added samples were removed after filtering. The high-frequency 
component was obtained as CFLTC minus the low-frequency component. For an 
accessible introduction to filters in general, we refer to Smith [52]. 

4.5 DIFFERENCES AS COMPARED TO SG14 

In this section, the main differences of our scope and methods as compared to 
those in SG14 are summarised.  

1) Trends in CFraw were not considered. The reason is that the wind climate has 
varied considerably over the last years (see Figure 6 on page 30).  

2) Observations corresponding to age 0.33–1 years were used in addition to those 
for age 1–20. The reason is that we have data for individual WTs and that 
teething issues (lower production during low ages) are not visible in the data 
after the first few months. 

3) Two different datasets and three different reanalyses for long-term correction 
were used for comparison.  

4) In the calculation of monthly WIs, the mean wind speed was determined from 
the generation data and WT characteristics rather than directly from the 
reanalyses.  

5) As a consequence of the regression diagnostics tests of the seasonal patterns in 
the residuals of CFLTC in some cases, a seasonal component was added to the 
linear model when appropriate. 

6) A bootstrap method was employed for estimating confidence intervals since 
the data was not normally distributed. The resulting intervals were however 
very similar to those obtained with a normal distribution assumption.  
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7) Partly different methods were used for quantifying the trends. In particular, 
we did not use regression of all CFs versus age since newer units in Sweden 
generally have significantly higher CFs than older.  

8) Since we had access to hourly data, an allocation of performance decline 
between increased downtime and worsened power curves was possible. 

9) We quantify the association between several variables and the deterioration 
rate.  
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5 Results 

Six combinations of datasets and reanalyses (i.e., six cases) were considered and 
several different methods were used for quantifying trends. The body of results is 
thus substantial and some results were put in Appendix Sections 3–4 in order to 
facilitate reading the report.   

In Section 5.1, reanalyses are compared to measurements. In Section 5.2–5.4, 
performance slopes are given for the three chosen methods: trends for individual 
units, trends for cohorts and equivalent trends as described in Section 4.2.2. Section 
5.5 displays normalised performance decline. In Section 5.6, an allocation of the 
deterioration between increased downtime and worsened efficiency is performed. 
In Section 5.7, finally, systematic differences in trends depending on several 
variables are investigated.  

5.1 REANALYSES 

In this section, the three different reanalyses are evaluated by studying correlations 
between modelled and measured generation. Seasonal patterns and the magnitude 
of high-frequency fluctuations for CFLTC are presented in Appendix Section 4.1. In 
conclusion, MERRA and ConWx performs similarly and somewhat better than 
ERA-I. All three reanalyses were deemed suitable for LTC. 

Both hourly data (Cesar 2003–2015) and monthly data (Vindstat and Cesar, 1993–
2015) were used for validation. A small number of units outside the coverage of 
ConWx were not considered. For the analyses of hourly data, ERA-Interim wind 
speeds were interpolated to hourly resolution using cubic splines. Periods with 
downtime (see Section 4.2.4), constant production and sudden spikes were not 
considered. One twelfth of the lowest monthly observations were removed using 
the filtering method described in Section 4.4.  

Results for both hourly and monthly data are given in Figure 16. Correlations for 
Cesar monthly data (not shown) are very similar to those for Vindstat. 
Interestingly, the average hourly correlation can be increased with around two 
percentage points if a weighted combination of the three reanalyses is used. The 
improvement was however much smaller for monthly data so this option was not 
utilized. It is important to stress that high correlations does not necessarily imply 
that the reanalysis is appropriate for LTC. It can, for instance, exist erroneous long-
term trends in the data that will produce artificial trends in CFLTC even if the 
correlations are relatively high. Because of this, it is advantageous to use a few 
different reanalyses for generating the CFLTC time series and compare the resulting 
trends. 
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Figure 16. Correlations between hourly and monthly generation calculated from reanalyses and measurements 
(sorted from lowest to highest). The mean (μ) and median (m) values are given in the legends. Between four 
and five units have hourly correlations below 0.5, i.e. outside the range shown. 

 

In conclusion, ConWx and MERRA perform roughly equally good and ERA-
Interim somewhat worse. Since the horizontal resolution for ConWx is 
considerably better than for MERRA, one would perhaps expect a little better 
performance from ConWx. A possible explanation is that we only downloaded 144 
ConWx points (i.e., not the closest grid points for all units) and that the WT 
coordinates are somewhat uncertain. Note, however, that Liléo et al. [26] got 
similar correlations to 42 wind measurements by using MERRA and more high-
resolved data. It is thus not obvious that a higher resolution yields better results. 

5.2 INDIVIDUAL TRENDS 

In this section, trends for individual units are presented. Although the spread is 
substantial, the means and medians are below zero on the 95% confidence level for 
all cases. Units with recent start years have less negative slopes, which can mainly 
be explained by the shorter measurement periods (the slopes are generally less 
negative during the first years of operation). 

The distributions of trends as well as the means and medians for the six different 
cases are given in Figure 17. Extreme values (outside ±2 pp/y) are not shown. As 
can be seen, the spread of trends is substantial for each case, but the summary 
metrics are similar for all cases. Weighting Cesar data on the number of WTs for 
each unit does not change the means and medians at the precision given in Figure 
17. 

The average of the six cases is -0.102 pp/y for the mean and -0.101 pp/y for the 
median. During a 20-year lifetime (age 19.5 versus age 0.5), a unit will thus lose 
around 1.9 percentage points of CFLTC, e.g. from 0.28 to 0.261. In normalised form, 
i.e. relative the estimated production at early ages, the corresponding figures 
are -0.431 pp/y for the mean and -0.402 pp/y for the median. Over 20 years, this 
implies an energy loss of 4.1% and 3.8% respectively as compared to as-new 
production.  

Unit

0 200 400 600 800 1000 1200

C
or

re
la

tio
n

0.5

0.6

0.7

0.8

0.9

1
Hourly data (Cesar)

MERRA,  = 0.84, m = 0.86

ERA-I,  = 0.81, m = 0.83

ConWx,  = 0.84, m = 0.86

Unit

0 200 400 600 800 1000

C
or

re
la

tio
n

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1
Monthly data (Vindstat)

MERRA,  = 0.95, m = 0.95

ERA-I,  = 0.93, m = 0.94

ConWx,  = 0.95, m = 0.96



 WIND TURBINE PERFORMANCE DECLINE IN SWEDEN 
 

47 

 

 

 

 
Figure 17. Normalised histograms of all trends for the six different cases. Outliers are not shown (0.7% 
observations with trend below -2 or above 2 pp/y) but are included in calculations of means and medians. 95% 
confidence bounds for means and medians are also given. 

