

Ångturbiner Energiforsk

Ryaverket 19:e oktober 2017

Agenda

- FM Global
- Global skadehistorik
- Utvärdering av maskinrisker
- Brandskydd för turbiner
- Prioritering av riskförbättringsåtgärder

FM Global

- Etablerades 1835
- Egendomsförsäkring inom komersiell industri
- 5,300 anställda, 1/3 ingenjörer.

FM Globals forskningslab för skadeförebyggande verksamhet

FM Global – Ett unikt företag

Några nordiska kunder

Expertis inom kraftgenerering

Portfölj

- Över 130 kunder
 - 15,5 år medel
 - 60 år längsta
- 2,000+ anläggningar
- 23 länder
- 7% marknadsandel

Kunder (Europa) eon LAKESIDE ENERGY amsterdan Viridor environmenta zabalgarbi edo

Steam Turbine Loss Drivers

What are Equipment Factors?

Impact the frequency and severity of equipment breakdown risk

Identify equipment most at risk of breakdown

Improve asset integrity and reliability

Frequency Risk Indicators

Severity Risk Indicators

Frequency Risk Indicators

FMGlob

Maintenance	Adequacy of inspection, testing and maintenance programs to verify asset integrity, reliability and fitness for service.
Operating Conditions	Actual operating conditions vs. design conditions, including overloading, cyclic use and/or process upsets outside of design limits.
Environment	External operating environment and physical conditions/surroundings in which the equipment is operating, considering the suitability of the equipment for the service environment.
Operators	Effectiveness/adequacy of training, qualification and retraining programs to standard and emergency operating procedures to ensure operation of equipment and processes within design limits during normal and upset conditions.
History	Operating history including failures/breakdowns/process upsets resulting in deterioration and service aging, impacting remaining life.

Maintenance

- Outage as per OEM frequency and scope
- Address know fleet issues
- Lube oil analysis

Maintenance

Foreign Material Exclusion (FME)

Is steam pipework maintained

Operating Conditions

- Operating regimes (ramp up rate/soak times)
- Acceptable operating parameter

1. Sparge steam reduces thermal stress of thick-wall drum components by allowing a "softer" start

Environment

No steam/water, vacuum or oil leaks

Operators

- Alarms
- Shutdown
- MOC
- Jumper/bypass
- Training & retraining

FM Global[®]

Age/History

- Understand fleet history
- If unit in preservation is this done properly

Equipment Factors

Severity Risk Indicators

Safety Devices	Protection devices (safety or control) are adequately designed, installed, maintained and functional to protect equipment during normal and upset operating conditions.
Contingency Planning	Preparedness in advance to respond to and recover from an unplanned breakdown of equipment resulting in a significant interruption to key site processes, including viability of sparing where provided.

Safety Devices

- Operational testing of ESV, NRV, DC oil pump and overspeed protection
- OEM defined controls and protection installed and working
- DC lube oil systems properly designed and installed

Contingency Plans

- Spares properly stored
- Is there a bypass around the turbine
 - Is it accessible in an emergency

Equipment Factor Loss Study

10-year study

Over 1,200 equipment losses

US\$8B (gross) loss

27 different types of equipment analyzed **45,000** pieces of equipment in the database

Loss Study Takeaways

 Frequency and severity of loss increases with the number of unsatisfactory Factors

- Equipment with 1 or 2 unsatisfactory Factors can have significant exposures, particularly when the Factors are loss drivers for the equipment
- Equipment with both a frequency and severity Factor rated unsatisfactory is a contributing factor for loss

Equipment Factors and Losses

- Leverage this predictive analytics tool to identify the equipment most at risk of breakdown
- Focus equipment risk improvement efforts as part of the risk improvement plan
- Improve asset integrity, reliability and resilience of your operations

Turbine Fire Protection

It's all about the oil

Turbine Fire Protection

Causes of Oil Release

Reducing Turbine Fire Losses

- Automatic turbine shutdown linked to fire protection
 - Must include lube oil depressurisation
- Flange Guards
- Automatic protection over potential release points
- Automatic protection beneath operating floor
- Drainage and containment

