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initiated. One important issue concerning the power system is the risk of outages 
in the transmission system. An outage can lead to black‐outs which have happened 
several times in both Sweden and in other systems all over the world. This type of 
problem causes large costs when it occurs which, fortunately, is not often. But it is 
also important to notice that one way to minimize these risks is to keep very high 
margins. This is possible but requires often large investment and maintenance 
costs since transmission lines are under‐used or large amounts of power plants that 
are seldom used since they are only kept as margins for outages in other power 
plants. This means that it is important to have a good knowledge of the risk of 
power system stability problems in order to make a correct balance between risk of 
black‐outs/other severe problems and the costs of continuously keeping too high 
margins in the operation. 

The overall aim of this project is to improve the research in this area and consider 
that some situations can cause larger problems if they happen compared to other 
situations, i.e. that some situations have larger risks than others even if they would 
be equally likely to occur (e.g. 0,001% risk of plant outage and 0,001% risk of 
stability problem causing black‐out). In addition to this, it is important to consider 
the evolution of the risks with time. As the operation points of the system changes, 
the risk exposure is consequently altered. 
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This report is summarized in Swedish, see report 2017_ 412 Risker i drift av 
elkraftsystem. 
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Abbreviations

Alternating Current (AC)

Alternating current is a current that in ideal conditions can be described
by a sinusoidal function over time. Pages: 27, 50

Automatic Voltage Regulator (AVR)

Automatic voltage regulators are used to control the voltage level outputs
of generators. An AVR consists of several components such as diodes, ca-
pacitors, resistors and potentiometers or even microcontrollers, all placed
on a circuit board. The AVR is mounted near the generator and con-
nected with several wires to measure and adjust the generator. The AVR
monitors the output voltage and controls the input voltage for the exciter
of the generator. By increasing or decreasing the exciter voltage, the out-
put voltage of the generator increases or decreases accordingly. The AVR
calculates how much voltage has to be sent to the exciter numerous times
a second, intending to stabilize the output voltage to a predetermined
setpoint. Pages: 6, 28, 29, 62, 63, 75�77, 87

Central Processing Unit (CPU)

A central processing unit is is the electronic circuitry within a computer
that carries out the instructions of a computer program by performing the
basic arithmetic, logical, control and input/output operations speci�ed by
the instructions. Page: 118

Corner Point (CP)

Here, a corner point means a point in (net) load space which lies on at
least two di�erent surfaces. Pages: 36, 73

Corrective Security Constrained Optimal Power Flow (CSCOPF)

Corrective security constrained optimal power �ows is a subset of the
SCOPF problems, in which corrective actions (when applicable) are planned
for to take action after the occurrence of a contingency. Pages: 52�55

Cumulative Distribution Function (CDF)

Cumulative distribution function, FX (x), of a real-valued random vari-
able, X, evaluated at x, is the probability that X will take a value less
than or equal to x, P (X ≤ x). In the case of a continuous distribution,
it gives the area under the PDF from minus in�nity, −∞, to x. Cumu-
lative distribution functions are also used to specify the distribution of
multivariate random variables. Pages: 31, 58, 59, 122

Direct Current (DC)

Direct current is a current that in ideal conditions can be described by a
constant function over time. Pages: 27, 50

ElectroMotive Force (EMF)

The electromotive force is the voltage developed by any source of electrical
energy such as a battery or dynamo. It is generally de�ned as the electrical
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potential for a source in a circuit. A device that supplies electrical energy
is called an electromotive force. EMFs convert chemical, mechanical, and
other forms of energy into electrical energy. Pages: 28, 62, 64, 65

Expected Security Cost Optimal Power Flow (ESCOPF)

Expected security cost optimal power �ows is a subset of the CSCOPF
problems since a distinction is being made between the post-contingency
control variables and the pre-contingency control variables. ESCOPFs
are more speci�cally de�ned than CSCOPFs in the way that that the
ESCOPFs include the probabilities of the studied contingencies and the
costs of the corrective actions in the model, and the objective function can
and should thus consider the expected (operational) costs. Pages: 55, 56

First Order Necessary Condition (FONC)

The �rst order necessary conditions, or the Karush-Kuhn-Tucker (KKT)
conditions, are �rst-order necessary conditions for a solution in nonlinear
programming to be optimal, provided that some regularity conditions are
satis�ed. Allowing inequality constraints, the KKT approach to nonlin-
ear programming generalizes the method of Lagrange multipliers, which
allows only equality constraints. In some cases, the necessary conditions
are also su�cient for optimality. In general, the necessary conditions are
not su�cient for optimality and additional information is necessary. OPF
problems are in exact form and in the general case not convex, so there
exist no simple su�cient conditions for them to be solved to global opti-
mality. Pages: 22, 33�35

General Algebraic Modeling System (GAMS)

General algebraic modeling system is one (of a number of existing) alge-
braic modeling systems particularly designed for optimization, but it can
also solve systems of equations. Pages: 64, 74, 107, 116, 121

Generalized Reduced-Gradient (GRG)

The generalized reduced-gradient method is a numerical method for solv-
ing optimization problems. Particularly, it is a generalization of the re-
duced gradient method by allowing nonlinear constraints and arbitrary
bounds on the variables. Page: 33

High Voltage Direct Current (HVDC)

A high-voltage, DC electric power transmission system uses direct cur-
rent for the bulk transmission of electrical power, in contrast to the more
common alternating current (AC) systems. Pages: 25, 118

Hopf Bifurcation (HB)

A Hopf bifurcation is a critical point where a system's stability switches
and a periodic solution arises. An HB is a local bifurcation in which a
�xed point of a dynamical system loses stability, as a pair of complex
conjugate eigenvalues (of the linearization around the �xed point) cross
the complex plane imaginary axis. Under reasonably generic assumptions
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about the dynamical system, a small-amplitude limit cycle branches from
the �xed point. HBs are one of the bifurcation types "common" enough in
power systems to be considered in various studies. HBs are not considered
in this study, but the the developed models are extendable to future HB
consideration. Pages: 25, 28�30, 44, 75, 87, 88, 112, 116, 117, 119, 120

Immediate instability point (IIP)

Immediate instability point: sometimes used in the literature as a synonym
to SLL. Page: 26

Institute of Electrical and Electronics Engineers (IEEE)

Institute of Electrical and Electronics Engineers: a professional associa-
tion, formed in 1963 from the amalgamation of the American Institute of
Electrical Engineers and the Institute of Radio Engineers. Pages: 8, 22,
64, 69, 74�76, 79, 80, 93, 103, 122

Linear, Interactive, and Discrete Optimizer (LINDO)

LINDO (Linear, interactive, and discrete optimizer) is a solver for linear
programming, integer programming, nonlinear programming, stochastic
programming and global optimization. Pages: 35, 64, 87, 88, 117

Luleå University of Technology (LTU)

LTU is abbreviated in Swedish from Luleå Tekniska Universitet. Page:
125

MATrix LABoratory (MATLAB)

MATLAB is a multi-paradigm numerical computing environment and
fourth-generation programming language. A proprietary programming
language developed by MathWorks, MATLAB allows matrix manipula-
tions, plotting of functions and data, implementation of algorithms, cre-
ation of user interfaces, and interfacing with programs written in other
languages. Page: 88

MegaVoltAmpere (MVA)

Megavoltampere is a unit of apparent power. Pages: 6, 61, 77, 80

MegaWatt (MW)

Megawatt is a unit of (active) power. Page: 61

MegaWatt-hour (MWh)

Megawatthour is a unit of energy. Page: 51

NonLinear Programming (NLP)

Nonlinear programming is a name for optimizing (continuous) nonlinear
problems. Page: 64

12



Operational Limit (OL)

Operational Limit: a point in (net) load space on the border between
the allowed operation region and an undesired but not directly unstable
operation region. Pages: 19�22, 25, 30, 39, 107�112, 114

Optimal Power Flow (OPF)

Optimal power �ows is a group of optimization problems, in which the
laws of Kirchho� are considered as part of the constraints; possible con-
trol actions are typically power production, power consumption, activa-
tion/deactivation (unit commitment) of units, etc.; and in which the ob-
jective function can be to minimize losses, production costs, or something
else. Pages: 49, 51, 56, 63, 65, 72, 73, 112

OvereXcitation Limiter (OXL)

The overexcitation limiter in an AVR is a circuit that allows signals below
a speci�ed input level to pass una�ected while attenuating the peaks of
stronger signals that exceed this threshold. This is used in order to save
the generating unit from undesired thermal overheating. Underexcitation
limiters also exist. Pages: 28, 29, 63

Power/Voltage-curve (PU-curve)

P denotes active power and U denotes voltage level in this case � it is
a common way of illustrating voltage as a function of active power in a
node. Pages: 26, 29, 33, 35, 44, 121

PQ (PQ)

A node/bus in which (net) load is described by (net) consumption of active
power (P) and reactive power (Q), respectively. Pages: 28, 77

Preventive Security Constrained Optimal Power Flow (PSCOPF)

Preventive security constrained optimal power �ows is a subset of the
SCOPF problems, in which the operational plan is made such that it will
be resilient for any of the imagined possible contingencies that can take
place within the planning period. Page: 53

Probabilistic Optimal Power Flow (POPF)

In probabilistic optimal power �ows, the stochastic variables representing
the uncontrollable (net) loads are modeled by their PDFs. POPFs are
thus obviously a subset of OPFs. Pages: 32, 55, 56

Probability Density Function (PDF)

In probability theory, a probability density function is a function, fX (x),
whose value at any point x can be interpreted as providing a relative
likelihood of the outcome x of the random variable X. The reader should
however note that the absolute likelihood for a continuous random variable
X to take on any particular value is 0. In a more precise sense, the PDF is
used to specify the probability of the random variable X falling within a
particular domain of values, that is X ∈ [x1, x2] , x1 < x2, {xi}i∈{1,2} ∈ R.
This probability is given by the integral of the PDF over that domain. The
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probability density function is nonnegative everywhere, and its integral
over the entire space is equal to one. Moreover, for a PDF fX (x), FX (x) =∫ x
−∞ fx (y) dy, which is the CDF. Pages: 56, 59, 110

PU (PU)

A node/bus in which (net) load is described by (net) consumption of active
power (P) and voltage level (U), respectively. Pages: 75�77, 103

Quasi-steady State Simulation (QSS)

Using quasi-steady state simulations for detecting instabilities, c.f. Sec-
tion 2.3.2.4, can be seen as the opposite of the direct method, c.f. Sec-
tion 2.3.2.1. Instead of �nding a particular operational limit, one studies
if the system remains stable in the present operation point also after some
contingency by making a dynamic time-domain simulation. The quasi-
steady state assumption is that ẏ = 0, c.f. Eqs. (1) and (2). More con-
cretely that means that it is implicitly assumed that frequency stability
will not be an issue after the contingency. The QSS assumption speeds up
the simulations signi�cantly. Pages: 33, 35

Royal Institute of Technology (KTH)

KTH is abbreviated in Swedish from Kungliga Tekniska Högskolan. Pages:
18, 19

Saddle Node Bifurcation (SNB)

Saddle node bifurcation: a bifurcation type that in power systems repre-
sents voltage and angle instabilities. Pages: 6, 8, 22, 25�29, 34, 35, 39, 42,
44, 59, 64, 66, 71�74, 80, 83, 84, 86�91, 93, 112, 115�117, 119, 120, 125

Security Constrained Optimal Power Flow (SCOPF)

Security constrained optimal power �ows is a subset of the OPF prob-
lems, in which contingencies are considered in one way or the other in the
constraints of the OPF. Pages: 32, 46, 51�56, 60, 112�114

Singularity Induced Bifurcation (SIB)

Singularity induced bifurcations are less common in power systems, but
they do occur. In this study they are not explicitly considered, but might
be considered in future work. A bit simpli�ed, they occur when one eigen-
value tends to in�nity through a rapid sign change while another one
tends to zero (also making a sign change). Thus, the system Jacobian
seems stable, while the individual eigenvalues are not. Pages: 30, 124, 125

Specially Ordered Set of type 1 (SOS1)

Specially ordered set of type 1 is a variable of special type that can be
used for some optimization problem solvers. At most one variable within
a Specially Ordered Set of type 1 (SOS1) can take on a non-zero value.
That non-zero value is nonnegative. Page: 122
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Specially Ordered Set of type 2 (SOS2)

Specially ordered set of type 2 is a variable of special type that can be
used for some optimization problem solvers. At most two variables within
a Specially Ordered Set of type 2 (SOS2) can take on non-zero values.
The two non-zero values have to be in adjacent elements. Page: 107

Stability Limit (SL)

Stability Limit: a point in (net) load space on the border between a stable
operation region and an unstable operation region. Pages: 19�22, 25, 27,
60, 72, 87, 107�111, 115

Static VAR (VoltAmpere Reactive) Compensator (SVC)

A Static VAR (voltampere reactive) compensator is a set of electrical de-
vices for providing fast-acting reactive power on high-voltage electricity
transmission networks. Unlike a synchronous condenser which is a ro-
tating electrical machine, a static VAR compensator has no signi�cant
moving parts (other than internal switchgear). Prior to the invention of
the SVC, power factor compensation was the preserve of large rotating
machines such as synchronous condensers or switched capacitor banks.
Note that there are other, more modern static VAR compensators, such
as STATCOM (STATic synchronous COMpensator), so the name is a bit
misleading. Page: 59

Stochastic Optimal Power Flow (SOPF)

Stochastic optimal power �ow: a term that can have many meanings. In
this report, the term is given a special meaning which is explained in Sec-
tion 2.7.5. With the meaning of the term SOPF used in this report, it is
a subset of the category of chance constrained OPFs. Pages: 20�22, 40,
50, 51, 55�60, 64, 107, 108, 111, 113, 114, 118�120, 122, 123, 125

Switching Loadability Limit (SLL)

Switching loadability limit: a point in (net) load space for which a switch-
ing (for example of control modes or in terms of system con�guration)
takes place such that the system ends up "beyond" a bifurcation without
passing it. Pages: 19, 25, 26, 28, 29, 33�35, 44, 64, 72, 87, 119, 121, 125

Thyristor Controlled Series Capacitors (TCSC)

Thyristor controlled series capacitors (according to [1] Thyristor Control
Series Capacitance) is a technique that is primarily used to reduce transfer
reactances, most notably in bulk transmission corridors. The result is a
signi�cant increase in the transient and voltage stability in transmission
systems. Page: 59

Transmission System Operator (TSO)

A transmission system operator is an entity entrusted with transporting
energy in the form of natural gas or electrical power on a national or
regional level, using �xed infrastructure. The term is de�ned by the Eu-
ropean Commission. The certi�cation procedure for Transmission System
Operators is listed in Article 10 of the Electricity and Gas Directives of
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2009. In electrical power business, a TSO is an operator that transmits
electrical power from generation plants over the electrical grid to regional
or local electricity distribution operators. The United States has similar
organizational categories: independent system operator (ISO) and regional
transmission organization (RTO). Pages: 25, 32, 46�48, 50, 54, 57, 108,
118, 122, 123

Union for the Coordination of the Transmission of Electricity (UCTE)

Union for the coordination of the transmission of electricity, was one of the
predecessors to ENTSO-E (the European Network of Transmission System
Operators for Electricity). Nordel was another one of the predecessors to
ENTSO-E. ENTSO-E represents 42 electricity TSOs from 35 countries
across Europe. Page: 48

Voltage Source Converter (VSC)

A voltage source converter, is a converter type using transistors which, in
contrast to thyristors that only can be turned on by control actions, can
be both turned on and o� by control actions. Thus VSCs have two de-
grees of freedom instead of one. Therefore, VSCs can be self-commutated.
In self-commutated converters, the polarity of the DC voltage is usually
�xed, and being smoothed by a large capacitance it is intended to be kept
constant. This explains the name "voltage source". Because of the im-
proved controllability, the harmonic performance is improved. Moreover,
VSCs don't need to rely on synchronous machines in the AC system for
their operation. Page: 118
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Abstract

This report presents the results of a postdoctoral project with the
same name as the title of the report. Methods and models for identifying
and illustrating individual operational limit surfaces have been developed
during the project. A discussion about the usability of the surface repre-
sentations is followed by graphical images justifying the use of such repre-
sentations. A theoretical and project background is presented. Thereafter
possible ways forward are presented. The long-term goal of the work is
to be able to optimally do the re-dispatch of the tertiary control given
stochastic power production and consumption, where di�erent risk levels
will be accepted for di�erent system operational limits depending on their
di�erent severities in terms of consequences related to their violation.
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1 Introduction

This document is among other things an inclosure with technical details asso-
ciated to a more brief and less technical report [2] about this project written in
Swedish.

1.1 Background to the Project

1.1.1 Project Motivation

With increased shares of uncontrollable renewable power production, such as
wind power and solar power, the power production will become harder to predict
and control with time. Also, in the future, with so-called smart homes, and
with hourly measurements of electricity prices and consumed energy, one can
also expect consumption to be more price sensitive, and thus more time variant
[3,4]. Moreover, the production units are expected to in the future be larger in
numbers, smaller in size, and spatially more outspread. With this combination
of changed structure and increased uncertainties, the number of contingency
situations of relevance to a system operator increases, since the most important
lines, transformers and production units will be di�erent for di�erent production
and consumption levels. This increased uncertainty motivates stochastic models
of power production and generation, combined with a generalized consideration
of component contingencies.

A research project was initiated at Royal Institute of Technology (KTH) to,
among other things, address the above mentioned issues. That project devel-
oped, among other things, optimization models that minimize the re-dispatch
costs of the power system for the coming 15 minutes (in di�erent countries,
the time frames are di�erent, confer to Section 2.5). In the optimization, es-
timations of the stochastic nature of power system loads and generation levels
are used. These models minimize the re-dispatch costs under the constraint of
keeping the risk levels of violating any of the operational limits of the system
below some prede�ned limits [5�9]. Some of the results and experiences from
that research was to a large extent underlying work to and motivation to the
initiation of this project.

The idea for this project was that the 15 minute-ahead re-dispatch planning
could be done more elaborately by considering the individual risks associated
to the di�erent operational limits and their di�erent degrees of severity. That
would for example allow accepting higher risks of operation limit violations
leading to less severe consequences, and conversely, a more conservative view
on risks for violating operation limits causing more severe consequences to the
power system and its users, c.f. Section 4.2.2. This idea di�ers from the approach
in the underlying work, where the accepted risk levels are the same � regardless
of severity associated to each di�erent (type) of operation limit violation. Risk
in this case means the probability of something unwanted to happen � such
as: completely losing (black out), harming, or reducing the reliability or the
functionality of the power system or components in it. By accepting di�erent
risk levels for di�erent levels of severity, the re-dispatch costs can be reduced
without necessarily operating the system as a whole in a riskier way.

Di�erences between this project and the underlying work will be treated
further in Section 1.1.2 which follows.

18



1.1.2 Project di�erences to the underlying work

At the former Electric Power Systems department at KTH, models describing
the envelope of the operation limits of a power system have been developed for
the determination of the optimal operation of power systems with large shares
of renewable power production, considering stochasticity in production, loads
and possible contingencies [5�9]. Further details can be found in summarized
form in Sections 2.7.5.2 and 2.7.5.3.

1.1.2.1 Two categories The project of this report was created as a sort
of spin-o� project from [6] considering things of both academic and industrial
interest that could not be prioritized within that project. In this underlying
work; (as seems to be common in the literature) all di�erent sorts of operational
limits of the power system have been treated as equally risky. In reality, that
however is not the case. The operational limits can be subdivided into two main
categories:

Category one Operational limits that, with high probability, cause instability
to the system, denoted Stability Limits (SLs) for simplicity, confer Sec-
tion 2.2.1. These can indeed be subdivided into further subcategories, but
that is left as a topic for future work.

Category two Secondly, there are the less severe operational limits: For sim-
plicity, let Operational Limit (OL) denote operational limits that are not
necessarily stability limits, confer Section 2.2.2. An example of commonly
considered and relevant OLs is (long-term thermal) overloading of one or
more components (including lines). It follows naturally that also OLs as
a category can be further subdivided, just like the SLs can.

The severity of an overloading (such as described for the OL category above)
depends on the time of overloading, the degree of overloading, ambient temper-
ature, and possible cooling systems. The consequences of violating an o�cial
(often long-term) thermal OL will lie in the continuous range from "nothing",
through degraded lifetime and earlier future replacement or repair of equipment,
to damaged equipment, or, more likely, to units eventually being disconnected
by protection systems. An overloaded line that is not disconnected in time by
the protection system will tend to sag because of material heating, and eventu-
ally hit/touch an object and likely result in a fault. After the occurrence of a
fault, other protection systems might cause an interruption.

A disconnection is a discontinuous event (here, in the context of this report,
it would be treated as a contingency induced by a long term OL violation) that,
in turn, always leads to a di�erent, and most likely increased, risk level of the
system. An example of a signi�cant step increase of the severity level is to
suddenly end up beyond an SL in load space with respect to the stable region.
Typically in such a case, the SL would be a voltage instability limit (that is, the
disconnection would be considered a contingency-induced Switching Loadability
Limit (SLL), confer Section 2.2.1.2). It is reasonable to assume that also other
SLs could be induced by such a disconnection as well.

1.1.2.2 Accepting Di�erent Risk Levels This project is about how to,
in the optimal re-dispatch, be able to distinguish between di�erent sorts of
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operational limits, that is between various sorts of OLs or SLs, how to handle
them individually, and their respective associated risk levels and degrees of
severity.

