

Hydrogen production by electrolysis

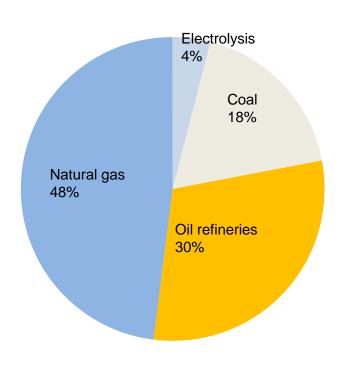
Ann Cornell, Department of Chemical Engineering, KTH amco@kth.se

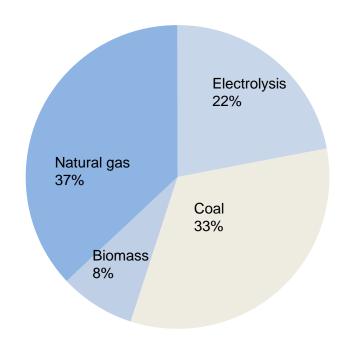
When did you last participate in an international electrolyzer conference?

Electrolyzer events are rare and real conference series perhaps non-existing. Electrolyzers are equivalent to fuel cells. but while conferences devoted to fuel cells are plentiful, electrolyzer conferences are certainly not.

The aim of this initiative is to start a conference series devoted to electrolysis for energy conversion. Let us make a forum in which electrolysis is the main theme and not a sub-topic among many others.

Be part of it. If you find this idea appealing then I hope you will come and take part in ICE2017 and make it a success. We will prepare the setting in a nice venue, but only the participants can ensure the success.


Welcome at ICE2017 in Copenhagen From Tue 12th to Thu 15th of June, 2017


Jens Oluf Jensen Chair of ICE2017

Sources for hydrogen

International Energy Agency. Technology Roadmap – Hydrogen and Fuel Cells, 2015

Today

Prediction year 2050

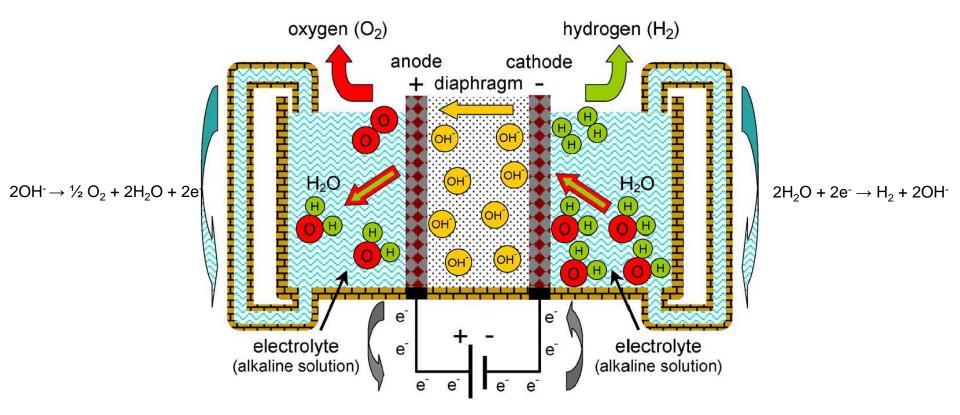
Electrolysis for H₂-production

Only large scale alternative for fossil-free production Expensive method Pure gases produced

Water electrolysis:

	Acidic conditions	Alkaline conditions
Anode	$H_2O \rightarrow \frac{1}{2}O_2 + 2H^+ + 2e^-$	$2OH^{-} \rightarrow \frac{1}{2}O_{2} + 2H_{2}O + 2e^{-}$
Cathode	$2H^+ + 2e^- \rightarrow H_2$	$2H_2O + 2e^- \rightarrow H_2 + 2OH^-$

Total reaction: $H_2O \rightarrow H_2 + \frac{1}{2}O_2$



Commercial techniques water electrolysis

Technology	Alkaline water electrolysis	SPE (Solid polymer electrolyte) electrolysis
Process	Aqueous electrolysis	"Reversed PEFC"
Feed	80% KOH, 80°C	Pure H ₂ O, 80°C
Charge carriers	OH- H+	
Industrial use	Well developed Large scale	High current densities Differential pressure Expensive catalysts