 

The 95% confidence intervals for the mean and the median trends were calculated 
with a bootstrap method since the distributions are not normal. All means and 
medians are below zero at the 95% level. Tables of means, medians and 
corresponding confidence intervals for this and other analyses are given in 
Appendix Section 4.3. 

It was observed at an early stage of this project that older units had more negative 
slopes than those built recently. Figure 18 shows mean and median trends for units 
in different cohorts for all six cases. The mean trend is often slightly lower than 
median due to negative extreme trends stemming from e.g. long downtime periods 
towards the end of the measurements. Figure 19 also shows the 10th, 25th, 75th and 
90th percentiles (and has larger ranges of the vertical axes). The spread of trends is 
larger for the oldest and newest units, which can probably be explained by few 
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units in each cohorts and short measurement periods respectively. The results 
differ somewhat between the six cases, but are generally in good agreement. For 
units built around 2005 and earlier, the trends are more negative; the 75th 
percentiles and sometimes also the 90th percentiles are below zero. For newer units, 
the trends are less negative; the means and medians (but never the 25th percentiles) 
are sometimes even positive.  

As an average of all six cases, units with start year 2006 and earlier have mean and 
median trends of -0.18 and -0.15 pp/y, corresponding to a decline of 3.4 and 2.9 CF 
points over 20 years. In normalised terms, the mean and median trend are -0.76 
and -0.65 pp/y, implying a 20-year energy loss of 7.2% and 6.1% respectively as 
compared to as-new production. The results for the 239 Vindstat units with at least 
15 years of data are very similar. 

 

 
Figure 18. Means and medians of individual trends depending on start year for Vindstat and Cesar and 
different reanalyses for long-term correction. Results are given for cohorts of a three years sliding window. 
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Figure 19. Distribution of individual trends depending on start year for the six different cases. Results are given 
for cohorts of a three years sliding window. 

 

The question naturally arises whether the slower decline (or even increase) of the 
performance for units with more recent start years is caused by improvements in 
technology or by the fact that only data for low ages were available. The full 
answer to this question can of course only be given 10–15 years from now. A 
comparison between the trends for newer and older units during the first years of 
operation can however give some clues. 

Trends were calculated for age 0.33 – 5 years for all units with at least 40 months of 
data during this period. Many older Cesar units were thus excluded since the data 
collection started in 2003. Figure 20 shows the differences between the mean slopes 
of units with a certain start year (no sliding window) and all other units. 
Confidence intervals for rejecting the null hypothesis that no significant difference 
exist are also given. As before, these intervals were calculated with a bootstrap 
method. The oldest units in the Vindstat dataset seem to have a steeper decline 
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during the first five years of operation, but otherwise there is no systematic 
pattern. In particular, newer units does not consistently perform better than others 
during the first years of operation. The patterns for median trends (not shown) are 
similar. 

 

 
Figure 20. Difference in mean trends for the first five years of operation between units with a certain start year 
and all other units. A positive difference implies that units with a certain start year have more positive trends 
than the other units. Confidence bounds for rejecting the null hypothesis that no significant difference exist 
are also given. The results are given for trends using all three reanalyses (CFM, CFE and CFC). 

5.3 TRENDS FOR COHORTS 

This and the next section give results for cohort trends and equivalent trends, i.e. 
methods 2 and 3 as defined in Section 4.2.2. Since the results are very similar to 
those presented in the previous section, emphasis in the remainder of the report 
will be on trends for individual units. 

Figure 21 shows the resulting slopes from cohort regression for all six 
combinations of datasets and reanalyses. Weighting on the number of WTs (not 
shown) has a small impact on the results, considerably smaller than the differences 
between results for different datasets and reanalyses.  

 

Start year

1990 1995 2000 2005 2010

Sl
op

e 
di

ffe
re

nc
e 

[p
p/

y]

-0.6

-0.4

-0.2

0

0.2

0.4
Vindstat

Start year

1990 1995 2000 2005 2010
-0.6

-0.4

-0.2

0

0.2

0.4
Cesar

Differences in mean slope

95% confidence bounds



 WIND TURBINE PERFORMANCE DECLINE IN SWEDEN 
 

51 

 

 

 

 
Figure 21. Slope of regression of capacity factors versus age for all units in cohorts. 

 

By visual inspection, the slopes obtained by cohort regression are similar to the 
mean of the individual trends (Figure 19). The similarity of the different methods 
will be demonstrated more clearly in the next section. 

5.4 EQUIVALENT TRENDS 

Equivalent trends can be a useful complement for assessing the robustness of the 
linear regression methods, in particular for units with poor regression diagnostics. 
As the results in Table 6 and Figure 22 show, very similar results are obtained with 
the equivalent trend method and the other two methods.  

Table 6 gives mean and median slopes in absolute CFLTC for linear regression and 
equivalent trends (i.e. Method 1 and 3 as described in Section 4.2.2). Results, both 
in absolute and normalised form, with confidence intervals are given in Appendix 
Section 4.3. 

Table 6. Comparison of mean and median slopes for linear regression and equivalent trends. All slopes are 
given in percentage points per year in absolute CFs. 

 Mean slope 
Lin. reg.                  Eq. trend 

Median slope 
Lin. reg.                  Eq. trend 

Vindstat, MERRA -0.12 -0.11 -0.10 -0.10 

Vindstat, ERA-I -0.11 -0.12 -0.13 -0.13 

Vindstat, ConWx -0.09 -0.10 -0.11 -0.11 

Cesar, MERRA -0.11 -0.09 -0.09 -0.09 

Cesar, ERA-I -0.12 -0.13 -0.12 -0.16 

Cesar, ConWx -0.06 -0.06 -0.06 -0.10 

Average -0.10 -0.10 -0.10 -0.12 

 

In Figure 22, the different methods are compared for different cohorts depending 
on start years. The results are given as averages of all six cases (combinations of 
datasets and reanalyses). Results from the cohort regressions are given in the left 
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panel since this method has more in common with the mean of individual trends 
than the median.  

 
Figure 22. Comparison of mean and median slopes from linear regression and equivalent trends. The average 
for all six cases (combinations of datasets and reanalyses) are given for different cohorts. For comparison, the 
average slopes for regression of all data in cohorts (Section 5.3) are also shown in the left panel.  

5.5 NORMALISED PERFORMANCE DECLINE 

As discussed in Section 4.2.3, there are some caveats with presenting results in 
normalised form. This is particularly true for Cesar data, since observations for low 
ages are often not available. For the benefit of the reader, normalised performance 
declines for all Vindstat units in aggregation are however presented below. The 
CFLTC time series were normalised to the mean CFLTC of each unit during age 0.33–
2.25. A few units with less than twelve monthly low-age observations were 
removed from the analysis. Figure 23 shows the average “performance factor”, i.e. 
normalised CFLTC, of all Vindstat units. Note that the number of samples is large 
for early ages while the results for e.g. age 19 are based solely on observations for 
units built 1996 or earlier.  