The models of the underlying work are not considering consequences of vi-
olating an operational border. Ideas of how that could be implemented are
presented in this report, including the depth of the operational limit violations.

1.2 Project aim and scope

The project has (in alignment with the underlying work) been limited to aim-
ing for work with chance-constrained Stochastic Optimal Power Flows (SOPFs)
where the power system has been simpli�ed conceptually and computationally
by reducing the model size by working in (net) load space rather than in state
space. The operational limit surfaces are simpli�ed as polynomials in load space.
It is of importance that these surface approximations can be expressed in com-
paratively simple and in closed-form, and it is explained why in Sections 2.3
and 2.4. The project is also limited to the usage of general algebraic opti-
mization tools which facilitate usage of a variety of available up-to-date and
o�-the-shelf solvers.

The work behind this report can be subdivided into three main parts:

• The �rst part explains the societal, technical, and theoretical backgrounds
for the project and the studies made. This part is laying out the foundation
needed for choosing and developing the types of methods and models used.
In particular the methods and models needed for detecting and properly
representing a number of individual OLs and SLs to be used in stochastic
optimal re-dispatch tertiary control.

• The second part presents the actual assumptions made, model choices and
modi�cations, and methods used for detecting a number of individual OLs
and SLs. The aim was to use a general algebraic optimization tool for that,
among other reasons in order to be able to ensure access to a large variety
of professional solvers from the market.

• The third part regards the actual numerical studies in �nding a number
of individual OLs and SLs, approximating them by polynomials in load
space, and illustrating them graphically. For the possibility of graphically
illustrating them, a test system with three (net) load buses was chosen.
Plotting surfaces of more than three dimensions is complicated. The third
part also contains comparatively detailed implementable algebraic opti-
mization models, that in di�erent steps goes further from the underlying
work towards the goal of managing di�erent accepted risk levels depend-
ing on the severities of the OLs and SLs, and on the re-dispatch costs
associated in reducing these risks.

1.3 Approach

The approach to address the three main parts of the work introduced in Sec-
tion 1.2 has been to:

• For the �rst part, the work regarded studies of literature. Initially the
study was focused on the underlying work and their references, but with
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time the studies broadened. The studies were needed for obtaining back-
ground and related knowledge in order to �nd feasible ways forward han-
dling OLs and SLs individually with di�erent severities and probabilities
(risk levels) � instead of treating every aspect of risky operation in an
amalgamated way.

• For the second part, assumptions had to be made, in order to make the
power system models simpli�ed, but still useful for the aim of the project.
Thereafter, the optimization model for �nding and identifying the opera-
tional limit surfaces in a systematic and reliable manner was developed.
An articulated intention of the author has been to present the models and
theory in a more comprehendible way than typically encountered in the
literature. This is done in order to broaden the audience for the topic.
The models for approximating the OL and SL surfaces were for example
presented using a notation that clearly and explicitly writes out all partial
derivatives, making the approximation models comprehensible for most
engineers.

• The third part contains numerical studies of �nding, identifying, approxi-
mating, and graphically illustrating the approximations of the closest OL
and SL surfaces to a given point of operation. The graphical representa-
tion was done in order to facilitate presentation and analysis of the results.
The third part also contains a proposed outline for the continuation of the
work in regards to applying the developed individual surface approxima-
tions to optimal re-dispatch in a chance-constrained SOPF. That outline
will be summarized in the listing at the end of this section. Finally, in
the third part, based upon the insights given from the literature studies,
a proposed improvement in managing margins for conservative solutions
was given for usage in future re-dispatch studies.

In regards to the proposed outline in how to use these surfaces with the aim
of managing risks for violating di�erent OL and SL surfaces, three mutually
independent steps that had to be numbered/named somehow, were proposed
in relation to an idealized, but not implementable approach presented in Sec-
tion 4.2.1. The idealized approach is not implementable, given, among other
things, the desired scope of using general algebraic optimization tools, SOPFs,
and chance-constraints.

Step 1 After determining one aggregated SL surface and the individual OL
surfaces one can assign di�erent allowed maximal accepted probabilities
(risk levels) α of violation of these surface limits. Typically, the value of
α should be signi�cantly smaller for an SL than the value of α for an OL.
A proposal how such an approach could be implemented is presented in
Section 4.2.2.

Step 2 Another way forward can be to for SL consider the measures, called
corrective actions, needed to be taken to keep the (remains) of the system
stable after the occurrence of a certain SL. These actions are associated
to di�erent costs. For SLs, discretization of di�erent levels of needed cor-
rective actions is used to estimate the expected monetary costs related
to SLs of the ideal model Eq. (212) by weighting the corresponding with
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risk levels. For OLs, the monetary costs of di�erent depths of their vio-
lations can be estimated � a discretization as well. A proposal how such
an approach could be implemented is presented in Section 4.2.3. In the
proposed approach, the cases of damaged or disconnected equipment due
to an OL has not been addressed, but the model could be extended to
handle such by the inclusion of such supplementary "post-contingency"
distance functions.

Step 3 A di�erent approach proposal is presented in Section 4.2.4. There, on
the other hand, the (net) load space is discretized, and the expected costs
for each sample in (net) load space can be computed beforehand (pre-
processing), whereas the values of the costs function between the samples
needs to be interpolated.

1.4 Results and contributions

The main contributions from this report are:

• The creation of an algebraic general optimization model for �nding opera-
tional limits (OLs and SLs) in a given power system. A method associated
to the model has been presented that can �nd the n ≤ m closest opera-
tion limit surfaces in relation to the present operation point of the power
system for a given number m. If, after applying the method, it turns out
that n < m, it is because there are no more than n surfaces to be found.
The proposed approach, compared to for example approaches based upon
First Order Necessary Conditions (FONCs) or Lagrangian approaches, is
less sensitive and dependent on initial values of variables and has a lower
probability of �nding local optima.

• In the numerical study �nding the 7 closest surfaces of the IEEE 9-bus
test system [10, Appendix C.1] considering thermal line limits as OLs and
one single SNB (because of limiting assumptions) as an SL, it was noticed
that for larger distances in load space from the present operation point,
the second order Taylor approximation of surfaces might not be accurate
enough. It needs however to be considered if, under which circumstances,
and to which probability so large changes in net load actually will take
place within the intended 15 minute time frame.

• An alternative surface margin approach, for creating a conservative rep-
resentation of the operation limits, compared to the one proposed in [6],
has been proposed, but not investigated further.

• A number of stepwise more advanced and enhanced SOPF model ap-
proaches have been proposed for further work.

• Models and theory have been presented with a notation indented to be as
simple and comprehendible as possible.

• As a spino� of the literature review for this project, some ambiguities
in terminology in the �eld were discovered. An e�ort has been made to
straighten out some of them.
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1.5 Structure of the report

The report starts with this introductory section, followed by a theoretical back-
ground, given in Chapter 2. The content of that chapter is aimed at putting
the work of, and the models used for this project in its context for a researcher
or an experienced engineer in the �eld of electric power systems. For people
familiar with the theoretical background, that section can be skipped without
losing too much information about the particular work done in this project.

In Chapter 3, the assumptions made, the methods developed and used, and
the adapted and developed models used for the numerical study are located.
The results of the numerical study are presented in Section 4.1. System data
and parameters used in the numerical study are gathered in Section 4.1.1.

The study results are presented and analyzed in Chapter 4, which is subdi-
vided into two major parts: Section 4.1 presenting the numerical results obtained
from some of the studies done; and Section 4.2 presenting non-numerical �nd-
ings such as proposing detailed conceptual models and motivated steps how to
proceed the work towards a SOPF making optimal re-dispatch considering the
varieties of accepted risk levels in a power system. Section 4.2 also includes other
�ndings that open up for new research questions. Section 4.3 discusses some
preliminary methodological �ndings with regards to operational limit surface
margins.

Finally, the report ends with a quite lengthy discussion in Chapter 5 and
�nalizes with a summary of the conclusions, presented pairwise as �ndings and
recommendations in Chapter 6.

2 Theoretical Background

2.1 Dynamic Power System Modeling

2.1.1 Generally

Let us recall that a dynamically modeled electric power system can be repre-
sented by the equations

ẋ = f (x, y) (1)

0 = g (x, y) (2)

where the vector x represents the set of state variables associated to equipment
and units in the power system with dynamic time constants large enough not
too be easily neglected, ẋ the corresponding time derivative of x, and where the
vector y represents state variables associated electric equipment and units with
signi�cantly smaller time constants that can be neglected for this type of study.
Equipment with very small time constants, can often be modeled statically since
the transients they give rise to fade out very fast. Thus, ẏ is assumed to be zero
in these studies. Analogously, the functions f (·) and g (·) represent the system
constraints related to parts of the system with dynamic behaviour, and the
parts of the system that for the types of studies made within this project can
be modeled statically, respectively. At steady state,

ẋ = 0, (3)
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an equality that is assumed to hold also on the border to instability or the
other system operational limits sought for. This assumption is valid for slowly
varying changes in load, and when post-contingency transients have died out,
see Section 3.1.1.

Sometimes, mid-term dynamics are considered, [11], but they are not con-
sidered in this report. In such a study, the system could be modeled as

ẋ = f (x, y, z) (4)

0 = g (x, y, z) (5)

ż = h (x, y, z) (6)

where z denoted the set of mid-term dynamic state variables, and ż its corre-
sponding time derivatives.

2.1.2 Small signal analysis models

For small perturbations in the state variables x and y, the system equations
Eq. (1) and Eq. (2) can be represented by a linearization around a point (x0, y0)
to [

∆̇x
0

]
=

[
fx (x0, y0) fy (x0, y0)
gx (x0, y0) gy (x0, y0)

] [
∆x
∆y

]
= [J ]

[
∆x
∆y

] (7)

in which J denotes the system Jacobian. From Eq. (7) one can derive

∆̇x =
(
fx − fy (gy)

−1
gx

)
∆x

= A∆x
(8)

in which A de�nes the dynamic Jacobian of the system.

2.1.3 Simpli�ed notation

For the stability analysis to follow in Section 2.2.1, a simpli�ed notation is
needed. Let[

ẋ
0

]
=

[
f (x, y)
g (x, y)

]
=

{
z =

[
x
y

]
, F (z) =

[
f (z)
g (z)

]
=

=

[
f (x, y)
g (x, y)

]}
= F (z)

(9)

and in equilibrium
0 = F (z) (10)

which in turn can be rewritten as

0 = F (z, λ) (11)

when explicitly considering the net-load "parameters" as variables. Note that
net-load λ can in turn be subdivided into

λ =

[
u
ζ

]
(12)
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in which u represent the control variables of the Transmission System Operator
(TSO) for the tertiary control, and ζ represent the uncontrollable and stochas-
tically modeled net loads. Note further, that u and ζ might exist in the same
power system bus � depending on the coarseness of the power system model.

2.2 Operational Limits

The main focus with this project is to, as mentioned in Section 1.1, study the
ability to distinguish between di�erent sorts of undesired operating situations
and their severities in optimal power �ow models considering the operational
risk. As also mentioned in Section 1.1, there are two principal kinds of operation
limits:

1. The ones which physically cannot be violated, SLs, confer Section 2.2.1.
Technically, SLs are either bifurcation points or switching instabilities.
For the latter, the very point of bifurcation is never passed because of
operation mode switching.

2. The operational constraints that can be violated for some time and to some
extent, but may damage components in the power system eventually.

Examples of the former type are SNBs, Section 2.2.1.1; Hopf Bifurcations
(HBs), Section 2.2.1.3; and SLLs, Section 2.2.1.2.

Examples of the latter type are power transfer limits, allowed voltage levels,
etc., confer Section 2.2.2.

2.2.1 Stability Limits (SL)

This section treats the mathematical descriptions of a selection of important
stability limits, in this report denoted SL, that in contrast to OL will put the
power system at risk into more or less immediate (with respect to the time frame
this project considers) insecure operation of the power system.

Confusion exists in terminology regarding the descriptions of voltage insta-
bilities. Because of that, the intention in this report is to rather use the term
"bifurcation" when applicable. In the case of SLL (confer Section 2.2.1.2), it is
for example not possible. The term voltage security occurs also in the literature,
even in [6, 12, 13], but that term seems more general than voltage instability.
Sometimes, in order to simplify the mathematical models, some implicit hedging
takes place when doing voltage security, meaning just imposing some upper and
lower bounds on some voltages in the system based upon experience and heuris-
tics. The latter phenomenon in brie�y treated in [14, Section 3.2] as belonging
to Class B.

According to [12, p. 9] and [15] voltage instabilities are load driven. If voltage
instabilities are long term [12, p. 8], they are caused by the electrical distances
between generation and load, and thus they depend upon the network structure.
Short-term voltage instabilities can on the other hand be hard to distinguish
from short-term angular instabilities [12, p. 9], but it seems like by de�nition
it is an angle instability if it is generator driven, and a voltage instability if
it is load driven. Since many loads, including High Voltage Direct Current
(HVDC) connections, are dynamically controlled, it makes the distinction even
harder [12, p. 9]. It is also veri�ed that in practice it is very hard to distinguish
between voltage and angle instabilities [15].
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From the mathematical point of view, a voltage instability can be represented
by a bifurcation or by an SLL, that is, the switching (of control modes or in
terms of system con�guration) such that you end up "beyond" a bifurcation,
confer Section 2.2.1.2. Also SLLs are given many di�erent names, often involving
the word "bifurcation" which is actually false because the system never passes
such a point [16]. The term "limit induced bifurcation" is for example used
in [17, 18]. The term "saddle limit-induced bifurcation" (and not "saddle-limit
induced bifurcation" as wrongly cited in [16]) is used in [19]. Another synonym
for SLL that has been identi�ed in the literature is Immediate instability point
(IIP) in [20]. SLLs were called "voltage collapses related to control limits"
in [13, Chapter 4.3.5.1]. The term SLL will be used in this report, as well as
it has been in [6, 9, 16]. The term "switching loadability limit", without the
abbreviation SLL, seems to have been introduced in [21]. Breaking points or
switching (control) modes of operation that lead to harmless changes in the
operation of the power system are not given any names in this report.

Even in [14] the unclarities of categorizations of stabilities can be found.
There, transient instability is discussed as something essentially di�erent than
voltage stability. It is an impossible separation of stabilities, since voltage in-
stabilities can be both long-term and short-term [12]. Because of the ambiguity
in the literature to classify di�erent stabilities. In this report the terminology
is restricted to the technical/mathematical actual properties of the system, and
not in investigating what causes the instability in detail, neither where in the
system the instability occurs or which variable causes it.

2.2.1.1 SNB

2.2.1.1.1 Generally From bifurcation theory [22], it is known that SNBs
occur when the system Jacobian, J , becomes linearly dependent, that is, when
(at least) one of its eigenvalues becomes zero.

Typically, and true locally in the neighbourhood of the SNB point (confer the
illustration in [12, p. 24] of a set of Power/Voltage-curves (PU-curves); voltage
instability has occurred when an increased amount of load for (at least) one
location results in an increased voltage for (at least) one node (or the reverse).

Typically, as illustrated on [12, p. 24], increasing the net-load of the power
system beyond the SNB point, the system has no longer any feasible long-
term steady-state solution. At such a point, load shedding, rapid generation
increase, or similar emergency measures need to be taken in order to save the
power system from voltage collapse.

In [15] it is shown that SNB points can exist for both high loads and low
loads in some systems; a drop in load can also result in the system passing the
SNB limit.

It is worth noting here that in [6, p. 107] it was observed that A is the Schur
complement [23] of the block gy in the J matrix,

A = J/gy

= fx − fy (gy)
−1
gx

(13)
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and for such the determinant property of Schur complements

det (J) = det (gy) det (J/gy)

= det (gy) det
(
fx − fy (gy)

−1
gx

)
= det (gy) det (A)

(14)

gives that anytime either gy or A is singular, J will also be singular.

2.2.1.1.2 When gy is singular Since power in Alternating Current
(AC) as well as Direct Current (DC) systems is quadratically dependent on
voltage, there are mathematically (and physically) for each possible load �ow sit-
uation two possible voltages in a node for each level of power consumption. For
the simpli�ed case of an AC power system with power source E∠0, impedance
0 + jX, load P + jQ, and voltage over the load U∠θ [12, Chapter 2.3], the
voltage over the load is related to the load following

U =

√
E2

2
−QX ±

√
E4

4
−X2P 2 −XE2Q, (15)

and as can be seen, Eq. (15) has two unique solutions except for the case when

E4

4
−X2P 2 −XE2Q = 0, (16)

for which there is only one solution,

U =

√
E2

2
−QX, (17)

corresponding to when J is singular. If

E4

4
−X2P 2 −XE2Q < 0, (18)

the system is loaded beyond its capacity and there are no (real) solutions to
Eq. (15). The lossy case, with R nonzero would be slightly more complicated,
but conceptually the same. When reaching the situation Eq. (16) and the load
starts to decrease, there is no longer any guarantee that a reduced active load
P will result in an increase voltage U over the load. That is a point beyond the
point of voltage instability (or in other words, beyond the SNB point).

Recall the simpli�ed notation of Eq. (10) which will be used when working
with SLs. According to [1,22] the system is at an SNB when Eqs. (19) to (22);
that is when the system is in equilibrium, Eq. (19), and the system Jacobian,
sometimes denoted J and sometimes Fz throughout this report depending on
the context, has a unique zero eigenvalue, and the transversality conditions
Eqs. (21) and (22)

F = 0 (19)

vFz = Fzu = 0 (20)

vFλ 6= 0 (21)
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vFzzuu 6= 0 (22)

hold at that point. Note that uniqueness is not guaranteed by Eq. (20) alone,
only existence. In [6, Chapter 4.4] the terms "nondegeneracy" and "transver-
sality" conditions are used, which are de�ned slightly di�erently than Eqs. (21)
and (22). Since, in [6, Chapter 4.4], another, more compact, notation is used,
it is hard to judge by simple visual inspection whether or not these conditions
are the same as the transversality conditions of Eqs. (21) and (22). In addi-
tion, another slightly di�erent de�nition of the transversality conditions can be
found in [12, equations (5.39c) and (5.39d)], where the counterparts to Eqs. (21)
and (22) are of higher dimensions; matrix instead of vector, and 3-tensor instead
of scalar, respectively.

In some of the literature, for instance in [1], is it claimed that Eq. (21)
guarantees normalization of v. It is clear to the author of this report that it
guarantees the avoidance of the trivial solution of v = 0, but normalization is
not clearly explained or motivated in [1] and logically it should not be the case
generally.

Another peculiar claim stated in [1] with a reference to [24] is that systems
with constant Fλ, for power systems with constant load models (that is PQ
(PQ) load models), are expected to bifurcate through a saddle node (that is
a saddle node bifurcation, an SNB, since Eq. (21) is generally satis�ed. This
is however a bit contradictory to many other studies in the �eld, for example
in [6], where constant load models are used and HBs have been found. This
could possibly be an interpretation issue.

It is also said in [1], referring to [22, the 1986 issue of], that "local saddle-node
bifurcations are generic, i.e., they are expected to occur in nonlinear systems
with one slow varying parameter, as opposed to other types of 'singular' local
bifurcations such as transcritical and pitchfork, which require certain speci�c
symmetries in the system to occur".

Lots of information is given by analyzing the SNB point in scrutiny; following
[1] the sign and the sizes of Eqs. (21) and (22) will give information about how
the system bifurcates locally. This could probably be utilized in future work,
confer Chapter 5 in order to estimate the costs of an SNB to occur, depending
on what causes it and under which conditions. Also the eigenvectors may give
valuable information.

In the literature studied, it seems not to be a focus of the authors to con�rm
the zero eigenvalue uniqueness. Neither has that been a focus within the work
summarized in this report. In practical power system operation, multiple zero
eigenvalues of the Jacobian might not occur at all, or at least have extremely
low probabilities of occurrence. That could however be a topic to determine
through numerical studies and/or further literature read-through and review.

2.2.1.2 SLL When equipment and units in the power system have the ability
to switch (for example between di�erent modes of operation), immediate voltage
instability may occur. Such immediate voltage instability is here denoted SLL
and is dependent on what happens after the switching has taken place.

This kind of mode switching occurs typically when the excitation Electro-
Motive Force (EMF), E′f , has reached its upper limitation voltage and the AVR
switches from AVR control mode into OvereXcitation Limiter (OXL) control
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mode. Note that in some cases, under-excitation will also be an important is-
sue. Mathematically, switching from one control mode to another means that
Eqs. (1) and (2) may change in dimensions and/or content. In the particular
case of a generator i equipped with an AVR, operating in AVR control mode,
Eq. (119) constitutes one of the rows of f (·) for that particular generator i.
Then, at the same time, Eq. (123) will not be a part of g (·) for that i. The
opposite applies when generator i is in OXL mode. Moreover, the variable E′f,i
will be one element in x when generator i is in AVR control mode, and one
element in y when it is in OXL control mode. In reality, at the very point of
switching both constraints would be active.

It may happen that for a certain loading of the system,
(
P 0
D, Q

0
D

)
, the eigen-

values of the corresponding system Jacobian, J0, will not be close to zero. But
for a small perturbation in net system load, ∆PD,∆QD, one or many units may
have switched mode of operation such that the system is now represented by a
di�erent set of Eqs. (1) and (2). Also here, for the new load(

P 1
D, Q

1
D

)
=
(
P 0
D, Q

0
D

)
+ (∆PD,∆QD) (23)

the new system jacobian, J1, might be far from having zero-valued eigenvalues.
This does however not give any information of whether or not the system has
entered a voltage-unstable mode.