Alkaline water electrolysis

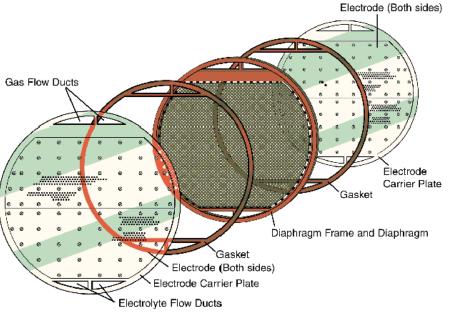
Alkaline water electrolyser

By courtesy of StatoilHydro

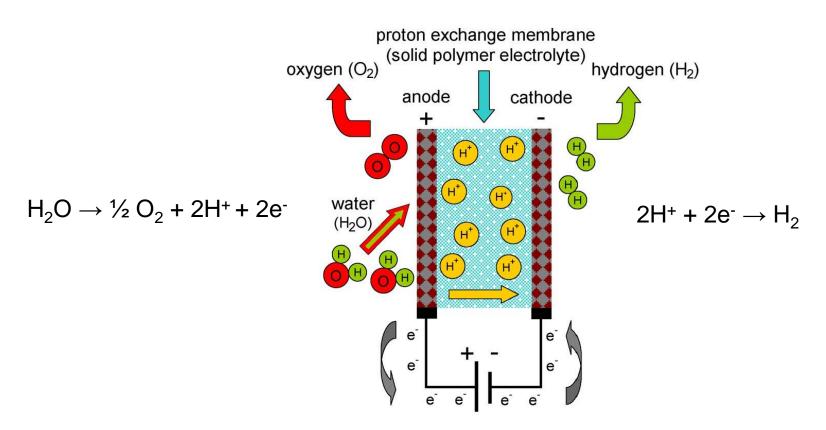
Anode: $4OH^{-} \rightarrow O_2 + 2H_2O + 4e^{-}$

Cathode: $4H_2O + 4e^- \rightarrow 2H_2 + 4OH^-$

Electrolyte: 25% KOH 80°C



Inside a water electrolyser



Bipolar technology Electrodes of coated mild steel

Solid polymer electrolyte electrolysis

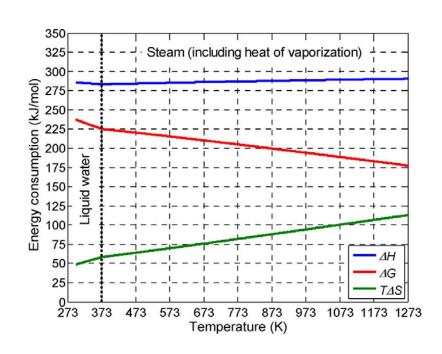
Alkaline membrane cells

Less noble catalysts can be used than under acidic conditions (e.g. nickel)

Development of alkaline membranes

Still not commercially available

Steam electrolysis at 1000°C:

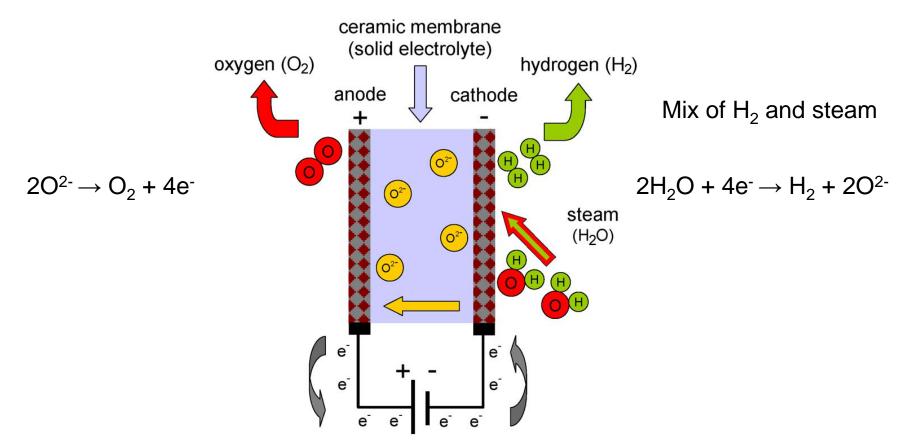

- low equilibrium cell voltage (0.91 V, compare 1.23 V)
- low overpotentials and IR drops

$$\Delta G = \Delta H - T\Delta S$$

$$\Delta G = -zFE$$

- G, Gibbs free energy J/mole
- H, enthalpy J/mole
- T, absolute temperature K
- S, entropy J/mole,K
- z, moles electrons/moles substance
- F, Faradays constant 96500 As/mole
- E, equilibrium cell voltage