The three curves in Figure 23 correspond to an energy loss of 4.4%–5.8% as 
compared to a constant, unity performance factor. Weighting the results on 
installed capacity gives around 0.4 pp lower energy loss. The economic loss is 
smaller, 3.3–4.3% assuming a real interest rate of 6% and no capacity weighting. 
The results are almost identical if only units built before 2007 are considered, 
which strengthen the conclusion in Section 5.2 that the performance during the 
first years is similar for all cohorts. In Appendix Section 4.4, results are presented 
for Vindstat units with different start years. Results are also given for the Cesar 
units with low-age observations available for normalisation.  
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Figure 23. Average performance factors (PF) for all Vindstat units. PF = 1 corresponds to the average capacity 
factor during age 0.33–2.25.  

5.6 DOWNTIME VS EFFICIENCY 

In this section, results are given on the evolution of downtime with age. We 
conclude that downtime increases with age and that this accounts for around 1/3 of 
the observed performance decline. A description and evaluation of the 
methodology for detecting downtime can be found in Section 4.2.4. Since hourly 
data is a necessary input for identifying downtime periods, this section is based 
solely on Cesar data.  

The total downtime was estimated at 4.0%, which seems reasonable in comparison 
to earlier studies (see Section 2.3). Figure 24 shows how downtime change with 
age, both for all data (bold, blue line) and for four different cohorts comprising 
WTs with different start years. The downtime generally increases with age; from 
around 3.2% at age 0–4 years to 5.9% at age 14–19 years (all units). The increase is 
statistically significant for all cases but the cohort with start years 2006–2010. Since 
more low than high age observations are available, the 4.0% given above might be 
an underestimation. The average of the 20 yearly downtime values (bold, blue line 
in Figure 24) is 4.5%, which is likely a better assessment. The estimated energy loss 
is somewhat higher; 4.8% as the average of the 20 yearly values. 
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Figure 24. The downtime generally increases with age; from around 3.2% at age 0–4 years to 5.9% at age 14–
19 years (all units). Since units with different start years might have different start levels of downtime, 
downtime vs age is also plotted for cohorts with different start years. 

 

As can be seen in Figure 25, downtime is higher in the winter months, especially 
for WTs in the north (>60°N). This can most probably be explained by stops due to 
icing. A more detailed figure is provided in Appendix Section 4.6.   

 

 
Figure 25. The downtime is generally larger during winter, especially for units in the north. For all data (age 
0.33 – 20 years), the estimated downtime is 4.0%. 

 

Since downtime generally increases with age, it should come as no surprise that 
excluding downtime data gives less negative trends. This is particularly true for 
units with a steep decline since these declines are primarily caused by increased 
downtime. Consequently, the mean trend is increased more than the median trend 
by excluding downtime data, see Table 7 (units with start year 2006 or earlier). As 
can be seen from the example in Figure 26, the distribution of trends for units with 
certain start years becomes narrower if downtime data are excluded. This can be 
interpreted as that large variations exist in the downtime trends, but that the 
evolution of the efficiency varies less. Some additional results are given in 
Appendix Section 4.6. 
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Table 7. Impact on mean and median trends by excluding downtime data (units with start year 2006 or 
earlier). All results are for Cesar data with units with more than one wind turbine excluded. The trends are 
given in percentage points per year. 

 Mean 
(downtime 
included) 

Mean 
(downtime 
excluded) 

Median 
(downtime 
included) 

Median 
(downtime 
excluded) 

MERRA -0.16 -0.09 -0.13 -0.08 

ERA-I -0.23 -0.16 -0.19 -0.15 

ConWx -0.18 -0.11 -0.14 -0.10 

Average -0.19 -0.12 -0.15 -0.11 

 

 

 
Figure 26. Impact on distribution of individual trends from excluding or including downtime (Cesar data, 
ConWx for long-time correction). Note that the right panel is not entirely identical to the corresponding panel 
in Figure 19 since units with more than one wind turbine were excluded here. 

 

It is hard to give a straight answer to how much of the total decline that can be 
attributed to increased downtime. The median ratios of individual trends 
excluding and including downtime data are 0.71–0.79 for the three different 
reanalyses, i.e. one estimate is that downtime accounts for 21–29% of the decline. 
According to the average results for WTs with start year 2006 or earlier (last row in 
Table 7), the mean and median trends are 35% and 27% less negative when 
downtime is excluded. If one sums the energy loss for all units relative their 
average production during the first 24 months with data, the corresponding figure 
is 34%. From Figure 27 in the Appendix, the slopes are often around 40% less 
negative with downtime excluded. 

In conclusion, increased downtime accounts for roughly 1/3 of the observed 
performance decline. For units with strongly negative trends, increased downtime 
often explains most of the decline. 

5.7 INFLUENTIAL VARIABLES 

In this section, we investigate whether the slope of individual WTs in the Vindstat 
dataset can be explained by variables such as start year, manufacturer and main 
terrain type. A few different multiple linear regression techniques were employed 
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as described in Section 4.2.5. We conclude that start year has a statistically 
significant (positive) impact on the trends. Some other variables have significant 
impact in some, but not all, of the analyses performed.  

The continuous variables used as regressors were: start year, rated capacity (P), tip 
low (distance between ground and lowest blade tip position, i.e. hub height minus 
rotor radius), capacity factor (CF), latitude (lat), longitude (lon) and data length 
(number of years with measurements). All these variables were normalised, i.e. 
subtracting the means and dividing by the corresponding standard deviation, for 
easier interpretation of the results. The categorical variables are listed in Table 8. 

Table 8. Categorical variables used for regression of slopes. The baselines are given in italics on the first row 
and the dummy variables on the following rows. The number n of WTs in each category is indicated in 
parenthesis.  

Ownership Manufacturer Dominant terrain type 

Wind power company (n=467) Vestas (n=516) Open landscape (n=644) 

Power company (“power”, n=163) Enercon (n=306) Water (sea or lake, n=278) 

Other company (“company”, 
n=111) 

WindWorld (“WW”, n=143) Forest (n=182) 

Private (n=191) Other (n=139)  

Cooperation (“coop”, n=131)   

Other (n=41)   

 

We begin by giving results for regression of slope on all linear but no interaction 
terms (Figure 27). Confidence intervals based on a normal distribution assumption, 
which is reasonably valid in this case, are also indicated. Note that the betas for 
continuous and dummy variables cannot be interpreted in same way. The 
normalised start years e.g. range between -1.9 and 1.3, so a beta of 0.072 implies a 
predicted difference of 0.24 in slope between the oldest and newest WTs. Other 
continuous variables have other ranges although the means are always zero and 
the standard deviations always one. The dummy variable betas corresponds to 
shifts in the level, e.g. around +0.09 for WTs in forest.  