Simply studying the eigenvalues of J does not give any information whether
Eq. (18) is the case or not. Therefore, after a unit in the power system has
made a switching between modes of operation, one needs to study whether

∂U

∂P
< 0 (24)

or not. If Eq. (24) holds, the unit's switching did not result in an SLL, whereas if
Eq. (24) does not hold, the unit switching did result in an SLL. This is explained
somewhat di�erently, but with graphical illustrations in [6].

Remark: As can be seen on the illustration on [12, p. 24], also for the upper
part of the PU-curve, there are areas and situations where Eq. (24) doesn't hold,
in such cases it would be likely that the study of the second order derivatives
would be of use. In [15] it is explained that there might be one SNB limit for
high loads, and one for low loads. It is still not clear to the author of this
report how in such systems an SLL would be identi�ed after a unit switching.
This is out of the scope of this report and left for possible future studies, confer
Chapter 5.

2.2.1.3 Hopf Bifurcation (HB) It is also known from bifurcation theory
that when the dynamic Jacobian of the system, A, has paired eigenvalues of the
kind 0 ± i · ν, the system has reached a HB. The paired imaginary eigenvalues
gives rise to an (increasing [11]) oscillatory behaviour of the power system and
not an immediate voltage collapse. Thus, one can conclude that HBs are less
severe than SNBs. Something to bear in mind for future work, and discussed
somewhat further in Chapter 5.

It is stated in [25] "... that HBs ... are not possible in purely ac lossless
systems with second-order generator models". And naturally, they cannot exist
in systems modelled without dynamics.
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Sometimes when only transient bifurcations are of interest, and only the
matrix A from Eq. (8) is considered, it is implicitly assumed that the grid itself
never reaches a bifurcation, that is, that gy is nonsingular. In [1] it is stated
that in its references [26, 27] (on [28] wrongly crediting L. H. Fink as their
author) it should be explained under which conditions one can expect gy to be
nonsingular. That is however left as out of the scope of this project. In such
cases however, it is explained [1] that the conditions Eqs. (19) to (22) stated for
F (x, y, λ) can be applied for f

(
x, y−1 (x, λ) , λ

)
. As a contrast to the above,

in [29] the cases when only gy singularity is of importance for studying power
system bifurcations are treated.

By natural reasons, since the frequency is assumed to be stable, there are
no transients for the mathematical model describing the grid, g (x, y), so HB
cannot occur because of properties in gy.

HB can occur also for mid-term dynamics [11], but such are not treated in
this report.

2.2.1.4 Other bifurcations occurring in power systems Singularity
Induced Bifurcations (SIBs) are explicitly mentioned in [12, Chapter 5.3.2], [13,
Appendix 2.B] and in [11]. Simply, they occur when one eigenvalue µi of J
passes through ±0 as another eigenvalue µj passes through ±∞ like ci ·t and −cjt
respectively for a parameter t : −ε → ε, ε > 0, and for constants {ci, cj} ∈ R+,
such that the entire system remains stable. The practical impacts of SIB needs
to be further determined, confer Chapter 5.

A thorough description of other bifurcations occurring in power systems can
be found [26,27]. Consideration of such may be an issue for future work, confer
Chapter 5.

2.2.2 Operational limits that are not necessarily stability limits (OL)

Operational limits that are not necessarily stability limits, OL, can as mentioned
in Section 1.1 and in [6] treat di�erent things. Typically thermal overload is of
importance.

This report (as [6]) and its numerical study has limited itself to thermal
transfer limits of lines. It is known to the author that thermal overloads are
actually caused by the currents, I, �owing in the lines. And for comparatively
constant voltages, U , the transfer limits in terms of currents, Imax can be mod-
eled as transfer limits in terms of apparent power, |S|max, for which

|S|max
= Imax · U. (25)

By some reason, maybe under the assumption that the reactive power transfers
are small related to the active power transfers, the thermal transfer limits of
lines in [6] were modeled as active power transfer limits. In order to align this
report with that approach, active power transfer limits have been chosen here as
well. Modifying the study to transfer limits in terms of currents I or apparent
power |S| would be comparatively straight-forward, but left out of this work.
In line with the numerical model of Chapter 3, the active power transfer limit
is in the optimization program identifying the various operational limit surfaces
de�ned as Eqs. (140) and (141).

Another example of operational constraints that are not necessarily critical
to the operation of the entire system is voltage level operational constraints.
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Voltage constraints are set in order to avoid damage of equipment. It is in
this project however assumed that tap changers on the distribution-side of the
transformers connecting to the di�erent distribution grids will be able to handle
such. This project studies phenomena in the transmission grid. Discussions of
the validity of assuming constant loads because of tap changers making voltage-
sensitive loads on the distribution side see no voltage level changes can be found
in [11, Section 4].

2.3 Representing Operation Limits as surfaces in load space

An operational limit surface is de�ned by the mathematical equations describing
it in Section 2.2. As explained in Section 2.3 there are many reasons for working
with surface representation in load space in the kinds of problems treated in this
project. In the below, ways of �nding and identifying these surfaces/limits will
be treated, as well as ways of approximating them.

Since some work already has been done treating power system operation in
(net) load space with respect to operational limits represented by surfaces, this
was a natural step to take. Representing nodes of generation and consumption
in the power system as dimensions in (net) load space, the dimension of the
problem can be signi�cantly decreased by getting rid of all the state variables.
Following the research line of [6], assume that second order polynomials have
been chosen to represent the various operation limits in load space. Other alter-
natives exist, and should not be totally rejected for future studies of the topic.
One example of alternatives is using hyper plane approximations instead [30],
but then, quite naturally, many more surfaces are needed in order to maintain
the same accuracy as given by a second order polynomial. There are always
trade-o�s regarding computation between how large a mathematical program
should be compared to how complex.

At any case, working with second order polynomials, the stochastic nature
of the uncontrollable net loads can be modelled and approximated by the use
of multivariate Edgeworth expansions [9]. Since these typically approximate
Cumulative Distribution Functions (CDFs), the approach can be easily applied
to chance-constrained optimization problems. But it also leaves some challenges
that need to be addressed; confer Section 4.2.

2.3.1 Identifying the most important point

For the moment, assume i.i.d. (identically and independently distributed) stochas-
tic variables of all parameters in load space. Such an assumption is probably
made when no other models are available, and no other information of the sys-
tem is available. Then, the most likely point in load space to encounter an
operation limit is the point in load space with the shortest Euclidean distance
from the present (assumed stable) point to the operation limit in question. For
simplicity and for illustrative purposes, the Euclidean approach is anyhow used
in the model presented in Section 2.3.2 and in the numerical examples of Sec-
tion 4.1.

In reality however, the case is more complicated. Firstly, the net loads of
the stochastic and uncontrollable loads are often dependent (at least correlated).
Particularly, weather phenomena a�ecting production are geographically depen-
dent. Also consumer loads are dependent on each other and with the weather.

31



Moreover, it is reasonable to assume the expected control actions taken (auto-
matic as well as by the TSO) to be dependent upon these stochasticities.

So the most probable point in load space to be at when encountering an
operation limit is not by necessity the closest one in Euclidean terms. There-
fore, the concept of most important point was introduced in [6] and after some
development and improvements ended up in the approach of [9]. In the latter
approach, the most important point is estimated in three steps:

• Firstly, a Security Constrained Optimal Power Flow (SCOPF) (see Sec-
tion 2.7.2) is solved considering the most relevant contingencies and the
stochastic variables are assigned their expectation values. The SCOPF
solution gives the expectation values u∗ of the control variables u.

• Secondly, the control variables are modeled as normal variables (confer
Chapter 5) with covariances de�ned by linearizing u around the SCOPF
solution as a function of the stochastic uncontrollable net loads ζ that also
seems to be needed to be modeled as normally distributed.

• Thirdly, now that a stochastic approximation model of all of λ (recall that
Eqs. (12) and (111)) has been achieved, this joint distribution function of
the net load at the end of the control period can be used as importance
function.

Note that steps 1 and 2 in the above list are describing the Probabilistic Optimal
Power Flow (POPF) procedure/method of Section 2.7.4.

Finding the most important point to approximate the surface around will
thus be done by replacing Eq. (137) with fΛ (λ). Note that here, at least the
ζ-part of λ could be possible to be described with its actual stochastic model,
and not with the previously used normal distribution approximation of the ac-
tual distribution. The reason why all this is done is of course to make sure that
the surface approximation of Section 2.3 is made around a point close to where
the power system is most likely to be operating within the upcoming 15 minute
period of study. Taylor approximations are quite accurate close to the points
around which they are approximated, but less so further away from that point.
By the same reason, using normal distributions in the POPF part of the pro-
cedure would not do much harm. In addition, for higher accuracy, a stochastic
variable can be approximated as close as desired to the original distribution by
a series of normal distribution approximations.

This approach is attractive as long as the distribution functions of the net
loads are unimodal. It is left for future research, Chapter 5, to determine under
which conditions that is a valid assumption, and for which practical cases it
would not be.

2.3.2 Finding and identifying the surfaces

In [6] and its references a description of methods of identifying the operational
limit surfaces can be found. Generally, the methods available are:

• Direct methods

• Optimization methods

• Continuation methods
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• Quasi-steady State Simulations (QSSs).

In the following, these methods will be described by a brief theoretical literature
review aiming at motivating the approach decided for in this project.

Of the above mentioned four methods, only optimization methods and con-
tinuation methods can, in a straight-forward manner, be used to �nd the closest
(or more generalized; the most important) operational limit surface(s). It will
be explained why in the below.

2.3.2.1 Direct Methods Direct methods solve a system of equations in
such a way that it results in a unique solution. The problem is arranged such
that a particular operational limit will be violated, and the right number of
system parameters are �xed or interrelated such that the problem gets a unique
solution.

One of the main challenges working in this project was the confusion in
the use of terminologies. In order to simplify future studies in the �eld it is
important to mention alternative names and denotations of the same concept
and phenomenon. A popular synonym to Direct Methods is Point of Collapse
methods [12, 25,31�33]

One drawback with direct methods is that they are unable to �nd voltage
collapses related to control limits [13, Chapter 4.3.5.1] (what in this report is
denoted SLL, Section 2.2.1.2), particularly generators reaching reactive power
limits [32] cannot be detected using this technique.

In [13, Chapter 4.3.5.1] it is a bit falsely claimed that using the direct method
is the same as minimizing the increase in load such that the power �ow con-
straints are ful�lled [13, equation (4.20)]. It is true that the FONCs of that
problem are ful�lled for the solution of the direct method problem, but it it
more luck than skill since power �ows are strongly nonlinear and non-convex
to their nature. Would that optimization actually be done with an appropriate
solver, the most likely solution would be the zero solution of load increase, given
that the initial load was feasible. In problems like this, in order to achieve opti-
mum, also second order conditions and other measures needs to be taken. That
is one of the reasons algebraic modeling and o�-the shelf solvers have been used
within this project.

2.3.2.2 Continuation Methods Continuation methods is based upon in-
cremental increases of loads in prede�ned load increase directions. The load
is incrementally increased until an operational limit is reached. This approach
will lead to a large number of comparatively easily solved load �ow problems.
The main challenge how to handle load increments close to problem singulari-
ties has been solved in [6] and its succeeding work, and before that in among
others [12, Chapter 9.3.2]. (Initially) the tangent vector is used to follow the
PU-curve. As the solver approaches the bifurcation point, the step size is de-
creased. At the very point of the bifurcation, the right eigenvector to the system
Jacobian and the tangent vector to the PU-curve are equal [29].

The bene�t with using continuation methods is that they are both reliable
and informative, but they may be very computationally costly [13, Chapter
4.3.5.2].

According to [1], continuation methods are equivalent to solving [13, equation
(4.20)] with Generalized Reduced-Gradient (GRG) methods. That can however
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not be totally the case, following the similar discussion in the last paragraph of
Section 2.3.2.1. If however, the objective function would have opposite sign, it
would be closer to the truth, because in [13], λ denotes the scalar parametriza-
tion of load increases. That paper, [1] also uses continuation methods.

In [6], continuation methods are used, and load increases in a large num-
ber of randomized directions are used in the process of �nding the aggregated
operational limit surface sought for.

2.3.2.3 Optimization Methods Optimization methods typically aim at
�nding any, or a speci�c (kind of) operational limit violation. The objective is
for example set to �nd such a limit violation as close as possible to the present
operation point of the system. Distances are typically de�ned as some norm of
the load-change in load space.

Some approaches parameterize the direction in load space of the load increase
in order to simplify the problem. If however aiming at �nding the generally
closest point to a limit surface with that approach, one needs to try a great
variation of load increase directions. That approach has similarities with the
continuation methods of Section 2.3.2.2.

Another, generalized, but more computationally burdensome approach is to
allow a free (or at least freer) direction of load increase in load space. Then
only one optimization is needed per surface to be sought for. It is a trade-o�
between a few "semihard" and vast numbers of very simple problems to solve
(note the similarity with the continuation method of Section 2.3.2.2). The latter,
generalized, approach is used in this project.

The optimization methods found in the literature are less generalized than
the one presented in Section 3.4. In for example [13, equation (4.20)], the change
in load is minimized, but no actual constraint is ensuring singularity. There,
they rely completely on only looking for an SNB, and that the FONCs might
lead you there. In [12, Chapters 7 and 9] load maximization is discussed. But
that can only be done with the scalar parameterized de�nition of λ, since for
a general load increase direction you might end up in�nitely far away from
the present operation point. Particularly, in [12, Chapter 9] the load change
is maximized with respect to the load �ow equations. That method can �nd
an SNB, given that the direction of load increase is prede�ned in a relevant
direction, but the method cannot be used generally to �nd any operation limit
surface of interest.

It is also con�rmed in [34] that for unknown directions of load increase, one
needs to minimize the distance to the surface when �nding it, not maximize it.
This is in accordance to the approach used in this report.

A common critique against the classically used optimization methods is that
they similarly to the direct methods do not necessarily consider the path from
the present load point to the operation surface. That property makes optimiza-
tion methods faster than continuation methods [12, Chapter 9.3.3]. The critique
is base on the risk that control actions along the path might be missed. With
the optimization approach proposed in Section 3.4 however, that drawback will
be eliminated since the model simultaneously considers all the possible closest
operational limits � including those induces by control actions.

Besides the need of identifying SLLs for example, within the scope of this
project, there are not obvious needs for having the whole solution path, or
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the path of load increase to the operational limit. Without the equilibrium
assumption of Section 3.1.1 holding, the solution path indeed becomes relevant,
but then the temporal resolution of a typical continuation method would be too
coarse anyway. For such cases, other approaches are needed.

According to [12, Chapter 9.3.3], the lagrange multipliers associated to the
power system equality constraints at the point of solution of the optimization
problem looking for an SNB are also the left eigenvector of the system Jacobian.

Another example of existing optimization methods strongly relying on the
FONCs to indicate optimality is [1]. It is clear that the presented approach there
relies heavily on local optima where, naturally, initial points for the algorithm
will be crucial. With the approach presented in Section 3.4 in this report,
initial guesses are far less crucial because of the generalized approach the usage
of o�-the-shelf solvers. A solver like Linear, Interactive, and Discrete Optimizer
(LINDO) [35, 36] is e�cient, and typically its local solver reaches the global
optimum. Such a solver has however not studied power systems at university
level, so it still relies on initial guesses of voltages on the "correct" side of the PU-
curve. Also in [1], the optimization model is tailored for a prede�ned direction
of load increase and a scalar parameter representing the load increase, which in
turn is maximized for �nding the SNB surface. Those models discussed seem
however also to be sensitive to initial guesses of variables, and only designed for
�nding SNBs, and not operation limits in general.

Minimum distances to SNB only is also studied in [34,37].

2.3.2.4 Quasi-steady state simulation (QSS) Quasi-steady state sim-
ulation can be seen as the opposite of the direct method. Instead of �nd-
ing a particular operational limit, one studies if the system remains stable in
the present operation point also after some contingency (e.g. disconnection of
some unit or line). The quasi-steady state assumption is in line with Eqs. (1)
and (2), [12, Chapter 6.4] by assuming that ẏ = 0. That means that it is
implicitly assumed that frequency stability will not be an issue after the contin-
gency. After that a "common" time-domain simulation takes place. The QSS
assumption speeds up the simulations signi�cantly.

2.3.2.5 Other Methods In [13, Chapter 4.3.6] the method of multiple
power �ow solutions is mentioned. It is a bit complicated, and expectedly faster
than using the continuation method, but continuation methods better take into
account where in load space you started, and the direction in which you are
going. Therefore, they cannot consider system control limits (that is SLL). In
general, the method seems very approximative, but fast, and maybe necessary
for computers of older times, or for very detailed models of large systems.

2.3.3 Approximating the surfaces

For each operational limit point found using the methods presented in Sec-
tion 3.4, a second order approximation to the operation limit surface has be done
according to theory presented in [6]. It is done slightly di�erently depending on
the kind of operation limit being approximated.

This Chapter is a summary of how the surface approximations used for the
numerical example in Section 4.1. Surface types not considered in Section 3.4
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and its corresponding numerical results of Section 4.1 are omitted from this
summary.

2.3.3.1 Introduction In this section, it is assumed that the surface has
been found, and also the point on it, denoted λc, around which the approxima-
tion will be done. The descriptions are very similar to the ones of [6], but with
the aim of a less abstract approach making it easier for the intended reader of
this report to apprehend.

Another di�erence to the approach of [6] is that since in this project each
surface is intended to be treated individually, the consideration of Corner Points
(CPs) is not expected to be an issue.

2.3.3.2 General Theory

2.3.3.2.1 First order approximation of the surface For �rst or-
der approximations of an operational limit, the tangent plane of the surface
expressed in load space needs to be determined. This is done di�erently for
di�erent particular limits, but as soon as the surface normal in load space co-
ordinates, N (λ) = nΣ (λ), is found, the orthonormal base, C, for the tangent
plane can be determined. A �rst order approximation of each operation limit
found, can be done in load space around the found point λc, following

Γλ
1
c (xc) = λc + Cxc, (26)

where Γ represents the (hyper)plane in load space that approximates the op-
erational limit, λc is the point in load space which the approximation is made
around, C is the base matrix to the tangent plane of the operational limit surface
at that point, and xc is any point in R|Λ|−1 (representing points in the tangent
plane of the surface). An illustration of a 1st order surface approximation can
be found in Fig. 1.

The boldfaced Λ used in the paragraph above denotes the set of of net-load
buses which has the cardinality |Λ| = |L| + |G \ s| since, as can be seen in
Eqs. (124), (125), (130) and (131), the controlled generation and the uncon-
trolled (net-)consumption are modelled di�erently.

2.3.3.2.2 Second order approximation of the surface For second
order approximations of an operational limit, the curvature of the surface ex-
pressed in load space needs to be determined. Adapting to the notation of [6],
let Σxc

be a surface in R|Λ|, which approximation is denoted Γxc
. Then, denote

the normal to this surface, at the point λc, nΣ (λc). Then the tangent hyper-
plane is denoted TλΣ, and the orthonormal base matrix C of TλΣ consists of
Λ−1 = |Λ|−1 unit vectors ui, i ∈ {1, 2, ...,Λ− 1}. Then de�ne the mapping N
that assigns a unit normal to Σ pointing in the direction away from the stability
domain on each point λ on Σ as the Gauss map, N : Σ→ SΛ−1,

N (λ) = nΣ (λ) ∈ SΛ−1,∀λ ∈ Σ, (27)

from which the changes in the normal along the surface can be formalized.
Another mapping, the Weingarten map [6], dNλ at λ ∈ Σ is also essential;

it is de�ned as the map from the tangent hyperplane TλΣ to itself, giving the
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1st order approximation of surface, Γλc,1
st

, Eq. (26).
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n

λ

CCT (λ− λc)

d1
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(λ)n =
= 〈λc − λ, n〉n =

=
(
CCT − I

)
(λ− λc)

Figure 1: The �rst order approximation of the surface, and distance from load
point λ to hyperplane approximation of surface.

derivative of the Gauss map for changes in load λ along the operational limit
surface Σ. Changes in the unit normal vector is by nature changes in directions
orthogonal to the normal vector, and therefore the derivative of the normal
vector express movements in TλΣ. For in�nitesimally small movements (load
changes) along Σ, these movements will be in the tangent plane of it, TλΣ. Thus
the mapping is from the tangent plane to itself. Moving in the direction of the
normal would imply leaving the surface. The Weingarten map, dNλ (xc) ,∀xc ∈
TλΣ can be represented by a (L− 1)× (L− 1), symmetric, real-valued matrix,
dNλ operating on vectors xc. The matrix dNλ,i,j , has by de�nition columns j
representing the derivatives of the Gauss map along the unit basis vectors uj ,
whereas the rows i in it represents the changes of the normal in direction ui for
an in�nitesimal movement du in the uj direction along TλΣ. Thus, a �rst order
approximation of the normal can be expressed as

N (λ+ duj) = N (λ)l + Cl,idNλ,i,jduj . (28)

for which l ∈ Λ = RL, and {i, j} ∈ TλΣ = RL−1.
For a second order approximation, it is needed to de�ne the second fun-

damental form, Πλ (xc), of Σ at a point λ on Σ, to simply be the negative
inner product of the Weingarten map dNλxc and the displacement xc, that is
−〈dNλxc|xc〉, or simpler −xTc dNλxc. It is worth noting here that the surface Σ
is the real surface and Γ is its corresponding approximation.

