

Optimized field balancing using Model Based Balancing (MBB) Application to Ringhals 32

November 10, 2017

Confidential. Not to be copied, distributed, or reproduced without prior approval.

Introduction & Motivation

Balancing of flexible Rotors with MBB

Why is site balancing needed ?

- In the life time of a machine train, rotor balancing usually cannot be avoided to meet vibration criteria which ensure long term integrity of the different components including shafts and bearings
- Typical site balancing
 - > is conducted using the Influence Coefficients (IC's) method
 - has two main drawbacks

Balancing of flexible Rotors with MBB

Influence coefficients method drawbacks

Because...

- Test runs are needed to gather IC's \rightarrow 1 test run per plane
- Unit needs to be stopped/cooled down/restarted → ranges from time consuming to very time consuming when hot sections (i.e. HP) or H2-filled generators need to be accessed

Because...

- Usually on the critical path (end of inspection or forced outage) → last step before the unit goes back to commercial operation
 - Not all required test runs always performed («one plane approach»)
 - Compromises regarding selection of balancing planes
- High customer expectations

Balancing of flexible Rotors with MBB

Why MBB will help ?

Idea supporting the new approach

Replace all field test runs required for final balancing of the unit by model-based run-ups

→ virtual influence vectors generated via digital twin

Expected key benefits

Maximized availability on the balanced unit (shorter inspections/outages)

Cost reduction of the balancing activity

No compromise on the balancing quality

Preconditions

OEM knowledge for accurate calculation models including all significant effects

Tight collaboration between R&D and execution teams

System linearity as for any balancing activity

Balancing of flexible Rotors using influence coefficients

Theoretical approach...

• IC's are output / input ratios.... compensation plane 3 measurement plane 2 Influence Coefficient compensation plane 2 measurement plane 1 compensation plane 1 $\alpha_{ik}(\Omega) = \frac{x_i(\Omega)}{1 - 1}$ $(\mathbf{K} + j\Omega \mathbf{D} - \Omega^2 \mathbf{M}) \mathbf{x}(\Omega)$ (Ω) $\boldsymbol{F}(\Omega) = \boldsymbol{U} \cdot \Omega^2$ System parameters $U_k = m_k \cdot e_k$

Influence Coefficients: complex ratio of the response x_i to a given unbalance U_k (the testweight)

Practical approach... a simple example

Practical approach... a simple example

Replacing measured IC's by virtual ones

How MBB replaces measurements

How MBB replaces measurements

Confidential. Not to be copied, distributed, or reproduced without prior approval.

How to produce model-based virtual IC's

Inputs for balancing actions

Example of Generator rotor balancing

Presentation Title

0

Ò

at

1kg Unbalance Mass

at 0°

1kg Unbalance Mass

=:

Confidential. Not to be copied, distributed, or reproduced without prior approval.

Previous experiences with MBB

MBB experience

Benefits seen on every occasions

- Applied to > 8 power plants
- Typical reduction around 30...50% of the total balancing time

• Success rate: 100 %

Feedbacks from the field

Benefits seen on every occasions

"The customer could return the machine to the load dispatcher two days earlier, which was a huge benefit for them"

660MW fossil plant UK "The customer was satisfied with the success of the balancing.

Especially considering the fact that two years ago a third party needed 5 balancing runs for LP balancing and had less success with the reached vibration level"

"Using the calculated influence coefficients it was possible to balance with one balancing run. The customer was very satisfied! Normally three balance runs would be necessary for a comparable task."

550MW fossil plant _{Germany}

MBB for Ringhals 32

Ringhals 32 - shaft line configuration

Required information

Ringhals 32 - IC's calculation

Example case – LP1.1 / relative shaft vibration (plane 3 & 4)

Ringhals 32 - results validation

Calculation vs measurement

Ringhals 32 - results validation

Calculation vs measurement

Good matching!

Assumptions taken still need to be validated

Influence of OIL GRADE on IC's at nominal speed

Conclusion

Conclusions

MBB principles and applicability to RINGHALS 32

- MBB aims at replacing measured IC's by calculated IC's produced via digital twin → time and costs benefits
- Relevance has been demonstrated by various successful applications on the field confirming expected savings
- Applicability to **Ringhals 32** is confirmed
- More results to come...

30

Back up

MBB workflow

X-business collaboration

R&D and service collaboration for solving field balancing issue in a **timely manner**

Critical review of balancing by using IC's

Advantages

- Test runs automatically contain in-situ conditions (rotor, bearings, pedestals, foundations)
- Very well suited for "off-resonance" balancing i.e. operating speed
- Need little system knowledge
- Typically only a few balancing planes

Disadvantages

- Test runs very time consuming, esp. for generator & HP balancing planes (>12h per run)
- No a-priori knowledge about most suitable BP's

Dynamic behavior of flexible Rotors

- All rotors have a unknown, residual unbalance distribution
- During runup, several critical speeds are passed.
 → eigenforms are excited by the suitable «modal» part of the unbalance → vibration shape and effective unbalance is speed dependent
- At operating speed, rotors are typically offresonance
 - \rightarrow vibration shape is composed out of numerous eigenforms \rightarrow accurate models needed

Extension to multiple BP's