Start year has a statistically significant and positive impact on the slope, i.e. newer 
WTs have less negative slopes as already noted in previous sections. This is true 
for all three cases (LTC with MERRA, ERA-I and ConWx). WTs in forests have 
more positive slope than the baseline (open landscape), in average +0.09 pp/y, on 
the 95% confidence level. Apart from these two variables, no variable has a 
statistically significant impact for all three cases, although CF and data length are 
close to meet this criteria. Power companies and other companies seem to perform 
worse than wind power companies (the baseline). Other manufacturers also 
perform worse than Vestas. It should be mentioned that this category mainly 
comprises WTs from former manufacturers such as Bonus, NEG Micon and 
Danwind, i.e. not contemporary competitors to Vestas and Enercon. 

The regression models with all linear terms have adjusted R2 ranging from 0.10 
(MERRA) to 0.18 (ConWx). Most of the differences between the slopes can thus not 
be explained by the predictors; the stochastic variations are large. In comparison to 
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the confidence intervals for the betas, the impact from not using winsorisation (i.e. 
that extreme slopes are left unaltered, see Section 4.2.5), is small. 

 

 
Figure 27. Coefficients in multiple linear regression model (all linear terms but no interactions). See Table 8 
and text for variable explanations. Confidence intervals are also indicated. 

 

We also tested to select appropriate predictors out of the ones listed above and to 
use separate models for all predictors, only controlling for start year (method 2 and 
3 as described in Section 4.2.5).  The results were relatively similar to those given in 
Figure 27, see Appendix Section 4.5 for details.  

Next, we consider regression models with both linear and interactions terms, 
chosen with a forward and backward selection procedure. In terms of adjusted R2, 

these models perform substantially better than the models without interaction 
terms (0.27–0.39 as compared to 0.10–0.18). The main effects (betas for linear terms) 
for the selected variables are presented in Figure 28. The most important 
differences as compared to Figure 27 are that data length and “other 
manufacturer” have more negative main effects and that forest has less impact 
(forest is only selected as predictor for slopes obtained with MERRA data for LTC). 

The interaction terms, see Appendix Section 4.5, are generally quite hard to 
interpret, especially since we have so many predictors. One can however note that 
the average contributions from these are per definition zero since orthogonalised 
interaction terms were used. 
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Figure 28. Main effects in regression model with interactions. Predictors were chosen with a forward and 
backward selection procedure, i.e. not all linear terms are included. 

 

The main conclusion from this section is that there are large variations in the slopes 
that cannot be explained by the chosen predictors. Some patterns however exist, 
although only the start year has a significant impact for all possible combinations 
of regression methods and reanalyses for LTC.   
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6 Concluding discussion 

An important aspect of this work is to be able to give recommendations on suitable 
performance decline assumptions in energy calculations for future wind farms. For 
all units, the median decline is around -0.10 pp/y, for units built before 2007, the 
corresponding figure is -0.15 pp/y and for units built in 2008–2010 we have +0.08 
pp/y. Which of these is the best estimate? Since new units do not behave 
significantly different from older during the first five years of operation, it is 
reasonable to assume (but of course impossible to truly know) that new units will 
behave like older when they age, i.e. that -0.15 pp/y is the appropriate figure. 
Furthermore, it seems that WTs with higher CFs have, everything else equal, 
somewhat steeper declines (in absolute terms). This is related to the discussion of 
normalisation; if a WT with CF 0.20 at early age has a CF of 0.15 at age 20 (a 
reduction of 25%), will a WT with CF 0.40 at early age more likely has CF 0.35 or 
0.30 at age 20? The analysis presented in Section 4.2.3 showed that the truth is 
probably somewhere in between.  

Based on the discussion above, our best estimate for current and future farms is a 
performance decline in the range 0.10–0.20 pp/y over the whole lifetime, including 
both worsened efficiency and increased downtime. We recommend that a value 
closer to the higher end should be used for high-CF turbines. When these 
assumptions are applied to wind energy calculations, early-age downtime losses 
must be used. If lifetime-average downtime losses was to be added, losses due to 
increased downtime would be double-counted. Some examples of losses in lifetime 
production and revenues under different assumptions are given in Table 9. 

Table 9. Examples of losses in 20-year lifetime production and revenues for potential new farms given 
different assumptions. Energy and revenue losses (assuming 6% real interest) are given in relation to those 
assuming as-new capacity factors (CFs) for the whole lifetime. 

As-new CF Absolute trend Energy loss Revenue loss (r 
= 6%) 

0.3 -0.10 pp/y 3.2% 2.5% 

0.3 -0.15 pp/y 4.8% 3.8% 

0.3 -0.20 pp/y 6.3% 5.1% 

0.4 -0.10 pp/y 2.4% 1.9% 

0.4 -0.15 pp/y 3.6% 2.9% 

0.4 -0.20 pp/y 4.8% 3.8% 

 

Although largely consistent results were obtained with the different methods and 
datasets/reanalyses, some dissimilarities can be worth discussing. The Cesar and 
Vindstat databases are partly overlapping, but some units are only present in one 
of these. In particular, units built after 2003 are not always available in the Vindstat 
dataset. Vindstat has, on the other hand, production records from 1990 and 
onwards while measurements are only available from 2003 in Cesar. A comparison 
between units present in both databases as well as SCADA-data, see Appendix 
Section 3, showed very small differences in the monthly time series. As an overall 
judgement, we recommend that equal consideration should be given to the results 
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based on Vindstat and Cesar data. Since the aggregated results, e.g. mean and 
median trends and patterns of trends versus start year, were similar for the two 
datasets, this is not a major issue. Regarding the three different reanalyses, the 
estimated trends were in average slightly less negative when using ConWx data 
and the differences between trends for different start years were smaller for 
MERRA. Although the performance (correlation to measurements etc.) were 
somewhat better for MERRA and ConWx, we recommend that results based on all 
three reanalyses should be considered. Three reasons for this are that i) the 
differences in performance were not very large, ii) it is difficult to know whether 
e.g. a high correlation truly implies good LTC performance and iii) it is intrinsically 
valuable to study different reanalyses since one gets a better sense of the 
uncertainties of  the results. The three different methods (regression for individual 
units, cohort regressions and equivalent trends) gave very similar results, which 
demonstrates the robustness of our estimates. 

Based on several different analyses we can conclude that the output during age 
0.33–5 years is relatively constant, i.e. only little deterioration occur. A likely 
explanation is that components have not yet start to deteriorate or fail. Another 
possible factor is that maintenance contracts with performance guarantees are 
sometimes signed with the turbine manufacturers for the first years. After the first 
five years of operation, components begin to fail and, in some cases, less ambitious 
maintenance schemes are put into operation. Consequently, the performance starts 
declining.       