For simplicity, let the surface Σ be represented by points λ in load space, for
which f (λ) = 0. Then the inwards-pointing unit normal to that surface in load
space is − ∇f

||∇f || , and the Weingarten map is CT fλ,λCxc, where fλ,λ represents
the hessian of f at λ. It can be proven that the second fundamental form for any
point of displacement xc in the tangent plane at λ is 2 times the length of the
inner product 〈σ (x0)− λ|N〉, where σ (x0) is a second order Taylor expansion
Γλc of the surface Σ at λ. Thus, the geometrical interpretation of the second
order fundamental form is that up to a factor of 1

2 it measures the distance
(see Fig. 2) from the tangent plane to the second order Taylor expansion of the
surface Σ. In turn, the second order approximation of Σ at λ can be expressed
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Figure 2: The �rst and second order approximations of the surface, and three
di�erent distance functions from load point λ to approximation of surface.

as

Γλ (xc) = λ+ Cxc −
1

2
xTc dNλxcnΣ (λc) (29)

that is, as a function of xc in the tangent hyperplane TλΣ. In practice, however,
it is easier to di�erentiateN with respect to λi, rather than to xc ∈ TλΣ = RΛ−1,
so in this project

Γλ (xc) = λ+ Cxc −
1

2
xTc C

T dNλ
dλ

CxcnΣ (λc) (30)

will be used. In order to simplify notation, let

Πλc
(xc) = −〈dNλc

(xc) , xc〉 = −xTc dNλc
xc = −xTc CT

dNλ
dλ

Cxc (31)

such that Eq. (30) becomes

Γλc (xc) = λc + Cxc +
1

2
Πλc

(xc)nΣ (λc) (32)

for a briefer denotation later on in the report.

2.3.3.3 Thermal line transfer limits

2.3.3.3.1 The surface normal For all kinds of thermal and other op-
erational constraints, the method and the mathematical theory behind is con-
ceptually the same. In this report, however, only thermal operational limits of
power transmission lines are considered. And in this report, they are expressed
as active power constraints. When such an operational limit has been reached,
the constraint Eq. (140) is active, as

−Gi,j (Ui)
2 − (UiUj) (−Gi,j cos (θi,j)−Bi,j sin (θi,j)) ≤ P lim

i,j (33)
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for some speci�c line {i, j} ∈ B. The normal to the OL surface associated to

this thermal limit at the point of net load
[
PG,g PD,1,l

]T
in coordinates in

active power net-loads in load space is nOL
i as a contrast to the previously used

more general notation nΣ (λ). The normal nOL
i needs to be determined as a �rst

step towards approximating the operational limit surface. Let us �rst denote
the left-hand side of Eq. (33) as Li,j , denoting that the line is limited for power
�owing from bus i to bus j. Moreover, let following Section 2.1.3

z =

[
x
y

]
(34)

for which f (x, y) and g (x, y) can be simpli�ed to

F (z) =

[
f (x, y)
g (x, y)

]
, (35)

and let the load vector, λ, represent the active (net-)loads in load space,

λ = λi = λg,l =

[
ug
ζl

]
=

[
PG,g
PD,1,l

]
, i ∈ Λ, g ∈ G, and l ∈ L (36)

for which in turn f (x, y, λ) and g (x, y, λ) can be simpli�ed to F (z, λ). Since
the load at the OL thermal limit, λ = λ1, is not an SNB, the system Jacobian,
J , or from now on also Fz, is nonsingular, the implicit function theorem implies
that there is a smooth function Φ, de�ned in a neighbourhood of λ1 with

Φ (λ1) = z1 (37)

Φ (λ) = z (38)

F (Φ (λ) , λ) = 0 (39)

FzΦλ + Fλ = 0 (40)

for λ in a neighbourhood of λ1, where more explicitly for this case study

Fλ =
∂F

∂PD
(41)

Fλ,i,j = 1, i = 2gns + 2g + lj , j ∈ {1, 2, ..., L} (42)

Fλ,i,j =
QD,0,lj

PD,0,lj
,i = 2gns + 2g + b + lj ,j ∈ {1, 2, ..., L} (43)

for which lj denotes the jth element in the set L.
By the above reasoning, the (unscaled) normal vector nOL,unsc of the thermal

operation limit Eq. (33) at λ1 can be obtained by

nOL,unsc =
∂Li,j (Φ (λ))

∂λi

∣∣∣∣
λ=λ1

= Li,jz (Φ (λ1)) Φλ (λ1) (44)

in which

Li,jzk (Φ (λ1)) =
∂Li,j (z)

∂z

∣∣∣∣
z=Φ(λ1)

, (45)

in particular

Li,jzk = −UiUj (+Gi,j sin (θi,j)−Bi,j cos (θi,j)) , k = 2gns + 2g + i (46)
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Li,jzk = −UiUj (−Gi,j sin (θi,j) +Bi,j cos (θi,j)) , k = 2gns + 2g + j (47)

Li,jzk = −2Gi,jUi − Uj (−Gi,j cos (θi,j)−Bi,j sin (θi,j)) , k = 2gns+

+ 2g + b + i
(48)

Li,jzk = −Ui (−Gi,j cos (θi,j)−Bi,j sin (θi,j)) , k = 2gns + 2g + b + j, (49)

and
Φλ = −F−1

z Fλ. (50)

Normalizing nOL,unsc of Eq. (44) such that its 2-norm length is 1, and such that
it points in the direction away from the stability domain can be done by

b =
∣∣nOL,unsc

∣∣
2

(51)

cl = sgnl (PD,1,l − PD,0,l) (52)

al =
cl
b

(53)

nOL
l = aln

OL,unsc
l . (54)

2.3.3.3.2 A remark on generalization The observant reader has seen
that ever since Eq. (41), λ has been reduced only to the uncontrollable loads
ζl, and not any longer considering the entire net-load space. That is actually
what is done in the numerical example of Section 4.1, since more than three
dimensions are hard to visualize in print. In the general case, when the surfaces
are not obtained for visual inspection, but rather for later usage in the SOPF
(see Section 2.7.5), λ needs also to include u.

When considering also the controllable generation, Eqs. (41) to (43) are not
valid any longer. Instead

Fλ =

[ ∂F
∂PG
∂F
∂PD

]
(55)

Fλ,i,j = −1, i = 2gns + 2g + gns,j , j ∈ {1, 2, ..., Gns = |G \ s|} (56)

Fλ,i,j = 1, i = 2gns + 2g + lj ,
j ∈ {Gns + 1, Gns + 2, ...
..., Gns + L = Gns + |L| = Λ} (57)

Fλ,i,j =
QD,0,lj

PD,0,lj
, i = 2gns + 2g + b + lj ,

j ∈ {Gns + 1, Gns + 2, ...
..., Gns + L = Gns + |L| = Λ} (58)

for which gns,j denotes the jth element in the set G \ s, and lj denotes the jth
element in the set L. In Eq. (44), Lz would be the same as before, whereas
Φλ would be di�erent depending on Eq. (50) using the new Fλ of Eq. (55).
Moreover, b of Eq. (51) would be recomputed, and

ci = sgni (λi,1 − λi,0) (59)

ai =
ci
b

(60)

nOL
i = ain

OL,unsc
i . (61)

2.3.3.3.3 The Weingarten Map and its necessary associated com-
ponents For a second order approximation of the surface, the derivative of the
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normal is needed. Di�erentiating Eq. (54) with respect to λ gives by insertion
of Eq. (44)

dN

dλ
=
dnOL

l

dλn
=

d

dλn
al

(
∂Li,j

∂zm

∂Φm
∂λl

)
=

= al

(
∂2Li,j

∂zo∂zm

∂Φm
∂λl

∂Φo
∂λn

+
∂Li,j

∂zm

∂2Φm
∂λn∂λl

)
+ al,λL

i,j
z Φλ

(62)

for which the al,λ-term is nonzero but can here be unconsidered since the ap-
plication of dN

dλ in this project is Eq. (30), and since CT ⊥ N , that term will
be zeroed out anyway later on in the calculations. The remaining part of dNdλ is
denoted

(
dN
dλ

)
1
. Thus, dN can be computed as

dN = CT
(
dN

dλ

)
1

C = alC
T

(
∂2Li,j

∂zo∂zm

∂Φm
∂λl

∂Φo
∂λn

+
∂Li,j

∂zm

∂2Φm
∂λn∂λl

)
C (63)

in which ∂2Li,j

∂zo∂zm
can be determined as

Li,jzo,zm =
∂2Li,j

∂zo∂zm
, (64)

which only nonzero elements are:

Li,jzo,zm = −UoUm (+Go,m cos (θo,m) +Bo,m sin (θo,m)) , {o = m} =

= {2gns + 2g + i, 2gns + 2g + j}
(65)

Li,jzo,zm = −UoUm (−Go,m cos (θo,m)−Bo,m cos (θo,m)) , {o,m} =

= {(2gns + 2g + i, 2gns + 2g + j) , (2gns + 2g + j, 2gns + 2g

+i)}
(66)

Li,jzo,zm = −Uo (+Go,m sin (θo,m)−Bo,m cos (θo,m)) , {o,m} = {(2gns+

+2g + i, 2gns + 2g + b + j) , (2gns + 2g + b + j, 2gns + 2g + i)}
(67)

Li,jzo,zm = −Um (+Go,m sin (θo,m)−Bo,m cos (θo,m)) , {o,m} = {(2gns+

+2g + i, 2gns + 2g + b + i) , (2gns + 2g + b + i, 2gns + 2g + i)}
(68)

Li,jzo,zm = −Uo (−Go,m sin (θo,m) +Bo,m cos (θo,m)) , {o,m} = {(2gns+

+2g + j, 2gns + 2g + b + j) , (2gns + 2g + b + j, 2gns + 2g+

+ j)}
(69)

Li,jzo,zm = −Um (−Go,m sin (θo,m) +Bo,m cos (θo,m)) , {o,m} = {(2gns+

+2g + j, 2gns + 2g + b + i) , (2gns + 2g + b + i, 2gns + 2g + j)}
(70)

Li,jzo,zm = +Go,m cos (θo,m) +Bo,m sin (θo,m) , {o,m} = {(2gns + 2g+

+b + j, 2gns + 2g + b + i) , (2gns + 2g + b + i, 2gns + 2g+

b + j)}
(71)

Li,jzo,zm = −2Go,m, {o = m} = {2gns + 2g + b + i} , (72)

which are computed by by partially di�erentiating Eqs. (46) to (49); and in
which ∂2Φm

∂λnλl
needs to be determined. That determination is done by di�erenti-
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ating Eq. (40) with respect to λ,

0 =
d

dλ
(FzΦλ + Fλ) =

=
d

dλ

(
∂Fi
∂zm

∂Φm
∂λl

+
∂Fi
∂λl

)
=

∂2Fi
∂zo∂zm

∂Φm
∂λl

∂Φo
∂λn

+
∂Fi
∂zm

∂2Φm
∂λn∂λl

=

= {to be speci�c} =

=
∂2Fi

∂zo∂zm2

∂Φm2

∂λl

∂Φo
∂λn

+
∂Fi
∂zm1

∂2Φm1

∂λn∂λl

(73)

in which it may be noted that since the components of Fz,λ and Fλ,λ are zero
for constant load models, they can be ommitted. From Eq. (73),

∂2Φm1

∂λn∂λl
= −

(
∂Fi
∂zm1

)−1
∂2Fi

∂zo∂zm2

∂Φm2

∂λl

∂Φo
∂λn

(74)

can be deduced. And then dN in Eq. (63) can be computed by using Eqs. (46)
to (50), (53), (65) to (72) and (74).

2.3.3.4 SNB surfaces

2.3.3.4.1 Revisiting the de�nition of SNB The conditions for an
SNB is

F (z1, λ1) = 0 (75)

Fz (z1, λ1)u = 0 (76)

vFz (z1, λ1) = 0 (77)

vFλ (z1, λ1) 6= 0 (78)∑
∀i,j,k

vi
∂2Fi
∂zj∂zk

ujuk 6= 0 (79)

where u and v denote the right- and left-hand eigenvectors, respectively. More-
over, (z1, λ1) is the point in state and load space where the bifurcation occurs.

2.3.3.4.2 The surface normal The surface normal vector of an SNB
surface, ΣSNB for changes in loads dλ on ΣSNB can be derived by the following.
In order to be on ΣSNB, Eq. (75) must hold. For an in�nitesimal change in load,
dλ, such that λ1 + dλ ∈ ΣSNB,

F (z1 + dz, λ1 + dλ) = 0 (80)

holds, like
Fz (z1, λ1) dz + Fλ (z1, λ1) dλ = 0 (81)

does. Multiplying Eq. (81) by the v vector in Eq. (77) from the left-hand side,
considering that also Eq. (77) must hold in order to be on ΣSNB, gives

vFλdλ = 0 (82)
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for which it can be seen that vFλ (z1, λ1) constitutes a normal to ΣSNB expressed
in load space λ coordinates, since small movements in λ on the surface are
tangent to the surface. Thus vFλ must be normal because of the orthogonality.
The unit normal,

nSNB (λ1) = avFλ (83)

is by de�nition pointing in the direction away from the stability domain by
adjusting the sign and the value of the nonzero scalar a ∈ R.

2.3.3.4.3 The Weingarten Map and its necessary associated com-
ponents From Eq. (83), the derivative of the normal with respect to λ

dN

dλ
=
dnSNB

dλ
=

d

dλ
(avFλ) = a (vλFλ + vFλλ + vFλzΦλ) + aλvFλ (84)

can be obtained, in which Fλλ and Fλz are known to be zero in this report
because of the linear dependencies of loads in F , and for which aλ can be
ignored since CT ⊥ vFλ (since vFλ is normal to the tangent plane) and it is
rather dN than dN

dλ that will be applied here. Thus,

dN = CTavλFλC = aCT vλFλC (85)

in which vλ is unknown. Di�erentiating Eq. (77) with respect to λ gives

vλFz + vFzλ + vFzzΦλ = {Fzλ = 0, for constant loads} =

vλFz + vFzzΦλ = 0
(86)

which, regarding Fzλ being zero because of the linear dependencies of the load,
together with Eq. (40) in Eq. (85) gives

dN =

= −aCT vλFzΦλC
= aCT vFzzΦλΦλC

= aCT vi
∂2Fi
∂zj∂zk

∂Φj
∂λl

∂Φk
∂λm

(87)

for which v and Fzz are known, but Φλ needs to be determined. Since Fz is
singular in (z1, λ1), the Eq. (50) approach is not applicable here.

In order to attain an invertible matrix when solving for Φλ, Eqs. (76) and (77)
are used to obtain

vFzu = 0 (88)

d

dλ
vFzu = 0 (89)

v (FzzΦλ + Fzλ)u+ vλFzv + wFzuλ = {Fzλ = 0, for constant loads} =

vFzzΦλu+ vλFzv + wFzuλ = {Eqs. (76) and (77)} =

vFzzΦλu = 0

(90)

from which Eq. (89) together with Eq. (40) makes up the matrix equation[
Fz

vFzzu

]
Φλ +

[
Fλ

vFzλu

]
=[

∂Fi

∂zj

vi
∂2Fi

∂zj∂zk
uk

]
∂Φj
∂λl

+

[
∂Fi

∂λl

vi
∂2Fi

∂zk∂λl
uk

]
= 0

(91)
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from which Φλ can be solved. The added row vFzλu compensates for Fz being
of rank (confer to Section 3.4.6.2) 2 ·

(
2 · gb − 1 + bb

)
− 1. The observant reader

might note that the case of multiple zero eigenvalues is not considered, and
therefore out of the scope of this report. Now that Φλ has been determined, dN
of Eq. (87) can be computed.

2.3.3.5 Discussion of challenges related to Switching and Contingen-
cies

2.3.3.5.1 Switching and SLL surface representation Exactly how
SLL surfaces would be treated within the scope of the aims of this project is
however still not cleared out and is an issue for future studies, confer Chap-
ter 5. Unlike for example an SNB surface, the SLL surface is not to its nature
such that it will be found eventually in almost any load increase direction. As
explained in for example [6, Chapter 5.3.5], an SLL surface is only de�ned for
when the switching of the controllers in the power system leads to a harmful
point of operation. Typically, the SLL surface is at its endpoint tangential
(except in very rare cases [6, Chapter 5.3.5] and [5,8]) in load space to an SNB
surface, whereas SLLs intersects other surfaces (such as SLL-SLL, SLL-HB, etc.)
transversally [6, Chapter 5.3.5].

2.3.3.5.2 Post-contingency instability surfaces For some combina-
tions of contingencies and operation points, the risk will be that the previously
stable and feasible operation point will be lying beyond a bifurcation, and the
load �ow problem becomes unsolvable. It can be assumed that for such rare
cases some automatic control actions would kick in and shed loads, curtail pro-
duction and/or activate very fast production in the most cost e�cient way. In
such a case one needs to �nd the most important point the enables solvability,
and from there on, �nd the further optimal control actions that to a certain
level of risk guarantees that solvability will be maintained for the rest of the
period. A similar issue to this, but less generalized is discussed in [12, p. 331].

Smaller contingencies could possibly result in a solvable system, but with
some loads operating at the "wrong side" of the PU-curve. This would be a
contingency that practically results in an SLL-similar situation. This is probably
a case that needs to be further studied in the future. In this case, the control
actions would probably be to immediately get the system back to the right side
of the nose in the PU-curve.

The costs associated to these should needs to somehow be accounted for in
the continued research line of this project.

2.4 Distances to surface approximations

Given that the approximations of the operation limit surfaces for the pre-
contingency case and all the relevant post-contingency cases are determined,
the need for a distance function emerges. The purpose with this distance func-
tion is to estimate the distance from the current point of operation in load
space of the power system to each of the approximations of the operation limit
surfaces.
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2.4.1 The distance to the �rst order approximation of the surface

The distance d1st (λ) in Figs. 1 and 2 denotes the distance between the �rst
order approximation (a (hyper)plane) of the surface, evaluated around the load
λc in load space to an operation point λ in load space. This distance is both
the shortest Euclidean distance between load λ and hyperplane Γλc,1

st

, and
the distance between load λ and Γλc,1

st

in the direction of the surface normal
evaluated at λc. From Fig. 1

d1st (λ) = CCT (λ− λc) (92)

in which Eq. (92) is being derived.

2.4.2 Approximating the distance to the second order approxima-
tion of the surface

The distance function presented in this section is as discussed in this report as
well as in [9] an approximation of the actual shortest distance. Even though the
exact numerical distance measure is sometimes lower and sometimes higher than
the actual shortest distance to the surface approximation, it obeys the property
that is it negative for points in load space beyond the operational surface limit,
and positive on the secure side of the operational limit.

The distance d (λ) in Fig. 2 used in [6,9] is developed and used because of its
attractive tradeo� between increased accuracy compared to the usage of d1st (λ)
of Section 2.4.1 and its relative simplicity compared to the usage of for example
d2nd (λ) of Section 2.4.3. The three di�erent distance functions d1st (λ), d (λ),
and d2nd (λ) are depicted in Fig. 2. The distance function d (λ) is de�ned as

d (λ) =
〈
Γ
(
CT (λ− λc)

)
− λ, n

〉
=

=

〈
λc − λ+ CCT (λ− λc) +

1

2
Πλc

(
CT (λ− λc)

)
n, n

〉
=

=
{
CCTxc ⊥ n, 〈n, n〉 = 1

}
=

= 〈λc − λ, n〉+
1

2
Πλc

(
CT (λ− λc)

)
,

(93)

which gives the signed distance from a point λ in load space in the direction of
the normal n evaluated at λc to the second order approximation of the surface.

In the example illustrated in Fig. 2, one can see that d (λ) is the shortest
distance from λ to the �rst-order approximation of the surface (that is, to the
tangent hyperplane) minus the correction term 1

2Πλc

(
CT (λ− λc)

)
representing

the distance between the second order approximation of the surface and the �rst
order approximation (the hyper plane) in the negative direction (recall the sign
convention of Eq. (31)) of the normal n.

Another way of describing d (λ) is that it measures the distance from λ to
Γλc in the direction of the normal of Σ at λc, nλc

.
The corrective term 1

2Π (xc) is evaluated at the point xc = CT (λ− λc)
in the tangent hyperplane which is the projection point of λ onto it. This
projection point can be expressed in load space coordinates as CCT (λ− λc).
With the de�nition of Eq. (93), the distance has a sign convention such that
points λ in load space within the approximation of the surface results in positive
distances, whereas points in load space outside the approximation surface results
in negative distances.
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2.4.3 The distance to the second order approximation of the surface

It should be noted from Fig. 2 that for second order approximations of the
surface and large curvature, and for points λ in the load space, located compar-
atively far away from λc, the distance function d (λ) overestimates the distance
from λ to the approximation of the surface. Overestimating the distance to the
surface might result in putting the system at a higher level of risk than desired.

The illustration in Fig. 2 shows an actual distance d2nd (λ) that in the partic-
ular case illustrated is slightly more than half the size of the estimated distance
d (λ). It is possible, however not clari�ed, that from a practical point of view a
point like λ in Fig. 2 is associated to a comparatively low probability of occur-
rence, since λc is chosen because it is the most probable point λ ∈ Λ on Σ in
line with Section 2.3.1.

To compute d2nd (λ) is numerically comparatively simple, but since the dis-
tance function in this approach needs to be possible to express algebraically in
closed form, its determination is a challenge, but probably not an impossibility.
Its determination is out of the scope of this report however. The computational
bene�ts of d (λ) compared to d2nd (λ) are treated in [9].