$$H_2O \to H_2 + \frac{1}{2}O_2$$

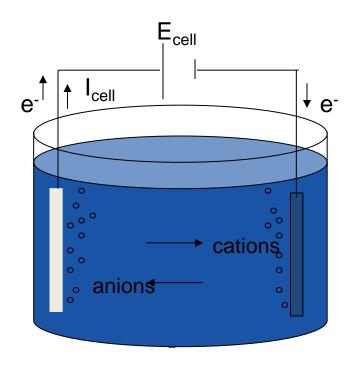


Technologies for water electrolysis

Technology	Alkaline water electrolysis	SPE (Solid polymer electrolyte) electrolysis	SOEC (Solid oxide electrolysis cell)
Process	Aqueous electrolysis	"Reversed PEFC"	"Reversed SOFC"
Feed	80% KOH, 80°C	Pure H ₂ O, 100°C	Steam, 800-900°C
Charge carriers	OH ⁻ , K ⁺	H+	O ²⁻
Industrial use	Well developed Large scale	High current densities Differential pressure Expensive catalysts	Not yet commercial Pilot scale

High temperature steam electrolysis (SOEC)

Electrolytic hydrogen production from other processes than water electrolysis...

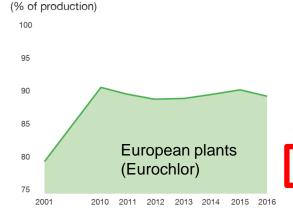

Why oxygen evolution as anode reaction?

- Oxygen often not used
- High E_{eq}
- Slow kinetics

Other anode reaction?

Anode reaction

Red \rightarrow Ox + ne⁻


Anode reaction $2Cl^- \rightarrow Cl_2 + 2e^-$

Chlor-alkali

 $2CI^{-} + 2H_{2}O \rightarrow CI_{2} + H_{2} + 2OH^{-}$ ~60 million tonnes/year CI_{2} produced world wide

Many uses for the products

Hydrogen used

Chlorate

 $NaCl + 3H_2O \rightarrow NaClO_3 + 3H_2$

About 4 million tonnes/year NaClO₃ produced world wide

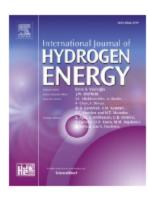
Main use in the bleaching of chemical pulp

In some plants the hydrogen formed is not used at all

These processes produce close to 2 Mtonnes H₂/year

Hydrogen from chlorate production

INTERNATIONAL JOURNAL OF HYDROGEN ENERGY 4



Available online at www.sciencedirect.com

ScienceDirect

Operational experiences of PEMFC pilot plant using low grade hydrogen from sodium chlorate production process

J. Ihonen*, P. Koski, V. Pulkkinen, T. Keränen 1, H. Karimäki 1, S. Auvinen, K. Nikiforow, M. Kotisaari, H. Tuiskula², J. Viitakangas

VTT Technical Research Centre of Finland Ltd, P.O. Box 1000, 02044 VTT, Finland

Anode reaction oxidation of alcohols, sugars etc organic compounds

Equilibrium cell voltage

Oxygen evolution (water electrolysis) $E_{eq} = 1.23 \text{ V}$ at 25°C Alcohol oxidation corresponding $E_{eq} \sim 0.1$ - 0.2 V

Electricity need directly proportional to the cell voltage (E_{cell}*I*t)

Hydrogen can be produced at significantly lower electricity consumption compared to in water electrolysis!

Thermo electrochemical cycles

Part thermal energy, part electricity Example sulfur-hydrogen cycle

Anode: $SO_2 + 2H_2O \rightarrow H_2SO_4 + 2H^+ + 2e^-$

Overall: $SO_2 + 2H_2O \rightarrow H_2SO_4 + H_2$ $E_{eq} = 0.17 \text{ V (compare 1.23 V)}$

H₂SO₄ catalytically decomposed back to SO₂

$$H_2SO_4 \rightarrow SO_2 + H_2O + \frac{1}{2}O_2$$

Summary

- Hydrogen an important energy carrier in a future fossile free society
- Only large scale production alternative today produced without emission of greenhouse gases is electrolysis
- Oxygen produced often not used other useful anodic products in aqueous based electrolytic processes, for example chlor-alkali
- Possibility to considerably reduce the electrical energy need if chosing certain anode reactions
- Future development: steam electrolysis, alkaline membrane electrolysis, alternative anode reactions, hybrid thermal/electrochemical cycles, improvement of existing techniques. (Also much reseach on photo chemical electrolysis.)