The deterioration of wind farm performance in the UK is, according to SG14, 
around -0.43 pp/y in absolute terms, i.e. more than four times the -0.10 pp/y 
obtained here for Swedish conditions. How can the difference be so large? UK has 
a harsher climate (stronger extreme wind speeds, more salt spray etc.), which can 
potentially explain some of the differences. But Sweden, on the other hand, has a 
colder climate and more icing. Although partly different methods were used here 
and in SG14, this can hardly explain the dissimilarity. It can be concluded that 
studies for more countries would be desirable. 

In Section 5.7, it was analysed whether variables such as latitude, manufacturer 
and terrain have a significant impact on the linear slope. Although some patterns 
were found, most of the variations in slope could not be explained by the predictor 
variables. There are however many other factors that can contribute to a steep or 
gentle performance decline:  

• Growth and clear-cutting of forests may impact the turbulence intensity and 
thus the wear and tear. 

• Differences in maintenance strategies between different actors.  
• Long-term changes in the amount of icing.  
• Sector-optimisation of WTs due to noise, shadowing or load may change over 

time (we only accounted for a general change of WT rating).  
• Wake effects can change over time when new WTs are constructed (or 

dismantled) nearby. 
• Bankruptcy of manufacturers makes it hard to get proper service and replace 

parts. An example is WinWind units, which often have very long downtime 
periods in recent years.  
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An important continuation of our work is to identify such factors and improve the 
strategies for preventing negative performance trends. The results in this report 
can potentially be used for benchmarking WT performance changes over time. 
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1 Supplementary methods 

1.1 THRESHOLD FOR MINIMUM MEASUREMENT LENGTH 

In order to determine an appropriate threshold for required measurement length, 
the following test was performed. For all WTs with at least ten years of data, the 
linear trend was calculated. Trends were also computed for subsets of different 
lengths and the differences to the trend for all data were stored. Assuming that the 
trends for the 10+ year time series are correct estimates, these differences represent 
errors due to short measurement periods. Figure 1 shows an example of the trends 
for all data and 36 month subsets.  

 
Figure 1. Representative example of trend lines calculated for 36 months subsets and trend line for all data.  

 

For a fictive cohort of WTs, differences were randomly sampled and the error in 
the median trend estimate was calculated. More precisely, the errors were 
determined by randomly sampling N differences between “true” trends (trend for 
the 10+ year time series) and trends for subsets of length L. This procedure was 
repeated 1000 times for each combination of N and L. Figure 2 shows how the error 
depends on the measurement length and cohort size. Considering the size of our 
cohorts and the magnitude of the trends we wish to detect, it was decided to use a 
threshold of 60 months (five years), i.e. the same as in SG14. 

 

 
Figure 2. Standard deviation of errors in median trends depending on cohort size (N) and measurement period 
(L).  
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1.2 TRANSFORMATION OF POWER CURVES 

The ratings of some WTs were changed during the measurement period. Since it 
was desired to remove the effects of these changes from the trend calculations, a 
transformation of the time series were made, i.e. the hourly data during the period 
with higher rating were lowered.    

A naïve transformation would be to simply put a cap at the lower rating, e.g. if the 
rating was changed from 2000 kW to 1500 kW, all values above 1500 kW are 
changed to 1500 kW. Since the power curve must be smooth before cut-in wind 
speed, we instead calculated power curves for both ratings and found the power-
to-power transform, see Figure 3b. Although our approach is more realistic, the 
energy difference compared to the naïve transformation is only around 1%.  

See also Section 2.1.4 below for an example of an altered time series. 

 

 
Figure 3. Example of transformation of data from rating 2000 kW to 1500 kW. (a) Power curves; (b) Relation 
between original and transformed power; (c) Example of hourly time series. 
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2 Supplementary data treatment 

2.1 EXAMPLES OF CHANGES OF DATA 

In this section, examples of altered Cesar data, both installed capacity and hourly 
generation, are given. Some of the changes were also possible to do for monthly 
Vindstat data.  

2.1.1 Change of rating to a constant value 

For some units, the ratings in the metadata were simply not correct. Based on a 
visual inspection, these ratings were changed. 

 
Figure 4. Example of change of rating from 2000 kW (red) to 1800 kW (yellow). 

 

In a few cases, the metadata suggested that the rating had changed, but based on 
hourly data, this was not the case. 

 
Figure 5. Example of incorrect changes of rating given in the metadata (red line). Here, the installed capacity 
was changed to a constant value (yellow). 

2.1.2 Split time series  

It is relatively common that the number of WTs connected to a Cesar unit changed 
during the measurement period. Often, only one of the segments were longer than 
60 months and the short periods were then simply removed. In a few instances, the 
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Figure 6. The number of wind turbines changed from six to one around year 2010. The time series was thus 
split into two segment which were handled separately in the trend analyses. 

2.1.3 Temporary down-rating (not to 1500 kW) 

Especially for older units, the maximum output can be lower than the rating for 
extended time periods. If the lower maximum output was not 1500 kW (see next 
sub-section), we interpret this as down-rating due to technical issues and we did 
not change the rating.  

 
Figure 7. The unit has a lower maximum output for an extended time period. If the lower maximum was not 
1500 kW (for each wind turbine), no changes were performed.  

2.1.4 The question of 1500 kW 

Due to taxes, it might be advantageous to limit the rating to 1500 kW, especially 
when the electricity and certificate prices are low. We wished to exclude this effect 
from the WT performance and thus made the transformation described in Section 
1.2 in this appendix.  

 
Figure 8. The rating was lowered to 1500 kW in year 2014 (upper panel). All data corresponding to rating 1800 
kW was thus transformed based on the method given in Section 1.2 in this appendix (lower panel). 
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2.1.5 Fictive plants 

When problems occur in the reporting system, the generation can be reported later 
using a “fictive plant”. Sometimes, correct hourly measurements are delivered 
afterwards, but often the generation is reported as a lump sum for only one hour 
or as a constant production during the period (see Figure 9). In both cases, the total 
energy is correct, but it is not possible to use the data for analyses of hourly data, 
e.g. identifying downtime periods. Care must also be taken when measurements 
are long-term corrected, see discussion in Section 3.2 in the main document. 

 
Figure 9. Example of constant production reported from “fictive” plants. If the constant period extends over 
several months, this has to be accounted for in the long-term correction. 

2.1.6 Remove data 

For some (38 out of around 1300) units, strange and unexplainable patterns were 
present in the time series. Such data were simply removed. 