Distances are overestimated also for surfaces with oppposite sign of the cur-
vature. Such λ would however be expected to be even less likely to occur or be
planned for than the λ of Fig. 2, since they are located beyond λc in terms of
the n direction.

For the same sign of the curvature as in Fig. 2, an overestimation of the
distance would occur as well for loads λ outside the surface. Overestimating the
distance to get back into the feasible/safe region would result in either the TSO
activating too many expensive production bids on the tertiary control market,
or to excessive load shedding or uncontrollable production curtailment. Last,
but not least, the SCOPF program would not "see" that there is a shorter (and
probably cheaper) way in load space to bring the system back to the right side
of the surface border again.

2.4.4 The distance to the actual surface

The actual surface is plotted in Fig. 3 with, dreal (λ) the real distance to the real
surface. The purpose with the �gure is to illustrate how complex the reality can
be.

2.5 Di�erent levels of bulk power system control

2.5.1 Operating Period

In power energy markets, balance responsible players trade power on many
time frames [6, Chapter 2.2]. A bit summarized, one can say that before each
operating period, consumers and producers agree upon how to keep the energy
balance during that operating period. In [6, page 1], referring to [38,39] it is said
that the operating periods can vary in length for di�erent power systems from
5 minutes up to 1 h. In the Nordic system, Nordel, the operating period is 1
h. Within this operating period, it is the responsibility of the system operator,
the TSO, to make sure that power balance is kept in real time. Before each
operating period, the balance responsible players can submit regulating bids
to the balancing market [6, 40]. These bids can then be activated if and when
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Figure 3: The �rst and second order approximations of the surface, the actual
surface, and four di�erent distance functions from load point λ to approximation
of surface.

needed by the TSO in order to keep the power balance within the operating
period.

2.5.2 Control actions within the Operating Period

The below terms are often used in power system operation. Since the de�nitions
may vary in di�erent systems and countries, and over time, they are brie�y
explained in the below.

In France, for example, 3 di�erent time windows of power system control
exists; 1, 5, 20 minutes [14]: Within 1 minute (probably primary control), no
action is possible, however constant loads might not be a valid assumption.
Within 5 minutes, some corrective action such as prede�ned topology changes
(probably secondary control). Within 20 minutes; redispatching of generation,
or the starting up fast units can take place (would possibly be categorized as
tertiary control) can take place.

Most of the inspiration of this section is taken from [6].

2.5.2.1 Primary Control Primary control is done by a prede�ned subset of
the generators in the power system in order to counteract deviations in frequency
after (net) load changes or changes in system con�guration. Typically, these
generators are paid for doing so. For a measured change in system frequency, a
corresponding change in active power production takes place. For a reduction in
frequency, the production is increased. Conversely, for an increase in frequency,
the production needs to be reduced. This is done until the system frequency
ceases to change, that is until the balance between production and consumption
is restored; or until the primary control reserves are depleted.
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Generators participating in the primary control should leave capacity dur-
ing normal operation to be able to do the control actions they are obliged to.
Primary control is automatized using prede�ned controls.

Before this takes place, also a physical "primary control" takes place related
to the physical inertia in the machinery in the system. The inertial response
is strictly speaking not part of the frequency control schemes, but its role is
important in the study of frequency stability.

2.5.2.2 Secondary Control Secondary control acts after the primary con-
trol in order to restore the frequency to nominal, and to relieve the generators
of the primary control reserve back to having the unused amount of capacity
they are obliged to. Secondary control is automatized using prede�ned controls.

Secondary control can also include the objective of restoring power �ows on
lines which are contracted to lie on a certain level or within certain limits. Also
this is di�erent in di�erent countries. If, to which extent, and how the secondary
control is a�ected by increased levels of uncertainty in the system is out of the
scope of this report.

2.5.2.3 Tertiary Control Tertiary control is as the name suggests acting
after the secondary control in the systems where secondary control is imple-
mented. Tertiary control is not automatized, but regards manual activation of
the power reserves by the system operator. Typically it is done on the balancing
market, where producers can submit regulating bids. In the Nordic system, the
operators can activate them, chosen depending on price and location. A bid ac-
tivated by the TSO should according to [6], referring to [41, Chapter 4.4], in the
Nordic system be executed within 15 minutes. In Union for the Coordination
of the Transmission of Electricity (UCTE) the tertiary control is used to relieve
and support secondary control reserves.

In Nordel (the Nordic system), tertiary control acts on the same time scale
as secondary control in UCTE (within 15 minutes).

The tertiary control will be used throughout this work to refer to the manual
activation of balancing bids. The new methods for re-dispatching generation
proposed in [6] and its following publications, aims to improve parts of the
tertiary control in terms of a more cost-e�cient usage of the system having a
higher awareness of the risk levels the system is exposed to. In Section 2.7, a
review of the operation tools for generation dispatching typically used will be
presented, aiming at putting the previous work by [6, 9] and their associated
work in a context, and at introducing the needs for the project of this report.

2.6 The Load Margin Concept and its relation to the ap-
proach of the project

The term "load margin" is widely used and often refers to the amount of load
increase in a certain direction that would cause a voltage collapse [13, Chap-
ter 4.3.2]. That is what you get when you maximize the load in a certain
direction under the constraints that the load �ow equations and other relevant
constraints are satis�ed. The term can also be de�ned as the amount of power
transferred between two areas when studying transfer capability between areas.
It is straightforward to generalize the idea of load margin to any parameter that
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can be varied until the system reaches voltage collapse. The term as such is
straightforward, well accepted, and easily understood [13]. Moreover, it can be
used for static as well as dynamic load models, and is under certain conditions
independent of the details in the dynamic models of the system [13, Chapter
4.3.5].

In order to make a concrete study, one has to specify the concept of the
load margin. Here, the load margin is concretized by the distance function
Eq. (137) in Section 3.4.2, which measures how much the (net) loads of the
system can change and still maintain a secure operation of the power system.
In reality, one can only predict and never know for sure where the most critical
load changes will take place, and that is why this general approach has been
chosen. As explained in Section 1.1 some operation limits are more risky in
terms of secure system operation than others, that is why why each operational
limit surface is assigned its own associated distance function Eq. (93) within this
project. The distance functions depend on the stochastic variables modeling the
uncontrollable parts of the net load as well as on the controllable net generation.
The proposed distance function approximates the Euclidean distance in load
space to its corresponding surface. Di�erent distances (that is, load margins)
can thus be computed for each point of system operation and in each possible
direction of net load change. And since di�erent directions of net load change
will be assigned di�erent probabilities, the stochastic modeling will a�ect the
strategic choices for risk minimization through tertiary control generation re-
dispatch.

2.7 Optimal Power Flow with respect to short-term pro-
duction planning

In this part of the report inspiration, and sometimes quotes from [6,14] has been
taken. A historical and theoretical background in optimization-based generation
re-dispatching is presented, leading to the motivation of the approach presented
in Section 1.3.

Many of the approaches treated in this section and its subsections implicitly
assumes quasi-statical load �ows for systems in equilibrium before the load
change brings the system into an instability. The issue is treated among other
assumptions in Section 3.1

In the following, the system operator's perspective is taken. In the context
of tertiary control, the control variables will (typically) be the output power
of the participating generators and the objective function the overall operating
costs associated with the generation redispatch. The parameters are quantities
that are considered given before the problem is solved, and can be, for example,
the active and reactive power loads.

Note that some consumers can also participate in frequency control schemes
by accepting to reduce or increase their consumption on request of the system
operator. In this case, these loads are included in the control variables and not
in the parameters. The optimal solution will give the feasible optimal redispatch
of the generation which minimizes the chosen objective function [6].

From Section 2.7.1 up until Section 2.7.5.1, Optimal Power Flows (OPFs) are
treated generally, in which bifurcations rarely are and/or have been considered.
The main reasons of that are likely two:
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1. It is far more computationally demanding, and was probably not realistic
until the mid nineties.

2. It can often be a practical obstacle in �nding dynamic models, load models,
and line models, accurate enough for the existing real-world systems to
study.

Bifurcations and other instabilities were introduced in Section 2.2.1. In Sec-
tion 2.7.6 some examples from the literature of optimization in power systems
considering bifurcations are treated brie�y. In Section 2.3, surface representa-
tions of operational limits are treated, including how to represent and use them
in reduced-size load space. That chapter is followed by Section 2.4 de�ning the
distances from any point λ in load space to each of the corresponding surface
representations obtained. These distances are to be used in the SOPF in load
space of Section 2.7.5.2.

With that in mind, the reader can easily approach Section 2.7.5.2 in which
the usage of SOPF in the style of for example [6,9] is explained and presented.
The intended usage of these SOPF models by the TSO are brie�y explained in
Section 2.7.5.3. With that theory in mind, the results presented in Section 4.2
should be digestible for the reader.

2.7.1 Classic OPF

The optimization problem of generation dispatching has, as most optimization
problems, two main components: an objective function to minimize or max-
imize (such as the production cost) and some constraints which the solution
must satisfy. These constraints include equality constraints (such as AC or DC
power �ow equations) ensuring that the solution corresponds to a physical equi-
librium point (confer Section 3.1.1) of the system, and inequality constraints
representing operational limits (such as minimum and maximum generation ca-
pacity, maximum active power transfers on certain transmission lines or lower
and upper bounds for bus voltages) [6]. An optimal power �ow problem can in
general have many di�erent objectives, but with respect to short-term produc-
tion planning, a typical design (slightly modi�ed with respect to [42]) is

min
u,x

C (x, λ, u) (94)

s.t. f (x, λ, u) = 0 (95)

g (x, λ, u) ≤ 0 (96)

where x denotes state variables (following the notation in the stability analysis
parts of this report x here is equivalent to z there), λ denotes the uncontrollable
parameters, and u the control variables (in the dynamic parts of this report λ
denotes all net loads in load space, and then λ consists of both ζ denoting the
uncontrollable parameters and u the controllable ones). Moreover, C denotes
the cost function (typically) related to activation of production bids in the ter-
tiary control, f denotes the power �ow equations, and g various operational
constraints.

2.7.2 SCOPF (considering the N − 1 criterion)

When considering post-contingency stability boundaries, post-contingency cor-
rective actions must be taken into account, because they will change the system
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state. Not taking into account post-contingency corrective actions would under-
estimate the loading margins [6, p. 93]. Such automatic control actions include
the primary and secondary control, automatic tap-changing transformers, etc.

Grid operation planning with respect to uncertainties is often today, and has
commonly been done, using the so-called N − 1 criterion. Historically, and to
some extent still toady, the predictions of future loads have been comparatively
accurate, and the power generation has been fully controllable and therefore
comparatively predictable. The N − 1 criterion is a rule saying that the grid
should manage (at least) 1 relevant simultaneous contingencies in 1 of the N
most important lines, transformers, and production units. In classical power
system con�gurations, the production units are comparatively large in size and
small in number. In addition to the comparatively accurate estimates of the
future consumption, the most important lines and transformers are as well easily
identi�able.

Typically, post-contingency actions (automatized or not) such as load shed-
ding, uncontrollable production curtailment, and rapid increase in power pro-
duction are costlier per MegaWatt-hour (MWh) than what preventive (pre-
contingency) re-dispatch bids are per MWh, but if the probability of an in-
stability to occur is very small it might be economically justi�ed to take that
risk.

Quite naturally, a number of issues make the SCOPF much more compu-
tationally challenging than the OPF problem: the signi�cantly larger problem
size, the (possible) need to handle more discrete variables describing control
actions (e.g. the start up of generating units and network switching) and the
variety of corrective control strategies in the post-contingency states [14].

An implicit assumption of the conventional SCOPF formulation is that, after
the occurrence of a contingency, the system will not lose stability and (with or
without post-contingency corrective actions) will reach a viable steady-state
(confer Section 3.1.1). The validity of this assumption depends on the system
dynamics which are not modeled in the conventional SCOPF. Therefore, the
SCOPF problem is often formulated in a conservative way by imposing strong
constraints on the amount of usable post-contingency controls and the target
feasible region [14]. According to [14], and quite logically, this may lead both
to sub-optimality and an undetected risk of instability.

The drawbacks with SCOPF, and the need for other approaches in the future
clearly justi�ed by [14]: While this classical formulation is indeed very useful,
it does not cover anymore in a fully satisfactory way the needs encountered in
today's operation and operational planning environments. Indeed, due to the
increasing penetration of renewable and other uncontrollable generation sources,
the set of contingencies should now also incorporate (possibly large) variations in
power injections in addition to equipment failures. The operators and planners
must anticipate second stage decisions to deal with these "injection pattern
contingencies" which span complex continuous spaces and are highly dependent
on system conditions and on real-time information gathered about exogenous
variables such as weather forecasts and market prices.. The research line of
improved SOPFs in alignment with the description of Section 2.7.5 is clearly
valid within this scope.
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2.7.2.1 CSCOPF According to [14], and in line with the prerequisites of
this project about expecting a more uncertain and risky future, already today,
corrective actions are necessary in many places in the world in order to manage
theN−1 criterion. Contributing reasons behind this trend is in practice pressure
from market forces since corrective control is more cost-e�cient than preventive
scheduling [14]. Not allowing corrective control and still ensuring the ful�llment
of theN−1 criterion would in practice result also in higher investment costs (and
binding of capital) in the grid. Note that also load shedding and production
curtailment are parts of the possible corrective control actions in a practical
sense.

The corrective SCOPF (in this report, among others) denoted Corrective
Security Constrained Optimal Power Flow (CSCOPF), is in [14] denoted the
conventional SCOPF, and typically looks like

min
xk,uk

C0 (xk, uk), k ∈ {0, 1, ..., c} (97)

fk (xk, uk) = 0, k ∈ {0, 1, ..., c} (98)

gk (xk, uk) ≤ 0, k ∈ {0, 1, ..., c} (99)

fsk (xsk, u0) = 0, k ∈ {1, 2, ..., c} (100)

gsk (xsk, u0) ≤ 0, k ∈ {1, 2, ..., c} (101)

|uk − u0| ≤ ∆̂uk, k ∈ {1, 2, ..., c} (102)

in which the uncontrollable net loads are not explicitly mentioned since they are
not variables, where xk denotes the state variables, and uk the control variables.
Moreover, fk denotes the load �ow equations, gk the operational limits, and
index k the pre- and considered post-contingency situations of which k = 0
denotes the pre-contingency situation and k ≥ 1 the considered post-contingency
situations. The short-term time-span between the occurrence of a contingency
and the moment in time when the control actions are fully executed is not
explicitly given in this problem formulation. The time-span is however implicitly
considered in how the constant ∆̂uk, representing the maximal changes in the
control variables during this short time-span, for each contingency, is de�ned.
Moreover, fsk and gsk denote the constraints that needs to be met during this
short-term time period. Typically constraints like fsk and gsk can be fewer than
fk and gk, and the demands on the system lower than for long-term feasible
operation. Similarly, xsk denote the post-contingency state variables used in fsk
and gsk during this short-term period of time. Also note that for k > 0, the
constraints fk and gk are di�erent, and in alignment with the background for
this project, especially some of the operational constraints on gk might be looser
constrained than for k = 0. In addition, fk will be rede�ned for k > 0 contingent
upon how each contingency k a�ects the system con�guration. Finally, c denotes
the number of considered contingencies.

Extending the above problem with many small "short-term" states, and even
di�erent control actions usk for each such time step will lead to a more realistic
but complex problem, confer Section 2.7.7.

Note that the solution to Eqs. (97) to (102) is the solution to a medium-term
contingency problem. In the long term, the problem needs to meet up to the
same security constraints as in the pre-contingency case.

Typical examples of the operational limits gk are [14] bounds on the gen-
erators' active and reactive power output, ratio of controllable transformers,
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reactance of shunts as well as operational limits on the branch currents and
voltage magnitudes. In this conventional SCOPF model, bifurcations are rarely
considered.

In practice and traditionally, the conventional SCOPF has been problem-
atic in the sense that control actions needed to be computed beforehand, for
each contingency, based upon prognoses of the expected point of operation [14].
Today, with faster computers, continuously updated stochastic prognoses and
automatized decision support as proposed in [6] and further treated in Sec-
tion 2.7.5.3, many of these drawbacks can however be eliminated. In [14] the
intended planning period is of the "day-ahead" type, whereas in this project
the aim is within the 15 minutes (in France 20 minutes) ahead time frames of
tertiary control.

2.7.2.2 N − k, k ∈ N \ {1} Following the CSCOPF model above, it would
be straightforward to consider an N − k, k > 1 criterion, by for k = 2 "simply"
letting the number of contingencies grow to c + c·(c−1)

2 . This emphasizes even
further why by purely computational reasons one needs to treat many small and
combined contingencies di�erently (confer Section 3.1.2) than with the classical
approach.

Other approaches to SCOPF with N − k are indeed possible, for instance
involving binary variables to the trade-o� of smaller problem sizes. This is the
classical trade-o� in optimization between size and complexity. Which approach,
that in the end, results to be the computationally most e�cient one is very case-
dependent and out of the scope of this report.

2.7.2.3 PSCOPF The "preventive" SCOPF [43] (denoted Preventive Secu-
rity Constrained Optimal Power Flow (PSCOPF)) is a particular formulation of
the SCOPF that does not consider the possibility of corrective actions in post-
contingency states, other than those that take place automatically (e.g. active
power of generators participating in frequency control, automatic tap-changers,
capacitor and reactor bank switching, secondary voltage control, etc.) [14].
Therefore, in the PSCOPF the values of the non-automatic control variables
u are thus the same in all system states. Common sense and inspection of the
equations Eqs. (97) to (102) gives that the PSCOPF will result in a higher
operation cost than the CSCOPF.

2.7.2.4 SCOPF drawbacks When solving a SCOPF, the uncontrollable
loads are given values which, according to the system operator, re�ects the
operating conditions for which the study is done. Hence, if SCOPF is used
for re-dispatching generation within the next �fteen minutes (as for tertiary
control), the parameters can be set to their expected values in the next �fteen
minutes. These expected values can be obtained by forecasts [6]. There are four
main shortcomings associated with the conventional SCOPF approaches:

1. Shortcoming They do not consider the probabilities of the contingen-
cies to happen [6]. According to [14] it is equivalent to treating all
contingencies as equiprobable.

Analysis Point 1 means that the optimal solution from a SCOPF is fea-
sible in the sense that no constraints are violated for any contingency,
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irrespective of the possibly low probability of which these contingen-
cies happen. That will probably lead to a costlier operation plan
than necessary and foreseen. The reader should bear in mind that
typically, by Eq. (102) the control actions u0 are constrained by the
control actions uk even if they are not considered in the cost function
Eq. (97).

2. Shortcoming They do not consider the costs of the corrective actions.
(And they cannot, since this is contingent upon Point 1.) In [14] is is
claimed that this implies assuming that the likelihood of their use is
so small that on the long run their costs will remain negligible. That
does however contradict the fact that in the CSCOPF formulation,
Eq. (102), the preventive controls are actually contingent upon the
planned post-contingency control actions.

Analysis Point 2 implies two things: First, since the costs for correc-
tive actions are unconsidered, the choice between very expensive fast
power generation and load shedding cannot be considered. Secondly,
it also implies that the tradeo� between surely imposed costs by the
preventive part, u0, of the SCOPF and the to low probabilities im-
posed costs by the corrective parts uk, k ≥ 1 cannot be considered.

3. Shortcoming They consider only a small amount of operating condi-
tions since they only consider expectation values of uncontrollable
but varying outcomes.

Analysis Point 3 means that most of the possible outcomes will not be
considered. Moreover, using expectation values may actually for cer-
tain (many practical) problems result in infeasible problems. While
point 1 indicates that the system is operated in a too conservative
way, the shortcoming of Point 3 typically underestimates the risk
exposure of the system by disregarding the variations in stochastic
parameters. It has been shown in [6, Chapter 2.4] that with large
amounts of wind power, the net load forecast errors will increase
in the sense that the variance of these forecast errors will increase.
Hence, the uncertainty faced by the system operator will increase.
Following [6], it is stated in [44] that new tools must be developed
in order to account for this uncertainty. Today, system operators
hedge against risks associated with uncertainty usually by having
some operational margins hedging for the most probable changes of
uncontrollable net loads. Considering uncertainties directly when
computing the optimal decisions would allow a more �exible and ef-
�cient use of the system resources.

4. Shortcoming They also do not model the social and economic costs of
brownouts and blackouts that may result from the failure (e.g. never
executed activated bids) of, delayed, or purposely neglected corrective
actions.

Analysis Point 4 implies that the entire remaining system should be
maintained operable at any cost. If considering the brownout/black-
out cost, in the for illustrative purposes simpli�ed case of c = 1, the
TSO has two main choices:
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(a) To accept that to a low probability pk = p1 = 1 − p0, there
will be a brownout/blackout with a high cost. But, on the other
hand, to a high probability of p0, the operation cost will be
C0 (x0, u0)� C0 (x0, u0, x1, u1) since Eq. (102) does not need to
be met here.

(b) To consider the brownout/blackout cost with its associated prob-
ability p1 be too high to be acceptable, so that the cost
C0 (x0, u0, x1, u1) is being preferred.

It will be seen that Expected Security Cost Optimal Power Flow (ESCOPF)
of Section 2.7.3 addresses the shortcomings of Point 1, 2, and 4, whereas POPF
of Section 2.7.4 addresses (to some extent) the shortcoming of Point 3. The
SOPF modeling approach of Section 2.7.5 is able to address all the Point 1 � 4
shortcomings presented above.

One alternative way of addressing Point 3 in the shortcoming list above is to
cleverly sample outcomes of stochastic variables associated to the uncontrollable
loads. Drawbacks with this is the extreme growth of the problem sizes when
considering mutually dependent stochastic distributions with long tails. When
assessing the risk of secure operation of the power system, also very unlikely but
very severe possible outcomes needs to somehow be considered. This approach
is however excluded in this study in line with the approach presented in Sec-
tion 1.3.

2.7.3 ESCOPF

The CSCOPF problem of Eqs. (97) to (102) can be modi�ed to the ESCOPF
[45,46] problem

min
xk,uk

∑
∀k

pkCk (xk, uk) k ∈ {0, 1, ..., c} (103)

fk (xk, uk) = 0 k ∈ {0, 1, ..., c} (104)

gk (xk, uk) ≤ 0 k ∈ {0, 1, ..., c} (105)

fsk (xsk, u0) = 0 k ∈ {1, 2, ..., c} (106)

gsk (xsk, u0) ≤ 0 k ∈ {1, 2, ..., c} (107)

|uk − u0| ≤ ∆̂uk k ∈ {1, 2, ..., c} (108)

in which pk would denote the probability for contingency pk to occur, where
p0 denotes the probability of nothing to happen (that is, staying in the pre-
contingency state for the entire period planning for), in order to describe a
ESCOPF problem. It is a CSCOPF in the sense that the optimal setting of
post-contingency control variables is allowed to be di�erent from that of the
pre-contingency control variables. The di�erence with the classical corrective
SCOPF (the CSCOPF) formulation presented above is that the ESCOPF model
includes the probabilities of the studied contingencies and the costs of the cor-
rective actions in the objective function which represents the expectation value
of the costs within the planning period [6].

Note that (like in the CSCOPF Eq. (102)) the pre- and post-contingency
costs are interdependent since the pre-contingency setting of the control vari-
ables u0 cannot be too far from any of the post-contingency settings of the same
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variables, |uk − u0|. If constraints like Eq. (108) are completely physical, they
re�ect ramp rates of controllable production. If, on the other hand, they try to
heuristically impose stability margins, it is another story. Also note, that gen-
erally, uk could also be binary variables indicating recon�gurations, shedding
and curtailment that would complicate solvability of the problem signi�cantly.

Hence, ESCOPF addresses the Point 1, 2 and Point 4 in the list of shortcom-
ings mentioned in Section 2.7.2.4 by considering the probability associated with
all contingencies and the cost of the post-contingency control actions. However,
it does not address the third shortcoming [6, Chapter 2.5.4].

2.7.4 POPF

In POPF), the stochastic variables representing the uncontrollable loads are
modeled by their probability density functions (Probability Density Functions
(PDFs)).

The aim of a POPF is to obtain (estimations of) the PDFs of all variables
in the problem [6, 47]. Probabilistic optimal power �ows are usually [6] solved
in the following way [6, p. 40]:

• First, the optimal settings of the control variables are obtained by solving
a classical SCOPF or OPF with, for example, the expected value of the
uncertain parameters.

• Then, the system is linearized around this optimal solution in order to
express the variables as linear functions of the parameters. This allows
the computation of cumulants or moments of the other variables from
those of the parameters. Finally, using the cumulants of moments, an
approximation of the PDF is calculated, for example using the Gram-
Charlier expansion [47�50].

This procedure can be compared to the determination of the importance func-
tion presented in [9] and summarized in Section 2.3.1.

By considering the PDFs of the parameters, POPF takes into account the
uncertainty which the system is subjected to, thus addressing the third short-
coming mentioned in Section 2.7.2.4.

2.7.5 SOPF

2.7.5.1 Generally The term stochastic optimal power �ow is used for dif-
ferent meanings and embraces many di�erent sorts of approaches. What in this
report is denoted SOPF is actually a subset of the category of chance constrained
optimal power �ow problems. It will soon be obvious why.

SOPFs address all the four shortcomings of Section 2.7.2.4. While a POPF
computes (an approximation of) the PDF of the optimal setting of the control
variables in order to assess the e�ect of uncertainty on this optimal solution, a
SOPF includes the uncertainty in the optimization problem itself. When con-
sidering the stochastic distributions of the parameters, rather than expectation
values or a set of outcomes of them, the constraints must be changed from being
deterministic to being probabilistic. Moreover, the probability of violating the
deterministic constraints is almost surely nonzero [6]. Probabilistic mean in this
context that the focus is set on the probabilities of meeting the constraints in the
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optimization problem. Note that there might be alternative approaches, but the
alternatives are anyhow unknown to the author and probably mathematically
as well as computationally very complicated.

Work on SOPF includes according to [6] the references [49,51�54]. A (very)
general formulation of a SOPF (according to the above de�nition) problem is

min
x,u

E (C (x, λ, u)) (109)

s.t. P (fi (x, λ, u) ≤ 0)≥ 1− αi (110)

where αi are parameters with small nonnegative numbers representing the max-
imally allowed probabilities of violating the constraints fi.

In [51], a SOPF was formulated where the objective function was to maximize
the power transfer over a set of buses under the constraints that the probabilities
that the transfers across some bottlenecks violate their respective limits are kept
low [6]. It can be seen in [6, Chapter 2.5.3], that similar constraints (although
deterministic) are taken into account by the Swedish TSO.

2.7.5.2 SOPF in load space In [6] and its successors, the general SOPF
approach of Section 2.7.5.1 is concretized in the steps that follows.

First, let the decision variables, u, be only "preventive". Not "preventive"
in the sense that after a certain set of bids have been activated at time t0, no
more bids can be activated for the following 15 minutes period, t15 min. Rather
"preventive" in the sense that another set of bids can be activated at any time
t1, after solving a new updated optimal dispatch problem slightly before t1 > t0,
where t1 < t0 + t15 min may hold. If the bids activated in t0 are not yet fully
activated, they needs to be speci�cally considered in the updated problem. Au-
tomatic control will work independently of TSO actions/decisions. The updated
optimal dispatch problem can typically be solved continuously, or be triggered
by, for instance, the occurrence of a contingency, a signi�cantly updated contin-
gency probability forecast, major changes in (net) load, or updated (net) load
forecasts. The bids activated at t1 will however not surely be fully implemented
until 15 minutes after activation of the bids, tt + t15 min (given the implicit
assumption that the bids are executed in time).

The above approach is both re�ecting reality, and making the problem to
solve mathematically easier, since any stochastic in�uence is no longer explicitly
found in the objective function Eq. (112).

Secondly, assume that the problem has moved over to load space. Thus, state
variables are no longer of concern, only control variables u, and the stochastic
variables Z with outcomes ζ representing the uncontrollable net loads in the
system. To be clear, here

λ =

[
u
ζ

]
(111)

in line with the [6, Chapter 8] notation. At this moment the slightly less general
SOPF model looks like

min
u

C (u) (112)

s.t.
∑
∀i

piP (ζ /∈ Di (u))≤ α (113)
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where pi denotes the probabilities for the pre-contingency and the post-conting-
ency situations, and where Di (u) denotes the operation domain inside all the
operational limits.

With the above approach, balancing bids are activated at minimal cost, the
uncertainty in the in the uncontrollable loads are considered in the optimization
problem, a certain level of system security considering the aggregated system
operation boundary is ensured, and the selected most important contingencies
and their probabilities of occurrence are considered.

One contribution with the approach of [6] in contrast to the one of [51]
besides working in load space instead of state space is this uni�ed and aggregated
boundary. For the aim of this project however, one "step back" will be taken,
separating the aggregated boundary again into di�erent ones, since now the
di�erent severities of each boundary is to be considered. More of that in Section
Section 4.2. Using the word of [6] "... the main di�erence in our approach is that
there is a single constraint, i.e. that the problem is solved so that the probability
that any constraint is violated stays below a prede�ned threshold (as opposed
to the probabilities that each constraints is violated stay below a prede�ned
threshold). Thus, the formulation in (8.1) (Author remark: [6, equation (8.1)])
can be used to get an optimal generation re-dispatch which ensures a given
overall level of system security ...".

In practice however, that approach needs to be further concretized and less
general in order to be implementable. The domain Eq. (113) needs to expressed
in closed form in order to useful in an optimisation program formulation. Thus,
thirdly, let the domain Di be described by Eq. (115) in the SOPF formulation

min
u

C (u) (114)

s.t.
∑
∀i

piP

(
min
j∈Ji

di,j (u, ζ) < 0

)
≤ α (115)

where Ji denotes the set of operation limit surfaces in contingency i, and where d
denotes the distance function introduced in Section 2.4.2. In the context of this
project, j denotes di�erent surfaces representing di�erent limits with di�erent
severities, whereas in the context of [6,9], j represents each of the small surface
patches that all together make up the uni�ed operation limit surface Di.

As explained in Section 2.4.3 and [9], the actual minimum distance can be
complicated to determine, thus the approximation of the distance to the second
order approximation of the surface is used as d in Eq. (115).

The probability is still not in closed form. That can however be achieved
with yet another approximation. In [9] it is explained that Edgeworth expan-
sions can be used for this purpose. For the decision variables u, "normal" Taylor
polynomial approximation can be done of the d function, whereas for ζ, Edge-
worth is used. The bene�t with Edgeworth series is that they represent the
CDFs P (X ≤ x) for a stochastic variable X. Thus, as soon as the CDF of
d (u, ζ), P (D ≤ d) has been determined, Edgeworth is very useful for evaluat-
ing a polynomial approximation of that probability. In the case of Eq. (115),
P (D ≤ 0) will be used.

2.7.5.3 Usage of load space SOPF in practice As indicated in Sec-
tion 2.7.5.2, the proposed practical usage of SOPF for tertiary control implies

58



making new "preventive" SOPFs and when needed, also activate new balancing
bids as the net loads and the forecasts change during operation of the system.

The separation of the computer work into two phases is proposed in [6,
p. 141]: Phase 1 is the most computationally burdensome, and thus most time-
consuming, and cannot be expected to be done in real-time operation. In this
phase, the second-order approximations of the pre- and post-contingency sur-
faces are computed. Recall that these approximations are computed around the
most important points. In Phase 2, the SOPF is solved. The SOPF can be
solved in real-time, provided that the surfaces used are from Phase 1, and thus
based upon forecasts that are older and thus less accurate than those present
at the time of the SOPF being solved. For this phase, the more recent and
accurate forecasts can be used to update the chance-constraints Eq. (115).

Since the time constants of the two phases are di�erent, one can imagine
the surface approximations of Phase 1 to be to be updated by the computer(s)
in the background with a periodicity of time T1, in order to keep the surface
approximations as accurate as possible. The SOPFs solved in Phase 2 will
always use the most recent update of the surface approximations available in
the database.

On [6, p. 142], two main alternatives of practical usage of the SOPF of Phase
2 is proposed:

The �rst alternative is denoted monitoring and acting, and the second is
denoted repeatedly acting. In the �rst alternative, monitoring and acting, by
using the most recent forecasts and measurements of net loads, the probability
that the system would be operated outside Di of Eq. (113) can be computed.
This can typically be done with short even time intervals, at the most with a few
second in between. If the computed probability exceeds α or by risk-averseness
an even smaller number k ·α, k ∈ [0, 1], a SOPF can be solved and the resulting
solution might lead to a new set of balancing bids being activated. In the second
alternative, repeatedly acting, a SOPF can be solved (regardless of "needed" or
not) with a periodicity of a few minutes (5 minutes is proposed in [6, p. 142]).
According to [6, p. 142], [55] states that this approach is used in Texas today,
but using deterministic models.

2.7.6 Optimizing power system security deterministically, but con-
sidering bifurcations

In order to give a fair picture and background to the �eld; it should be stated
that lots of work has been done maximizing the power system security in var-
ious manners considering bifurcations more or less explicitly. For this project
however, when stochasticity in uncontrollable net loads are to be considered,
that path of research is closed since modeling actual load �ow constraints and
bifurcation detection constraints considering PDFs or CDFs would be a very
complex and nontrivial task, as also explained in Section 2.3. Some examples
below:

In [56, 57] the distance to the SNB surface is increased by shunt compen-
sation, in [58] it is done by Static VAR (VoltAmpere Reactive) Compensator
(SVC), [1]. System loadability is also increased by optimizing the SVC and
Thyristor Controlled Series Capacitors (TCSC) location, dimension, and con-
trol in [59,60].

In [1] itself, the distance to the instability is maximized for a prede�ned

59



direction of load increase by optimizing location and sizing of reactive shunt
and/or series compensation. Since the aim of study in [1] is optimal grid design,
that study considers completely di�erent time scales than this project considers.

2.7.7 Beyond the scope of this project

The methods above, while addressing the shortcomings of SCOPF, give an op-
timal generation re-dispatch for one point in time only. However, since the
system operator is responsible for maintaining the balance between production
and consumption within the operating period, it seeks at optimizing power sys-
tem operation not only at one point in time but throughout the whole operating
period (confer Section 2.5.1). Hence, not only the cost of the decisions must be
taken into account but also the expected costs of taking these decisions for the
rest of the hour.

Decision taken by solving the SOPF problem is only optimal for the point
in time it considers, and that the expected costs for the rest of the operating
period arising from this decision are not considered. Considering these expected
costs would require developing other tools. This is left as future work.

The expected changes in future power systems discussed in Section 1.1 sug-
gest that larger (in theory uncountable) contingency sets should be considered
to model the uncertainty between successive decision stages [14]. It is also very
likely that a two-stage reduction of the optimization problem will no longer
be su�cient. Instead, [14] suggests that one might have to de�ne multistage
frameworks, where the couplings between decisions and uncertainties induced
by adverse scenarios over longer time horizons could be modeled better. In the
end, considering the problem formulation of such studies, the trend leads to
two complementary and intertwined directions of research. One regards opti-
mal control problem formulations taking into account the uncertainties a�ecting
power system operation. The other regards planning and decomposing the tem-
poral control horizon and into successive decision making stages. These prob-
lems could, again following [14], be addressed in principle using two di�erent
frameworks, namely the robust optimal control framework [61] and multistage
stochastic programming [62]. That is however out of the scope of this project
and left for the future to be considered.

3 Assumptions, and Models Used in this Project

3.1 Main assumptions

3.1.1 Equilibria

The main basic assumption for the detection of the operational limit surfaces is
the existence of equilibrium, in mainly three aspects:

1. Equilibrium at the present point of operation (pre-contingency).

2. Equilibrium reached in the post-contingency cases, at least for the cases
when the post-contingency equilibrium point after automatic control ac-
tions lies within the stable region with respect to the SL surface(s).

3. Equilibrium in the sense that transients die out faster than the net-loads
change over time. Since the aim of this project is treating uncontrollable
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net-loads stochastically, this can in a non-stringent way be rephrased,
taking two possible examples, as:

(a) "the expected transient time constant should be smaller than the
expected time constant of the net-load causing the transients", or
more conservatively

(b) "the probability, that a transient time constant should be smaller
than the time constant of the change in net-load causing it, should
be greater than or equal to 1 − β, where β is a small nonnegative
number."

The practical reason for making this assumption is that without it, there
would be a need for signi�cantly more complicated models. Then, the exact path
in load space of the system from last previous equilibrium point would be needed
to be studied. Such would increase computational workload and computer time
signi�cantly. The issue is discussed partly in Section 2.7.2 as well, but without
explicitly treating Point 3 above. Particularly the stochastic complication on
the net-loads is not treated. Without the equilibrium assumption, the quasi-
static load �ow models used would not be su�cient.

For slowly (in the case of this report; compared to transient generator dy-
namics) varying loads (often denoted "parameters" in the literature, in order to
emphasize their non-variable behaviour from the instabilities' points of view),
it can be assumed that the system always reaches equilibrium in the transient
and sub-transient sense after a change in (net-)load. In other words: For each
incremental change in net load of the system, for each small unit of time, it can
be assumed that transients die out before the next incremental change. This
assumption validates the treatment of the uncontrollable loads and the tertiary
controlled loads as parameters for the transient time scales.

Note that being in equilibrium in the transient sense is not any protection
against creating an transiently instable situation when driving the system into a
bifurcation in the non-gy (that is, the A-matrix of Eq. (13)) parts of the system
Jacobian.

Implicitly, the third aspect above, Point 3, of the equilibrium assumption
means that if considering mid-term dynamics, as in [11], it would impose even
higher restrictions. Here, the dynamic time constants are much larger. When
studying also mid-term dynamics, the net load changes must be even slower
than when only considering transient and sub-transient dynamics.

In power systems that are more or less always in motion, and cannot be said
to work around a certain point of operation, like for instance electric traction
systems [63], it is not clear whether the above-listed assumptions would hold. It
is not unusual with individual loads changing from 0 to 4 MegaWatt (MW) in
around 8 seconds (and from full load to no load instantaneously) [64] for locally
installed apparent powers ranging from 20 MVA up to above 100 MVA.

3.1.2 Assumptions regarding contingencies and other power system
uncertainties

A power system can be exposed to many di�erent kinds of contingencies and
uncertainties. In the classical N − 1 criterion, the planned system operation is
supposed to withstand an outage of any of a list of important system components
such as transmission lines, generators, transformers, etc.
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As argued in Section 1.1, and in Section 2.7.2, and some of the following sub-
chapters of the latter, in future power systems, a larger share of the production
will be made up of many small production units. Within this project, the
individual outages of such are not considered as outages in the classical sense,
but rather as a part of the stochastic model of the net-loads of these uncontrolled
production units. This is done for rational and practical reasons, for small
outages in relation to the total consumption, and it keeps the model size and
thereby the computational burden limited. A similar argument can be made
for outages of smaller uncontrolled consumption units. Moreover, in contrast to
outages of lines, generators, or transformers, outages of uncontrolled loads do
not a�ect the power system con�guration or its controllability.

3.2 Generator, load, and grid models

In this project, for simplicity, it is assumed that the generators can be modeled
according to the so-called one-axis model with attached AVRs. The vector
of time derivatives ẋ and the vector of functions f (·) introduced in Eq. (1)
explicitly becomes

δ̇i = ωi, ∀i ∈ G \ s (116)

ω̇i =
1

Mi

(
Pm,i −

E′q,iUi

X ′d,i
sin (δi − θi)−Diωi

)
, ∀i ∈ G \ s (117)

˙E′q,i =
1

T ′d0,i

(
E′f,i −

Xd,i

X ′d,i
E′q,i +

Xd,i −X ′d,i
X ′d,i

Ui cos (δi − θi)

)
,∀i ∈ G (118)

˙E′f,i =
1

Te,i

(
−E′f,i +KA,i (Uref,i − Ui)

)
, ∀i ∈ Ga (119)

where δ, the rotor angle of the generator, obeys

δ = ωrt− ω0t+ δ0 = ωt+ δ0 (120)

for which ωr is the actual angular velocity of the generator, ω0 is the reference
angular velocity of the synchronous grid, δ0 is the rotor angle at some start
point in time t0, and �nally ω is thus the deviation in angular velocity between
the generator and the grid. By de�nition,

δs = 0 (121)

ωs = 0. (122)

Moreover, in Eq. (117), M represents the inertia coe�cient of the generator,
Pm represents the mechanical power of the generator, E′q,i represents the EMF
behind the transient reactance of the generator, U represents bus voltage am-
plitudes, X ′d represents the direct axis transient reactance of the generator, θ
represents bus voltage angles, and D represents the damping coe�cient of the
generator. Not yet introduced denotations in Eq. (118) are: T ′d0 which repre-
sents the open-circuit transient time constant of the generator; the excitation
EMF, E′f ; and the direct-axis synchronous reactance of the generator, Xd. In
Eq. (119), the time constant of the exciter, Te; the gain of the exciter, KA; and
the terminal voltage reference of the exciter Uref are used.
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The vector of zeroes and functions g (·) introduced in Eq. (2) explicitly be-
comes

0 = −E′f,i + Elim
f,i , ∀i ∈ Gb (123)

0 = PD,i − PG,i + Ui
∑
∀j∈B

Uj (Gi,j cos (θi,j) +Bi,j sin (θi,j)) , ∀i ∈ B (124)

0 = QD,i −QG,i + Ui
∑
∀j∈B

Uj (Gi,j sin (θi,j)−Bi,j cos (θi,j)) ,∀i ∈ B (125)

where the sets in Eqs. (116) to (119) and (123) to (125) are de�ned by G which
denotes the set of all generators in the system, s denotes the slack bus, Ga the
set of generators under AVR control, and Gb the set of generators under OXL
control. The abbreviation used, OXL, stands for OvereXcitation Limit. Note
that underexcitation may also be an issue [65,66], but it is not considered here.
Finally, B denotes all the busses in the power system of study. For clarity,

G \Gb = Ga (126)

Ga ∩Gb = ∅ (127)

s ∈ Ga ∨Gb (128)

G ⊆ B. (129)

In Eq. (123), Elim
f,i represents the limit of the exciter in the AVR. Following the

traditional notation, θi,j in Eqs. (124) and (125) denotes the angular di�erence
between θi and θj , PD and QD represents active and reactive power loads, and
G and B represents the real and imaginary parts of the admittance matrix. It
is worth noting that the generated active power PG in Eq. (124) and reactive
power QG in Eq. (125) obey

PG,i =
E′q,iUi

X ′d,i
sin (δi − θi) , ∀i ∈ G (130)

QG,i = − Ui
X ′d,i

(
Ui − E′q,i cos (δi − θi)

)
,∀i ∈ G (131)

for the generators.