 
Figure 10. Some strange measurements were removed. In this example, measurements for the whole first year 
were below 1 kW (upper panel, only the first year is shown). This data were simply removed (lower panel, the 
whole time period is shown). 

 

Time [months]

0 1 2 3 4 5 6 7 8 9

Po
w

er
 [k

W
]

0

200

400

600

800

2004

Po
w

er
 [k

W
]

0

2

4

Year

2004 2005 2006 2007 2008 2009 2010 2011

Po
w

er
 [k

W
]

0

200

400

600



 WIND TURBINE PERFORMANCE DECLINE IN SWEDEN 
 

71 

 

 

 

3 Comparison between Cesar, Vindstat and 
SCADA data 

In order to validate the quality of the metadata and generation time series, two 
tests were performed.  Firstly, monthly time series and corresponding trends for 97 
WTs in three Vattenfall farms were compared to Vindstat and Cesar data. 
Secondly, 20 random units (present in both Cesar and Vindstat) were compared.  

SCADA data (31 months of 10-min measurements) from Vattenfall were available 
for individual WTs in three different farms. For farm 2 and 3, the corresponding 
Vindstat time series were shorter than 60 months and thus not analysed in the 
main report. Here, we however studied trends in raw CFs for the around 55 
months with data. The coupling of individual WTs in the three datasets was made 
based on the monthly time series. Table 1 shows average correlations between the 
monthly observations from the three different datasets. Overall, the correlations 
are high, but for farm 2, there are some differences between Vindstat and Cesar 
when the 55 month time series are compared (first column).  

Table 1. Average turbine-wise correlations between monthly observations from the three different datasets. 

 Cesar/Vindstat Cesar/Vattenfall Vindstat/Vattenfall 

Farm 1 0.99 1.00 1.00 

Farm 2 0.95 0.99 1.00 

Farm 3 1.00 0.98 0.98 

 

In Figure 11-13, linear trends for the three farms are shown, sorted from lowest to 
highest. Note that the trends can differ substantially between the left and right 
panels since different time periods were studied and no LTC was performed. 
Again, the three datasets agree reasonably well, but some differences exist. Apart 
from potential errors in the measurements, one factor that can explain the 
differences is the different temporal resolutions. If some measurements are missing 
in Cesar and SCADA, these were not taken into account in the calculation of 
monthly CFs. For Vindstat, however, the monthly CFs are based solely on the total 
monthly generation divided by installed capacity and number of hours each 
month.  

It can finally be noted that the installed capacities, coordinates and start dates were 
very similar for Cesar and Vindstat metadata. 
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Figure 11. Linear trends for wind turbines in farm 1, sorted from lowest to highest. The left panel shows trends 
for the around 98 months with concurrent Cesar and Vindstat data and the right panel shows trends for the 31 
months with Vattenfall SCADA data. For the latter, the mean trends are -1.6, -1.7 and -1.6 pp/y for Cesar, 
Vindstat and Vattenfall, respectively. 

 

 
Figure 12. Linear trends for wind turbines in farm 2, sorted from lowest to highest. The left panel shows trends 
for the around 54 months with concurrent Cesar and Vindstat data and the right panel shows trends for the 31 
months with Vattenfall SCADA data. For the latter, the mean trends are all -1.1 pp/y. 

 

 
Figure 13. Linear trends for wind turbines in farm 3, sorted from lowest to highest. The left panel shows trends 
for the 54 months with concurrent Cesar and Vindstat data and the right panel shows trends for the 31 months 
with Vattenfall SCADA data. For the latter, the mean trends are -1.1, -1.1 and -0.81 pp/y for Cesar, Vindstat 
and Vattenfall, respectively. 
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Next, 20 randomly chosen units present in both Vindstat and Cesar were studied. 
For the units for which Cesar data are given for several WTs in aggregation, the 
corresponding data from Vindstat were also aggregated. Figure 14 shows metadata 
from the two different databases. The start dates agree well except for two units 
where the differences are over one year. A plausible explanation is that Cesar start 
dates for older units (built before the certificate system started) are not always 
correctly reported. The installed capacities are the same except for one unit. The 
coordinates differ somewhat, in one case with as much as 65 km. This is not 
surprising since the coordinates for some units were taken from the nearest village. 
This might make the LTC perform slightly worse, but will not systematically effect 
the trend estimates.  

 
Figure 14. Comparison of metadata for 20 random units present in both databases. 

 

Figure 15 shows monthly time series for all 20 units. In most cases, the CFs are 
identical or almost identical. For unit 1, 3 and 19, observations are missing from the 
Vindstat dataset. The curves for unit 14 are somewhat displaced since, as shown in 
Figure 14, the installed capacities differ in the two sets of metadata. Also note the 
constant production for unit 19 during around 20 months. As discussed in Section 
3.2 in the main report, this must be taken into account in the LTC.  

In conclusion, differences exist and the databases are not perfect. It is however 
hard to see that the main results would change much with perfect data since the 
detected errors and discrepancies can impact the trend estimates in both directions. 
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Figure 15. Comparison of raw, monthly capacity factors (CFs) in the Cesar (blue) and Vindstat (red) datasets for 
20 random units. Month numbers on the horizontal axes are starting from May 2003.  

 

100 150

C
F

0

0.2

0.4

0.6
n = 1

100 150
0

0.5

1
n = 2

0 100
0

0.2

0.4

0.6
n = 3

100 150
0

0.5

1
n = 4

50 100 150

C
F

0

0.2

0.4

0.6
n = 5

60 100 140
0

0.5

1
n = 6

0 100
0

0.5

1
n = 7

50 100 150
0

0.2

0.4

0.6
n = 8

100 150

C
F

0

0.5

1
n = 9

100 150
0

0.5

1
n = 10

100 150
0

0.5

1
n = 11

100 150
0

0.5

1
n = 12

100 150

C
F

0

0.2

0.4

0.6
n = 13

0 100
0

0.5

1
n = 14

0 100
0

0.2

0.4

0.6
n = 15

50 100 150
0

0.2

0.4

0.6
n = 16

Month

0 100

C
F

0

0.2

0.4

0.6
n = 17

Month

100 150
0

0.5

1
n = 18

Month

50 100 150
0

0.2

0.4

0.6
n = 19

Month

100 150
0

0.2

0.4

0.6
n = 20



 WIND TURBINE PERFORMANCE DECLINE IN SWEDEN 
 

75 

 

 

 

4 Supplementary results 

4.1 REANALYSES 

Here, some additional analyses of the three different reanalyses are presented, see 
also Section 5.1 in the main report. First, standard deviations of seasonal patterns 
in CFLTC (calendar month means) are compared to those for CFraw. In average, the 
standard deviations for individual units were 28%, 36% and 24% for MERRA, 
ERA-I and ConWx relative those for the raw data. Most, but not all, of the seasonal 
patterns are thus removed with LTC. Seasonal patterns for all Vindstat units in 
aggregation are shown in Figure 16. The CFLTC:s are highest for April, i.e. all 
reanalyses underestimates the generation for that month (recall that CFLTC = 
CFraw/WI). 

 

 
Figure 16. Normalised calendar month means of CFLTC for all units in the Vindstat dataset. The normalization 
was done by dividing the calendar month means by the mean for the whole time series. Clearly, there exist (at 
least for some units) seasonal patterns also in the long-term corrected time series.  

 

In a similar manner as for the calendar month means, the standard deviations of 
the high-frequency component of CFLTC can be compared to those for CFraw. A 
graphical example is given in Figure 17 and summary results in Table 2. The 
results in Table 2 are given both with and without the removal of very low CFLTC 
observations.  
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Figure 17. Example of raw and long-term corrected capacity factors (CFraw and CFM) and their corresponding 
high-frequency (subscript HF) components. In this particular case, the standard deviation of CFM, HF is 30% of that 
for CFraw, HF.  

 

Table 2. Average standard deviations of high-frequency part of CFLTC relative ditto for CFraw. Results are given 
both with and without removal of very low CFLTC observations. 

 MERRA ERA-I ConWx 

Vindstat 43% 49% 41% 

Cesar 44% 48% 39% 

Vindstat (low observations removed) 32% 39% 29% 

Cesar (low observations removed) 33% 39% 29% 

 

A final note is that the power spectral density (PSD) estimates for ConWx fictive 
generation time series are clearly the most similar (in the high-frequency range) to 
the corresponding PSDs for measurements. This is however not very important for 
the current application. 

4.2 REGRESSION DIAGNOSTICS 

Two examples of regression diagnostics and a short discussion on the 
appropriateness of the linear model is given below. We begin by giving an 
example of a unit where the linear model with a seasonal component is more 
appropriate than the model without. As can be seen in the upper left panel in 
Figure 18, there is a clear pattern in CFLTC and thus in the residuals when a 
seasonal component is not included. The residual autocorrelation function in the 
lower left panel has a sinusoidal pattern with high values around lag 12 and 
negative values for lags around 6 and 18. By using a seasonal component (right 
panels) the residuals are smaller in magnitude and more independent; no obvious 
pattern and consequently relatively low ACF for all lags. The ACF for lag 9 is close 
to the 2σ (around 95%) confidence bound, but this is exactly what can be expected 
for one out of twenty lags. The linear slopes (β1) are -0.12 and -0.15 pp/y for the 
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models with and without seasonal component respectively. There are strong 
reasons to believe that the latter is a better estimate. 

 

 
Figure 18. Selected regression diagnostics for a model without (left) and with (right) a seasonal component. Time 
series are given in the upper rows and sample ACF of residuals (with 2σ confidence bands) in the lower. In this 
case, a model with seasonal component is clearly more appropriate. 

 

Figure 19 shows regression diagnostics for a unit with several consecutive months 
of zero generation. Such periods are, by far, the dominant explanation for poor 
diagnostics (when seasonal components are allowed, otherwise the residuals 
would be strongly autocorrelated for many units). The zero months have a strong 
influence on the fitted slope, i.e. strongly negative DFBETAs. Furthermore, the 
autocorrelation function has large values for low lags and the residuals are clearly 
not normally distributed.   
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Figure 19. Typical example of error diagnostics for a unit where the linear model is not perfectly valid due to 
several consecutive zero observations. These observations correspond to strongly negative residuals and have 
a strong impact on the fitted slope parameter. (a) Time series of CFLTC (blue), fitted model (red) and residuals 
(yellow); (b) Sample autocorrelation function of residuals including 2σ confidence intervals. The consecutive 
zero observations give rise to a significant ACF for low lags; (c) Residuals versus fitted values; (d) Normal 
probability plot of residuals.  

 

A simple solution would be to consider the zero months as outliers and remove 
these observations. From a purely statistical point of view this might seem 
tempting, but would not be appropriate since the generation is actually zero and 
that increased downtime can be an important factor for performance decline which 
should be incorporated in the slope estimates. We thus accept dependence and 
non-linearity of the data for some of the units and calculate the linear trend 
anyway. As can be seen in Table 3, most units have 0-1 months with zero 
production. The violation of some of the assumptions for linear regression in some 
cases was however an important reason for also calculating slopes for cohorts and 
equivalent trends, see Section 4.2.2 in the main report. As will soon be shown, the 
results are very similar for all three methods and thus seem to be robust. 

Table 3. Share of units with different number of months with zero production. 

Number of zero months 0 1 2-5 6-10 10+ 

Vindstat 83% 10% 4% 1% 1% 

Cesar 76% 13% 9% 2% 1% 

 

High leverage is most often not an issue since we generally have equally spaced 
time series. In a few cases with long periods of missing data, the leverage can be 
relatively high before or after these periods. Such units were checked manually, 
but we did not remove any data points because of high leverage.  
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4.3 TABLES WITH MEAN AND MEDIAN TRENDS 

In Table 4, mean and median trends including confidence intervals are given for 
linear regression for individual units (Method 1 as defined in Section 4.2.2 in the 
main report). Table 5 give the same information for equivalent trends. As 
described in the main document, a bootstrap method was used to calculate 
confidence intervals since the distributions of trends are generally heavy-tailed. 

Tables 6-7 give results for normalised trends, see Section 4.2.3 in the main report. 

Table 4. Mean and median trends (linear regression for individual units) with confidence intervals. The results 
are given in percentage points per year. 

 Mean trend Median trend 

Vindstat, MERRA -0.117 (-0.136, -0.099) -0.102 (-0.115, -0.085) 

Vindstat, ERA-I -0.108 (-0.128, -0.088) -0.127 (-0.146, -0.113) 

Vindstat, ConWx -0.092 (-0.112, -0.072) -0.107 (-0.122, -0.092) 

Cesar, MERRA -0.111 (-0.139, -0.084) -0.091 (-0.104, -0.074) 

Cesar, ERA-I -0.125 (-0.153, -0.097) -0.122 (-0.137, -0.107) 

Cesar, ConWx -0.058 (-0.088, -0.029) -0.057 (-0.071, -0.041) 

 

Table 5. Mean and median equivalent trends with confidence intervals. The results are given in percentage 
points per year. 