3.3 Numerically determine the system variables for the
present load

The load �ow solution of the system at the present point of operation, λ0 = ζ0 =
(ζ0, Q (ζ0)) = (PD,0, QD,0), is used in some practical tricks within the OPF of
Section 3.4 solved for �nding the surfaces. The parameter |J |max in Eqs. (200)
and (201) is estimated by the help of this solution. Its solutions may also be
used as initial values, for some or all, of the variables in the surface-�nding
OPF of Section 3.4. Otherwise, its solution would not have been needed in the
study of Section 4.1 besides as a means of con�rming the model's correctness
by comparisons to the literature.

Since the optimization method approach was used in this project to �nd the
operation limit surfaces of Section 2.3, an optimization problem was formulated
also for the load �ow problem of the present operation point λ0 = (PD,0, QD,0).
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That problem includes the load �ow equations Eqs. (124) and (125), and their
corresponding active and reactive power generation equations Eqs. (130) and (131)
and the steady-state representations of Eqs. (118) and (119):

0 = E′f,i −
Xd,i

X ′d,i
E′q,i +

Xd,i −X ′d,i
X ′d,i

Ui cos (δi − θi) ,∀i ∈ G (132)

0 = KA,i (Uref,i − Ui)− E′f,i, ∀i ∈ G (133)

and a dummy objective to minimize

z = 1. (134)

The problem was solved as an NonLinear Programming (NLP) optimization
problem in General Algebraic Modeling System (GAMS) [67�69] using LINDO
[35, 36]. At steady state, from Eq. (116), it can be seen that ω will be zero,
ensuring that the mechanical and electrical powers in Eq. (117) equal each other.
Therefore, Eqs. (116) and (117) are omitted in steady state studies. Moreover,
note that since SLLs have not been studied in Section 4.1, it has been assumed
that

Gb = ∅, (135)

and therefore Eq. (123) has not been considered in the model.
In this model, in contrast to the one of Section 3.4, PD,i, QD,i, i ∈ B are

treated as parameters, as well as PG,i, i ∈ G \ s are.

3.4 The OPF �nding the surfaces

3.4.1 The optimization problem summarized

Summarizing without all the details given in the forthcoming subsections, the
objective of the optimization problem is to minimize Eq. (137), that is, to �nd
the smallest change in net-load from λ0 for which the constraints are met. The
constraints are the ones of load �ow Eqs. (124) and (125), generation Eqs. (130)
and (131), the steady-state representations of the generator and exciter EMFs
Eqs. (132) and (133), the reactive load model assumption Eq. (139), the thermal
limit constraints Eqs. (140) and (141), the SNB constraints Eqs. (200) to (203),
and �nally the constraint Eq. (204) ensuring that at least one operational limit
has been reached.

The details about the Jacobian associated to an SNB point can be found
in Section 3.4.6 and its paragraphs. Beforehand computed parameters are ne-
glected from this summary in order to maintain the intended simplicity.

Naturally, ζ = PD,l cannot be a parameter in this problem, as in the load
�ow problem of Section 3.3. It follows by technical reasons that QD,l neither
can be a parameter. The modeling of QD,l is described in Section 3.4.3.

The main purpose of the study presented in Section 4.1 is to graphically
illustrate the operational limit surfaces found. Since the surfaces can only be
illustrated easily in R3, and the number of loads in the IEEE 9-bus test system
[10, Appendix C.1] are three, the restriction from Section 3.3 of

u = PG,i, i ∈ G \ s (136)

being parameters where kept. When determining the surfaces for actual usage
however � as a part in the construction of the SOPF (Section 2.7.5.2) problem
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constraints � u of Eq. (136) needs to be treated as variables. Following the
most important point approach of Section 2.3.1, u will be modeled as stochastic
variables depending on ζ.

3.4.2 The objective function

To start with, the objective function

z =
∑
∀l∈L

(PD,0,l − PD,l) (137)

which is to be minimized makes sure that the closest operational limit from the
present (load) point of operation,

λ0 =

 for this study, u,
is kept constant for
illustrative purposes

 = ζ0 = PD,0,l (138)

is found �rst.

3.4.3 The reactive loads

In contrast to the load �ow problem being solved in Section 3.3 the loads of
the load buses, (PD, QD) are no longer given parameters, but variables. The
variable PD plays an important role in the objective function Eq. (137). By the
assumption

QD,l = PD,l
QD,0,l
QD,0,l

,∀l ∈ L (139)

where L denotes the set of load buses, the power factor of each load is main-
tained in the search for the closest operational limit from the present load point,
(PD,0,l, QD,0,l). Thus, QD,l is a variable in the OPF locating the closest (with
di�erent objective: the most important) points of the operational limit surfaces.
The value of the variable is however completely determined by the variable PD,l.

3.4.4 Load �ow equations, transient equilibrium equations

The active and reactive power load �ow equations used are the same as Eqs. (124)
and (125); the active and reactive generation equations used are the same as
Eqs. (130) and (131); and the steady-state representations of the generator and
exciter EMFs, Eqs. (118) and (119), that is Eqs. (132) and (133) are also in-
cluded in the optimization problem.

3.4.5 Thermal Constraints

In the optimization problem where the closest operation limit to the present
operation point is to be found, the conditions

0 ≥ −Gi,j (Ui)
2 − (UiUj) (−Gi,j cos (θi,j)−Bi,j sin (θi,j))−

− P lim
i,j (1 + ε (αi,j − 1)) ,

{
{i, j} ∈ B

∣∣∣ αregardi,j = 1
} (140)

0 ≤ −Gi,j (Ui)
2 − (UiUj) (−Gi,j cos (θi,j)−Bi,j sin (θi,j))−

− P lim
i,j ((2− ε)αi,j − 1) ,

{
{i, j} ∈ B

∣∣∣ αregardi,j = 1
} (141)
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ensure that the binary variable αi,j is forced to 1 when the active power �ow
from bus i to bus j in line {i, j} has reached its power transfer limit P lim

i,j .
The parameter ε is a small positive number (in the case studies of this report
10−4) chosen in order to simplify the identi�cation of power �ows at, or close
enough to, the thermal transfer limit. The model is general in the sense that it
considers power �ow restrictions in both directions by considering all possible
combinations {i, j}.

For an explanation of the user-de�ned parameter αregardi,j in Eqs. (140) and (141),
the reader is referred to Sections 3.4.7 and 3.5.

3.4.6 The SNB

3.4.6.1 The partial derivatives for the Jacobian For the identi�cation
of SNB points, the modeling becomes more intricate. In particular, the de�ni-
tion of the system Jacobian and its corresponding eigenvectors within the frame
of an optimization problem de�ned within an algebraic modeling system.

The contributions to the system Jacobian from Eq. (116)

∂ ˙δgns

∂ωgns
= 1,∀gns ∈ G \ s (142)

will purely be constants/parameters and such can be computed before the op-
timization starts. The only contribution to J from Eq. (116) is Eq. (142) which
contributes to the fx submatrix of J introduced in Eq. (7). The contributions
to the system Jacobian of Eq. (117) do however include variables, and some of
its partial derivatives, like

∂ ˙ωgns

∂δgns
=
−E′q,gnsUgns cos (δgns − θgns)

MgnsX ′d,gns
,∀gns ∈ G \ s (143)

also does. Like for Eq. (142),

∂ ˙ωgns

∂ωgns
= −Dgns

Mgns
,∀gns ∈ G \ s (144)

is purely a constant/parameter from the optimization model's point of view,
whereas

∂ ˙ωgns

∂E′q,gns
= −Ug

ns sin (δgns − θgns)
MgnsX ′d,gns

,∀gns ∈ G \ s (145)

will be treated as variables in the optimization problem. The partial derivatives
Eqs. (143) to (145) all contributes to fx, whereas

∂ ˙ωgns

∂θgns
=
E′q,gnsUgns cos (δgns − θgns)

MgnsX ′d,gns
,∀gns ∈ G \ s (146)

∂ ˙ωgns

∂Ugns
= −

E′q,gns sin (δgns − θgns)
MgnsX ′d,gns

, ∀gns ∈ G \ s (147)

contributes to the submatrix fy of J introduced in Eq. (7). From Eq. (118) the
partial derivative

∂ ˙E′q,gns

∂δgns
= −

(
Xd,gns −X ′d,gns

)
Ugns sin (δgns − θgns)

T ′d0,gnsX
′
d,gns

,∀gns ∈ G \ s (148)
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and the parameterswill be treated as variable, whereas

∂ ˙E′q,g
∂E′q,g

= − Xd,g

T ′d0,gX
′
d,g

,∀g ∈ G (149)

∂ ˙E′q,g
∂E′f,g

=
1

T ′d0,g

, ∀g ∈ G (150)

are constants/paramters. The partial derivatives of Eqs. (148) to (150) belongs
to fx, whereas

∂ ˙E′q,g
∂θg

=

(
Xd,gns −X ′d,gns

)
Ug sin (δg − θg)

T ′d0,gX
′
d,g

,∀g ∈ G (151)

∂ ˙E′q,g
∂Ug

=

(
Xd,gns −X ′d,gns

)
cos (δg − θg)

T ′d0,gX
′
d,g

, ∀g ∈ G (152)

are obtained to take part in fy. As seen, Eqs. (151) and (152) will be treated as
variable in the optimization program. The last contribution to fx and fy comes
from Eq. (119): for fx only the parameters

∂ ˙E′f,g
∂E′f,g

= − 1

Te,g
,∀g ∈ G (153)

and for fy the parameters

∂ ˙E′f,g
∂U ′g

= −KA,g

Te,g
,∀g ∈ G. (154)

From Eqs. (124) and (130), the contributions to the submatrix gx of J ,
introduced in Eq. (7), are the variables

∂Pg
∂δg

= −
E′q,gUg cos (δg − θg)

X ′d,g
,∀g ∈ G \ s (155)

∂Pg
∂E′q,g

= −Ug sin (δg − θg)
X ′d,g

, ∀g ∈ G (156)

and the contributions to the submatrix gy of J introduced in Eq. (7) are the
variables

∂Pg
∂θg

=
E′q,gUg cos (δg − θg)

X ′d,g
+

+ Ug
∑
∀j∈B\g

(Uj (−Gg,j sin (θg,j) +Bg,j cos (θg,j))) ,∀g ∈ G
(157)

∂Pi
∂θi

= Ui
∑
∀j∈B\i

(Uj (−Gi,j sin (θi,j) +Bi,j cos (θi,j))) ,∀i ∈ B \G (158)

∂Pi
∂θj

= UiUj (Gi,j sin (θi,j)−Bi,j cos (θi,j)) ,∀i 6= j ∈ B (159)
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∂Pg
∂Ug

= −
E′q,g sin (δg − θg)

X ′d,g
+ 2UgGg,g+

+
∑
∀j∈B\g

Uj (Gg,j cos (θg,j) +Bg,j sin (θg,j)) ,∀g ∈ G
(160)

∂Pi
∂Ui

= 2UiGi,i +
∑
∀j∈B\i

Uj (Gi,j cos (θi,j) +Bi,j sin (θi,j)) ,∀i ∈ B \G (161)

∂Pi
∂Uj

= Ui (Gi,j cos (θi,j) +Bi,j sin (θi,j)) ,∀i 6= j ∈ B. (162)

Similarly (as from Eqs. (124) and (130)) from Eqs. (125) and (131),

∂Qg
∂δg

=
E′q,gUg sin (δg − θg)

X ′d,g
,∀g ∈ G \ s (163)

∂Qg
∂E′q,g

= −Ug cos (δg − θg)
X ′d,g

, ∀g ∈ G (164)

comes, which are used as variables in the operation limit �nding optimiza-
tion problem. Eqs. (163) and (164) are contributing to the submatrix gx of
J , whereas

∂Qg
∂θg

= −
E′q,gUg sin (δg − θg)

X ′d,g
+

+ Ug
∑
∀j∈B\g

(Uj (Gg,j cos (θg,j) +Bg,j sin (θg,j))) ,∀g ∈ G
(165)

∂Qi
∂θi

= Ui
∑
∀j∈B\i

(Uj (Gi,j cos (θi,j) +Bi,j sin (θi,j))) ,∀i ∈ B \G (166)

∂Qi
∂θj

= UiUj (−Gi,j cos (θi,j)−Bi,j sin (θi,j)) ,∀i 6= j ∈ B (167)

∂Qg
∂Ug

=
2Ug − E′q,g cos (δg − θg)

X ′d,g
− 2UgBg,g+

+
∑
∀j∈B\g

Uj (Gg,j sin (θg,j)−Bg,j cos (θg,j)) ,∀g ∈ G
(168)

∂Qi
∂Ui

= −2UiBi,i +
∑
∀j∈B\i

Uj (Gi,j sin (θi,j)−Bi,j cos (θi,j)) ,∀i ∈ B \G (169)

∂Qi
∂Uj

= Ui (Gi,j sin (θi,j)−Bi,j cos (θi,j)) ,∀i 6= j ∈ B (170)

are all variable, and contributing to gy.

3.4.6.2 Putting the Jacobian Together The bene�ts of using general
algebraic modeling systems are maybe obvious:

• straight-forward modeling,

• easy access and adaptation to a large variety of o�-the-shelf solvers,
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• thanks to the algebraic nature of the model the computer can take care of
and automatically compute the optimization model's Jacobians, Hessians,
and other solver-internal tools needed,

• etc.

One major complication for the program designer is however that de�nitions
of sets and subsets must be clearly and stringently de�ned. In this particular
case, it involves the inclusion of the system Jacobian and its corresponding
eigenvectors into the optimization model.

The dimensions of the system Jacobian, J , and its submatrices fx, fy, gx,
and gy will in the general (as general as having a single slack bus) case be:

J :
(
2 ·
(
2 · gb − 1 + bb

))
×
(
2 ·
(
2 · gb − 1 + bb

))
,

fx:
(
2 ·
(
gb − 1

)
+ 2 · gb

)
×
(
2 ·
(
gb − 1

)
+ 2 · gb

)
,

fy:
(
2 ·
(
gb − 1

)
+ 2 · gb

)
× 2 · bb,

gx: 2 · bb ×
(
2 ·
(
gb − 1

)
+ 2 · gb

)
, and

gy: 2 · bb × 2 · bb,

in which gb denotes the number of generator buses in the system, gb − 1 the
number of generator buses that are not slack buses in the system, and bb the
number of buses in the system. For the particular case of the IEEE 9-bus test
system [10, Appendix C.1] used in the numerical example of Section 4.1 these
�gures are 28× 28, 10× 10, 10× 18, 18× 10, and 18× 18, respectively.

Since these dimensions cannot be de�ned as sets containing the sets G, G\s,
B, and B\G in a straightforward fashion, some manipulations of the constraints,
containing projections from the above mentioned, bus-number based sets onto
other, larger, sets will have to be introduced. This will be noted and present in
the following.

For simplicity: let s denote the number of slack generators; gns denote the
number of non-slack generators, |G \ s|; and let gnsi ∈ {1, 2, ..., gns} denote the
ith element in the set G \ s. Once again, using the example of the IEEE 9-
bus system of [10, Appendix C.1]: s = s = 1; i ∈ {1, 2}; |G \ s| ∈ {2, 3};
gnsi ∈ {1, 2}; B ∈ {1, 2, ..., 9}; B \G ∈ {4, 5, ..., 9}; but for Ji,j , the dimensions
are {i, j} ∈ {(1, 2, ..., 18)× (1, 2, ..., 18)}. Thus, it is clearly not straight-forward
to de�ne the sets describing the Jacobian (and its eigenvectors) as sets containing
the other sets, since they are numbered di�erently. The other sets are numbered
in relation to either their order in their respective subsets, or to their respective
node numbers.

One way of managing the issue of incompatible set dimensions introduced
above, using the above introduced notation, for the fx part of J , is to de�ne

Ji,gns+i =
∂ ˙δgnsi

∂ωgnsi

, ∀i ∈ {1, 2, ...,gns} (171)

Jgns+i,i =
∂ ˙ωgnsi

∂δgnsi

, ∀i ∈ {1, 2, ...,gns} (172)

Jgns+i,gns+i =
∂ ˙ωgnsi

∂ωgnsi

, ∀i ∈ {1, 2, ...,gns} (173)
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Jgns+i,2gns+gnsi
=

∂ ˙ωgnsi

∂E′q,gnsi

,∀i ∈ {1, 2, ...,gns} (174)

J2gns+gnsi ,i =
∂ ˙E′q,gns

∂δgnsi

,∀i ∈ {1, 2, ...,gns} (175)

J2gns+g,2gns+g =
∂ ˙E′q,g
∂E′q,g

, ∀g ∈ G (176)

J2gns+g,2gns+g+g =
∂ ˙E′q,g
∂E′f,g

, ∀g ∈ G (177)

J2gns+g+g,2gns+g+g =
∂ ˙E′f,g
∂E′f,g

, ∀g ∈ G (178)

by using Eqs. (142) to (145), (148) to (150) and (153). Moreover, and similarly,
the parts of J that correspond to the submatrix fy can be de�ned by using
Eqs. (146), (147), (151), (152) and (154):

Jgns+i,2gns+2g+gnsi
=
∂ ˙ωgnsi

∂θgnsi

,∀i ∈ {1, 2, ...,gns} (179)

Jgns+i,2gns+2g+b+gnsi
=
∂ ˙ωgnsi

∂Ugnsi

,∀i ∈ {1, 2, ...,gns} (180)

J2gns+g,2gns+2g+g =
∂ ˙E′q,g
∂θg

,∀g ∈ G (181)

J2gns+g,2gns+2g+b+g =
∂ ˙E′q,g
∂Ug

,∀g ∈ G (182)

J2gns+g+g,2gns+2g+b+g =
∂ ˙E′f,g
∂U ′g

∀g ∈ G (183)

in which b denotes the number of busses in the system. The parts of J that
correspond to the submatrix gx are de�ned by using Eqs. (155), (156), (163)
and (164):

J2gns+2g+gnsi ,i =
∂Pgnsi

∂δgnsi

∀i ∈ {1, 2, ...,gns} (184)

J2gns+2g+g,2gns+g =
∂Pg
∂E′q,g

∀g ∈ G (185)

J2gns+2g+b+gnsi ,i =
∂Qgnsi

∂δgnsi

∀i ∈ {1, 2, ...,gns} (186)

J2gns+2g+b+g,2gns+g =
∂Qg
∂E′q,g

∀g ∈ G, (187)

and, �nally, the parts of J that correspond to the submatrix gy are de�ned by
using Eqs. (157) to (162) and (165) to (170):

J2gns+2g+g,2gns+2g+g =
∂Pg
∂θg

,∀g ∈ G (188)

J2gns+2g+i,2gns+2g+i =
∂Pi
∂θi

, ∀i /∈ G (189)
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J2gns+2g+i,2gns+2g+j =
∂Pi
∂θj

, ∀ {i 6= j} ∈ B (190)

J2gns+2g+g,2gns+2g+b+g =
∂Pg
∂Ug

,∀g ∈ G (191)

J2gns+2g+i,2gns+2g+b+i =
∂Pi
∂Ui

, ∀i /∈ G (192)

J2gns+2g+i,2gns+2g+b+j =
∂Pi
∂Uj

,∀ {i 6= j} ∈ B (193)

J2gns+2g+b+g,2gns+2g+g =
∂Qg
∂θg

,∀g ∈ G (194)

J2gns+2g+b+i,2gns+2g+i =
∂Qi
∂θi

,∀i /∈ G (195)

J2gns+2g+b+i,2gns+2g+j =
∂Qi
∂θj

,∀ {i 6= j} ∈ B (196)

J2gns+2g+b+g,2gns+2g+b+g =
∂Qg
∂Ug

,∀g ∈ G (197)

J2gns+2g+b+i,2gns+2g+b+i =
∂Qi
∂Ui

,∀i /∈ G (198)

J2gns+2g+b+i,2gns+2g+b+j =
∂Qi
∂Uj

,∀ {i 6= j} ∈ B. (199)

Now, J can be determined according to the above.

3.4.6.3 The actual SNB-detecting constraints In order to detect the
�rst reach of an SNB point in the optimization program, the constraints

2gns+2g+2b∑
i=1

uiJi,j ≥ |J |max
(β − 1) ,∀j ∈ {1, 2, ..., 2gns + 2g + 2b} (200)

2gns+2g+2b∑
i=1

uiJi,j ≤ |J |max
(1− β) ,∀j ∈ {1, 2, ..., 2gns + 2g + 2b} (201)

2gns+2g+2b∑
i=1

(ui)
2 ≥ ε+ (1− ε)β (202)

2gns+2g+2b∑
i=1

(ui)
2 ≤ 1 (203)

are used, in which ui represents a left-hand eigenvector of J , β is a binary
variable indicating that an SNB point has been reached, |J |max is a constant
parameter empirically set to 3 times the Frobenius norm of the Jacobian in the
present point of operation (that is, λ0 = ζ0 = PD,0,l from the solution of Sec-
tion 3.3), where Eq. (202) prevents the (trivial and irrelevant) zero-eigenvector
solution, Eq. (203) sets an upper bound on the 2-norm of the eigenvectors, and
where Eqs. (202) and (203) together forces the 2-norm of the eigenvector to be
1 in the SNB-point. Note that right-hand eigenvectors could have been used as
well.
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3.4.7 Ensuring at least one surface is reached

One constraint making sure at least one (additional) operation limit has been
reached is also needed:

1 ≤
∑
∀i,j∈B

αi,j · αaccounti,j + β · βaccount, (204)

where αaccounti,j is a user-de�ned parameter. The parameter is set to 1 if the
transfer limit of power �owing from node i to node j should be accounted for
in Eq. (204), and 0 if not. Being accounted for in Eq. (204), means implicitly,
that this surface has not yet been found and identi�ed. Moreover, in Eq. (204),
the user-de�ned parameter βaccount is in a similar fashion set to 1 if reaching
the SNB should be accounted for as �nding a new yet unfound surface. Finally,
in Eq. (204), the binary variable β from Eqs. (200) to (202) indicates whether
or not the point-of-operation of the power system in the optimization solving
procedure is at an SNB limit.