 Mean trend Median trend 

Vindstat, MERRA -0.109 (-0.130, -0.086) -0.096 (-0.108, -0.084) 

Vindstat, ERA-I -0.116 (-0.139, -0.093) -0.134 (-0.147, -0.120) 

Vindstat, ConWx -0.098 (-0.120, -0.076) -0.115 (-0.132, -0.102) 

Cesar, MERRA -0.089 (-0.118, -0.060) -0.094 (-0.105, -0.072) 

Cesar, ERA-I -0.131 (-0.159, -0.102) -0.162 (-0.181, -0.139) 

Cesar, ConWx -0.063 (-0.094, -0.034) -0.105 (-0.124, -0.089) 
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Table 6. Mean and median normalised trends (linear regression for individual units) with confidence intervals. 
The results are given in percentage points per year. The normalization is done by dividing the trends by the 
average capacity factor for units with the same start year. 

 Mean trend Median trend 

Vindstat, MERRA -0.469 (-0.540, -0.396) -0.391 (-0.452, -0.340) 

Vindstat, ERA-I -0.442 (-0.517, -0.368) -0.513 (-0.584, -0.440) 

Vindstat, ConWx -0.396 (-0.470, -0.323) -0.428 (-0.486, -0.367) 

Cesar, MERRA -0.455 (-0.561, -0.355) -0.352 (-0.415, -0.297) 

Cesar, ERA-I -0.534 (-0.645, -0.431) -0.493 (-0.557, -0.444) 

Cesar, ConWx -0.289 (-0.396, -0.185) -0.236 (-0.289, -0.176) 

 

Table 7. Mean and median equivalent, normalised trends with confidence intervals. The results are given in 
percentage points per year. The normalization is done by dividing the trends by the average capacity factor for 
units with the same start year. 

 Mean trend Median trend 

Vindstat, MERRA -0.423 (-0.506, -0.343) -0.378 (-0.421, -0.325) 

Vindstat, ERA-I -0.455 (-0.538, -0.371) -0.528 (-0.582, -0.467) 

Vindstat, ConWx -0.408 (-0.491, -0.325) -0.476 (-0.531, -0.403) 

Cesar, MERRA -0.360 (-0.464, -0.254) -0.370 (-0.437, -0.299) 

Cesar, ERA-I -0.548 (-0.657, -0.435) -0.653 (-0.726, -0.556) 

Cesar, ConWx -0.314 (-0.424, -0.201) -0.428 (-0.499, -0.349) 

 

4.4 PERFORMANCE LOSS 

In Section 5.6 in the main report, the evolution of the average performance factor 
for all Vindstat units was quantified. Figure 20 presents similar results for Vindstat 
units with different start years. Results are only given for ages with at least 60 
monthly samples. Figure 21 shows a comparison of average performance factors 
for Vindstat and Cesar units. Only units with low-age observations (which are 
used for normalisation) are included. For Cesar, this implies that only 887 out of 
1317 units were considered and that no high-age results are available. 
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Figure 20. Average performance factors (vertical axes) depending on age (horizontal axel) for Vindstat units 
with certain start years. The start years and number of units are indicated in each panel. Note that for some 
ages, the number of samples is quite small. 
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Figure 21. Comparison of average performance factors for Vindstat and Cesar units. Only units with low-age 
observations (which are used for normalisation) are included. V = Vindstat, C = Cesar. 

 

4.5 INFLUENTIAL VARIABLES 

In Section 5.7 in the main report, multiple linear regression models were employed 
in order to quantify the influence from several variables on the trends. Here, 
supplementary results are presented. 

In Figure 22, coefficients for the models with selected linear terms are given. Figure 
23 gives coefficients for separate models for each predictor variable, controlling for 
start year. The figures thus corresponds to methods 2 and 3 as defined in Section 
4.2.5 in the main report. 

 
Figure 22. Coefficients in multiple linear regression model (selected linear terms but no interactions). 
Confidence intervals are also indicated. 
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Figure 23. Coefficients in multiple linear regression model (separate models for each predictor variable, 
controlling for start year). Confidence intervals are also indicated. 

 

Next, the full models with interaction terms are presented for MERRA (Figure 24), 
ERA-I (Figure 25) and ConWx (Figure 26). Note that the interaction terms have 
been orthogonalised, so the interpretation of the coefficients is not straight-
forward. More details can be provided upon request.  
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Figure 24. Multiple linear regression model with interaction terms (MERRA). The terms were chosen with a 
forward and backward selection procedure. 
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Figure 25. Multiple linear regression model with interaction terms (ERA-I). The terms were chosen with a 
forward and backward selection procedure. 



 WIND TURBINE PERFORMANCE DECLINE IN SWEDEN 
 

86 

 

 

 

 

 
Figure 26. Multiple linear regression model with interaction terms (ConWx). The terms were chosen with a 
forward and backward selection procedure. 
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4.6 DOWNTIME  

Figure 27 gives more detailed information on the seasonal downtime patterns for 
Cesar units of different latitudes. Table 8 shows how the mean and median trends 
for all Cesar units change if downtime data is excluded. 

 

 
Figure 27. The downtime is generally larger during winter, especially for units in the north. For all data (age 
0.33 – 20 years), the estimated downtime is 4.0%. 

 

Table 8. Impact on mean and median trends by excluding downtime data. All results are given in percentage 
points per year for Cesar data with units with more than one wind turbine excluded.   

 Mean 
(downtime 
included) 

Mean 
(downtime 
excluded) 

Median 
(downtime 
included) 

Median 
(downtime 
excluded) 

MERRA -0.11 -0.05 -0.09 -0.05 

ERA-I -0.12 -0.06 -0.12 -0.09 

ConWx -0.05 +0.01 -0.05 -0.04 

Average -0.09 -0.03 -0.09 -0.06 

 

Figure 28, shows results for cohort regressions (Method 2 as described in Section 
4.2.2 in the main report) with and without downtime data. Especially for older 
units, a relatively large part of the performance decline can be attributed to 
increased downtime. 
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Figure 28. Impact on trends of different cohorts from excluding or including downtime (Cesar data, only units 
corresponding to one wind turbine). 
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WIND TURBINE PERFORMANCE 
DECLINE IN SWEDEN 
The main objective here is to answer how much wind turbine performance 
declines with age. This question is of great importance for the profitability  
of wind farms and affects the required installed capacity to fulfil renewable 
energy targets. 

Previous large-scale studies of this type are however very scarce. During the 
first years of operation, the production is nearly constant, but subsequently 
it begins to decline. Wind turbines constructed before 2007 lose around  
0.15 capacity factor percentage points per year in absolute terms, corresponding 
to a life-time energy loss of 6 %. 

A gradual increase of downtime accounts for around 1/3 of the decline and  
worsened efficiency for the rest. In comparison to results from the UK, Swedish 
wind farms deteriorate much slower.

Energiforsk is the Swedish Energy Research Centre – an industrially owned body  
dedicated to meeting the common energy challenges faced by industries, authorities  
and society. Our vision is to be hub of Swedish energy research and our mission is to  
make the world of energy smarter!
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