Since the model does not consider SLLs, and since any deeper analysis of
which kind of SNB point has been reached, the SNB surface can only be reached
once in the surface identi�cation process presented Section 3.5.

The parameter αregardi,j , until now only used in Eqs. (140) and (141), includes
the thermal limit constraints of active power transfer from bus i to bus j, in
the optimization problem if set to 1, and excludes it is set to 0. Moreover, the
parameter αregardi,j of Eqs. (140) and (141) is related to αaccounti,j in this study as

αregardi,j = αaccounti,j (205)

but in other types of studies the relation expressed by Eq. (205) may not be
needed.

A similar approach of a regard -parameter also for SNB is not possible, since
SNBs are of the SL type of Sections 1.1 and 2.2.1 which borders cannot be
violated without immediate putting the system stability at stake.

3.5 Finding the surfaces in order of importance

The process of the method of �nding the surfaces in their respective orders of
load-space distance (or, with some modi�cations; of importance) will be pre-
sented in the numbered list below naming the states by the numbers.

1. Initially, no surface has yet been found. The parameters αaccounti,j and
βaccount are set to 1. Then the �rst run of the optimization problem
�nding the closest operational limit takes place. There are four possible
outcomes:

(a) The SNB surface is reached. Then βaccount is set to 0. Thereafter,
the process goes to Step 2.

(b) A thermal transfer limit between the nodes i and j is reached. Then
αaccounti,j is set to 0. Thereafter, the process goes to Step 3.

(c) To a lower probability, the intersection of a thermal transfer limit
and an SNB surface might be the closest point meeting the OPF
constraint Eq. (204). Then, the parameters αaccounti,j and βaccount are
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set to 0. This is a CP [6, 70, 71]. CPs are not of the same relevance
for this type of study where, according to Section 1.3, each surface
should be treated individually. Thus, two separate surfaces should
be approximated in accordance with Section 2.3.3, with one main
exception: Since the point of evaluation, λc, is at an SNB, for the
thermal limit surface approximation; similar considerations as for
CPs needs to be taken � particularly that Fz = J is singular and
thus not invertible. Thereafter, the process goes to Step 4.

(d) There are no surfaces to be found: at all, within the upper bound on
numbers of surfaces m to maximally be identi�ed, or within a pos-
sible upper bound of distances in load space away from λ0 to search
for operational limit surfaces. This outcome is not likely, unless m
is mistakenly set to 0, the system is very stable, or the possible up-
per bound of the distance is too conservatively set. Thereafter, the
process goes to Step 5.

2. An SNB has occurred. There are two options, of which one is associated
with a lower probability:

(a) A thermal limit is reached. Then αaccounti,j is set to 0. If this point also
lies on an SNB surface, it should be treated as described in subpoint
c) of Point 1 and Point 3. Thereafter, the process goes to Step 4.

(b) There are no further surfaces to be found: at all, within the upper
bound on numbers of surfacesm to maximally be identi�ed, or within
a possible upper bound of distances in load space away from λ0 to
search for operational limit surfaces. Thereafter, the process goes to
Step 5.

3. A thermal limit is reached. As in Point 1 there are four possible outcomes:

(a) The SNB surface is reached. Then βaccount is set to 0. Thereafter,
the process goes to Step 4.

(b) A thermal transfer limit between the nodes i and j is reached. Then
αaccounti,j is set to 0. Thereafter, the process goes back to Step 3 again.

(c) To a lower probability, the intersection of a thermal transfer limit
and an SNB surface might be the closest point meeting the OPF
constraint Eq. (204). Then, the parameters αaccounti,j and βaccount are
set to 0. This is a CP [6, 70�72]. CPs are not of the same relevance
for this type of study, where, according to Section 1.3, each surface
should be treated individually. Thus, two separate surfaces should
be approximated in accordance with Section 2.3.3, with one main
exception: Since the point of evaluation, λc, is at an SNB, for the
thermal limit surface approximation; similar considerations as for
CPs needs to be taken � particularly that Fz = J is singular and
thus not invertible. Thereafter, the process goes to Step 4.

(d) There are no further surfaces to be found: at all, within the upper
bound on numbers of surfacesm to maximally be identi�ed, or within
a possible upper bound of distances in load space away from λ0 to
search for operational limit surfaces. Thereafter, the process goes to
Step 5.
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4. At least one thermal limit has been identi�ed, as well as the SNB surface.
As for Step 2 there are two options:

(a) A thermal limit is reached. Then αaccounti,j is set to 0. If this point also
lies on an SNB surface, it should be treated as described in sub-point
c) of Point 1 and Point 3. Thereafter, the process goes to Step 4.

(b) There are no further surfaces to be found: at all, within the upper
bound on numbers of surfacesm to maximally be identi�ed, or within
a possible upper bound of distances in load space away from λ0 to
search for operational limit surfaces. Thereafter, the process goes to
Step 5.

5. The process is over. It is now time to start approximating the surfaces
found. This is described in Section 2.3.3.

One additional approach that was tried out, but only resulted in longer
computation times; was to, besides setting the account-parameters to 0 after
a surface has been found, update the lower bound of z in Eq. (137) in order
to reduce the feasible search space for the solver. Probably it did just make it
harder for the solver since it resulted in an even more pronounced non-convexity
of the feasible search space than it already was since before.

3.6 Ending discussion

The models presented in the above can however be further improved from the
computational point of view. As the model is presented now, the entire Jacobian
matrix is computed despite its comparative sparsity. From the viewpoint of an
algebraic modeling language like GAMS [67], the set de�nitions and projections
back, from, and onto di�erent sets are nontrivial and due to time constraints of
the project, that kind of improvement is not considered within the scope of this
report for the actual study.

The need for making use of the sparsity can however be justi�ed both from
theory and empirics:

Theory: In [12, p. 330] it is clearly stated that "The use of very e�cient spar-
sity techniques is essential, in order to preserve the computational advan-
tages of optimization over the simpler continuation methods.".

Empirics: Finding the globally closest SNB point in a small �ctitious two-node
purely static system with one slack bus and one load bus keeping P and
Q equal, took with the explicit Jacobian 0.842 seconds, and using sparsity
0.078 seconds. In the explicit Jacobian model, the optimization problem
had 47 equations and 48 variables, whereas the model using sparsity had
15 equations and 16 variables.

Optimization methods and continuation methods, brie�y treated in the Theory:
point above are described in more detail in Sections 2.3.2.2 and 2.3.2.3.

4 Study Results

The results of the GAMS model have been veri�ed with appropriate modi�ca-
tions using the IEEE 9-bus system model in Matpower [73].
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4.1 Results out of Numerical Studies

The second order approximations of the surfaces presented in this section are all
pre-contingency surfaces. Due to space and time limitations, no post-contingency
surfaces have been presented here. The procedure is however similar and com-
paratively straightforward.

For the sake of simplicity, within this report, the case of HBs are not studied.
Initial modeling approaches have however proven successful.

4.1.1 IEEE 9-bus test system description, and base-case load �ow
results

The test system chosen in the numerical case study was the IEEE 9-bus test
system [10, Appendix C.1] visualized in Fig. 4. It was chosen in order to comply
with [6] and its related work, and because of two other reasons:

1. In a small, technically relevant, but still not trivial system, results are eas-
ier to visualize. A small dimension of the load space facilitates debugging
and the identi�cation of challenges not expected beforehand. Debugging
and challenge identi�cations are suitable at early stages of long-term re-
search lines. Three load nodes are just right for what the human mind
easily can visualize.

2. Last, but not least, the problem sizes are somewhat limited at the stages of
model development when the models are not yet optimized from numerical,
memory consumption, and algorithmic points-of-view.

The reader should be alert to that a variety of node numberings and system
data exist for the IEEE 9-bus test system. Node numbering and system data
have been chosen here to comply with the case studies done in [6]. Data regard-
ing the test system is presented in Tables 1 to 5 in Section 4.1.1. Some details
from the basic load �ow solution at PD,0 can be found in Tables 6 to 8 and 19

The data of Tables 1 to 3 are taken from [10, Appendix C.1] except the
load bus numbers which are in accordance with [6, Appendix A.2]. The exciter
and AVR parameters in Table 4 have the following origins: the exciter limits
Elim
f,i (confer for example Eq. (123)) and the reference voltages Uref,i (confer for

example Eq. (119)) are taken from [6], whereas the time constant of the exciter,
Te, and the gain of the exciter, KA, are taken from [10, Appendix C.1]. The
thermal power transfer limits P lim

i,j (confer equations Eqs. (140) and (141)) of
Table 5 are taken from [6].

The parameter M in Eq. (117) is determined as

M = 2 ·H, (206)

using H of Table 3. Moreover, the voltage is only controlled in the PU (PU)
busses according to Table 2 when not considering the dynamic part of the sys-
tem, that is when merely studying the system as

0 = g (y) , (207)

whereas, when modeling the system as

0 = F (z) , (208)
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Figure 4: The IEEE 9-bus test system

the resulting voltages when �nding the initial steady-state solution, λ0, is dif-
ferent. The voltages in the initial steady state solution are listed in Table 7, the
resulting generation in Table 6, and the active power �ows between the busses
in the system in Table 8. When AVRs are considered in the stability studies
voltage in the slack bus and in the PU busses are instead indirectly controlled
by Eqs. (132) and (133).

4.1.2 Obtained operational limit surfaces

In all pictures, the color red denotes the thermal limit on line 4-5, magenta
denotes the thermal limit on line 4-6, blue denotes the thermal limit on line
7-8, green denotes the thermal limit on line 5-4, cyan denotes the thermal limit

Table 1: Line data; resistances, reactances, and capacitances. Units: p.u.

Line between busses R X B
4 and 5 0.0100 0.0850 0.176
4 and 6 0.0170 0.0920 0.158
5 and 7 0.0320 0.1610 0.306
6 and 9 0.0390 0.1700 0.358
7 and 8 0.0085 0.0720 0.149
8 and 9 0.0119 0.1008 0.209
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Table 2: Bus data. Units: p.u.

Bus Type P Q U δ
1 slack - - 1.04 0.00
2 PU 1.63 - 1.025 -
3 PU 0.85 - 1.025 -
4 PQ 0.00 0.00 - -
5 PQ 1.25 0.50 - -
6 PQ 0.90 0.30 - -
7 PQ 0.00 0.00 - -
8 PQ 1.00 0.35 - -

Table 3: Generator data. Units: p.u.

Generator g Bus b Xb,g Xd X ′d T ′d0 H D
1 4 0.0576 0.1460 0.0608 8.96 23.64 0.02540
2 7 0.0625 0.8958 0.1198 6.00 06.40 0.00660
3 9 0.0586 1.3125 0.1813 5.89 03.01 0.00260

Table 4: Exciter and AVR data. Units: p.u.

Generator g KA Te Elim
f,i Uref,i

1 20 0.314 2.0 1.1
2 20 0.314 2.2 1.05
3 20 0.314 1.7 1.05

Table 5: Power transfer limits. Units: p.u., base power 100 MVA

Line Between busses Limit
1 1 & 4 5.0
2 4 & 5 2.5
3 5 & 7 2.5
4 4 & 6 2.5
5 6 & 9 2.5
6 7 & 8 2.5
7 2 & 7 2.5
8 8 & 9 2.5
9 3 & 9 2.5
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Table 6: Resulting generation in the initial steady-state solution at PD,0. Units:
p.u.

Generator g PG QG
1 0.7201 0.4703
2 1.6300 -0.0239
3 0.8500 -0.1170

Table 7: Resulting voltage levels at the initial steady-state solution at PD,0.
Units: p.u.

Bus b U
1 1.0443
2 0.9881
3 0.9995
4 1.0192
5 0.9794
6 0.9989
7 0.9950
8 0.9867
9 1.0076
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Table 8: Resulting power transfers at the initial steady-state solution at PD,0.
Units: p.u.

Line From bus i To bus j Pi,j
1 1 4 3.7961
7 2 7 1.6300
9 3 9 0.8500
1 4 1 -0.7201
2 4 5 0.4117
4 4 6 0.3084
2 5 4 -0.4083
3 5 7 -0.8417
4 6 4 -0.3064
5 6 9 -0.5935
7 7 2 -1.6300
3 7 5 0.8660
6 7 8 0.7640
6 8 7 -0.7590
8 8 9 -0.2410
9 9 3 -0.8500
5 9 6 0.6079
8 9 8 0.2421

Figure 5: General picture of the 7 �rst identi�ed and approximated operational
limits of the IEEE 9-bus test system
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Figure 6: The shortest distances from PD,0 to each of the surfaces

on line 6-4, gray denotes the thermal limit on line 7-5, and �nally dark yellow
denotes the SNB. Moreover, asterisks "*" denote (optimal) load �ow solutions.
The colored asterisks denote the optimal points, λc, obtained by solving the
problems of Section 3.4. The black asterisk denotes λ0, the solution of the
present load point.

Each surface is approximated to the second order in load space following the
theories presented in Section 2.3.3. The approximations are evaluated around
the corresponding closest-point solution points λc. The three axes in load space
represent the three loads in the IEEE 9-bus test system of Fig. 4, that is; busses
5 (Load 1), 6 (Load 2), and 8 (Load 3). The thick lines connecting black and
colored asterisks illustrates the direction and distance of net load change from
the present load point, λ0, to the closest operational limit, λc. All the surfaces
found are approximated and visualized in Fig. 5.

The shortest distances from the present load point, λ0 = PD0 to each of the
operational limits are plotted in Fig. 6. The distances are in Fig. 6 plotted in
their order of appearance following the method presented in Section 3.5. The
respective distances are visualized in Fig. 7 by spheres in the 3-dimensional load
space of the IEEE 9-bus test system. All (net-)loads in the plots are given in
per-unit (p.u.) on a 100-MVA base.

In the forthcoming subsections, the results of each surface will be treated
individually in separate sections. Results will however be interlinked in the
embedded analysis, when applicable.

4.1.2.1 Thermal limit of Line 4-5 This is the operation limit closest to
the present stable operating point, PD,0, or λ0. The shortest Euclidean distance
from PD,0 to this limit is 1.9526 p.u., where the particular net loads PD are
presented in Table 9 together with PG and QG. Since the load power factor is
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Figure 7: The shortest distances from PD,0 to each of the surfaces illustrated in
3-dimensional load space by spheres centered at PD,0

kept constant, QD is not listed, but can easily be computed from PD, PD,0, and
QD,0.

For completion, the bus voltages U at the point of solution are presented in
Table 10, and the transferred active powers are presented in Table 11.

In Figs. 13 to 15 the red surface is shown from viewpoints that make it easily
identi�able. In Fig. 8 the red sphere illustrates that the optimization method
used identi�ed line 4-5 correctly to be the closest surface to encounter.

4.1.2.2 Thermal limit of Line 4-6 This is the operation limit second
closest to the present stable operating point, PD,0, or λ0. The shortest Euclidean
distance from PD,0 to this limit is 2.0815 p.u., where the particular net loads
PD are presented in Table 12 together with PG and QG. Since the load power

Table 9: Resulting loads and generation at the closest point from PD,0 to the
surface of the busses 4 to 5 (line 2) thermal power transfer limit. Units: p.u.

Load l PD Generator g PG QG
5 2.9179 1 3.7961 2.6272
6 1.1903 2 1.6300 0.9400
8 1.9730 3 0.8500 0.5863
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Table 10: Resulting voltage levels at the closest point from PD,0 to the surface
of the busses 4 to 5 (line 2) thermal power transfer limit. Units: p.u.

Bus b U
1 1.0262
2 0.9452
3 0.9542
4 0.9042
5 0.7716
6 0.8747
7 0.8896
8 0.8585
9 0.9197

Table 11: Resulting power transfers at the closest point from PD,0 to the surface
of the busses 4 to 5 (line 2) thermal power transfer limit. Units: p.u.

Line From bus i To bus j Pi,j
1 1 4 3.7961
7 2 7 1.6300
9 3 9 0.8500
1 4 1 - 3.7961
2 4 5 2.4998
4 4 6 1.2963
2 5 4 -2.3975
3 5 7 -0.5204
4 6 4 -1.2609
5 6 9 0.0707
7 7 2 -1.6300
3 7 5 0.5453
6 7 8 1.0847
6 8 7 -1.0710
8 8 9 -0.9020
9 9 3 -0.8500
5 9 6 -0.0673
8 9 8 0.9173
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Figure 8: Using a sphere to illustrate that no other closest points are closer to
λ0 = PD,0 than the one of thermal limit 4-5. Focus is set on the two subsequent
closest points representing thermal limit 4-6 and the single node bifurcation
(SNB)
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Table 12: Resulting loads and generation at the closest point from PD,0 to the
surface of the busses 4 to 6 (line 4) thermal power transfer limit. Units: p.u.

Load l PD Generator g PG QG
5 1.5675 1 4.0231 2.7684
6 2.7122 2 1.6300 0.8340
8 1.9735 3 0.8500 0.7629

Table 13: Resulting voltage levels at the closest point from PD,0 to the surface
of the busses 4 to 6 (line 4) thermal power transfer limit. Units: p.u.

Bus b U
1 1.0248
2 0.9501
3 0.9421
4 0.8981
5 0.8492
6 0.7709
7 0.9016
8 0.8547
9 0.8962

factor is kept constant, QD is not listed, but can easily be computed from PD,
PD,0, and QD,0.

For completion, the bus voltages U at the point of solution are presented in
Table 13, and the transferred active powers are presented in Table 14.

The front picture of thermal limit 4-6 surface is illustrated in Fig. 9, whereas
the backside picture of the same surface can be found in Fig. 10. This surface
turned out to be easy to illustrate without extreme twisting of the viewing axes
in load space.

4.1.2.3 The SNB This is the operation limit third closest to the present
stable operating point, PD,0, or λ0. The shortest Euclidean distance from PD,0
to this limit is 2.1365 p.u., where the particular net loads PD are presented in
Table 15 together with PG and QG. Since the load power factor is kept constant,
QD is not listed, but can easily be computed from PD, PD,0, and QD,0.

For completion, the bus voltages U at the point of solution are presented
in Table 16, and the transferred active powers are presented in Table 17. It
is noteworthy that the thermal limit on Line 2, from bus 4 to bus 5 has been
violated here.

It should be noted that in the pre-contingency cases studied in [6, Chapter
7], no SNB where found as part of that stability surface. That can be explained
by two main di�erences between the study made there and the one of this report:
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Table 14: Resulting power transfers at the closest point from PD,0 to the surface
of the busses 4 to 6 (line 4) thermal power transfer limit. Units: p.u.

Line From bus i To bus j Pi,j
1 1 4 4.0231
7 2 7 1.6300
9 3 9 0.8500
1 4 1 -4.0231
2 4 5 1.5234
4 4 6 2.4998
2 5 4 -1.4920
3 5 7 -0.0756
4 6 4 -2.3408
5 6 9 -0.3714
7 7 2 -1.6300
3 7 5 0.0788
6 7 8 1.5512
6 8 7 -1.5233
8 8 9 -0.4502
9 9 3 -0.8500
5 9 6 0.3952
8 9 8 0.4548

Figure 9: The surface of the thermal limit 4-6 from the front
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Figure 10: The surface of the thermal limit 4-6 from behind

Table 15: Resulting loads and generation at the closest point from PD,0 to the
surface of the SNB. Units: p.u.

Load l PD Generator g PG QG
5 2.7505 1 4.7095 4.6571
6 1.9785 2 1.6300 1.5109
8 2.0724 3 0.8500 1.1334

Table 16: Resulting voltage levels at the closest point from PD,0 to the surface
of the SNB. Units: p.u.

Bus b U
1 1.0105
2 0.9176
3 0.9154
4 0.7919
5 0.6413
6 0.7058
7 0.8222
8 0.7779
9 0.8446
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Table 17: Resulting power transfers at the closest point from PD,0 to the SNB
surface. Units: p.u.

Line From bus i To bus j Pi,j
1 1 4 4.7095
7 2 7 1.6300
9 3 9 0.8500
1 4 1 -4.7095
2 4 5 2.5850
4 4 6 2.1245
2 5 4 -2.4375
3 5 7 -0.3129
4 6 4 -1.9894
5 6 9 0.0110
7 7 2 -1.6300
3 7 5 0.3538
6 7 8 1.2762
6 8 7 -1.2533
8 8 9 -0.8191
9 9 3 -0.8500
5 9 6 0.0150
8 9 8 0.8350

1. In that study, only the �rst operation limit encountered was considered
and made part of the aggregated stability surface. In this report, many
di�erent surfaces are considered individually, also if one is encountered
beyond the other when that is physically relevant and feasible.

2. This study is limited to considering a smaller number of SL-types com-
pared to the study in [6, Chapter 7]. Besides thermal limits, in the study
of [6, Chapter 7] one SLL was identi�ed, as well as two HB surfaces be-
longing to di�erent control modes of the AVRs.

a) In the initial limited study of this report, the switching of control
modes of AVRs are disregarded.

b) In the initial limited study of this report, HBs are disregarded.

so since these surfaces were ignored in the numerical study of this report,
the SNB could be found in the pre-contingency case.

Bearing in mind that ε in Eq. (202) is set to equal 10−4, the resulting eigen-
values identi�ed as belonging to the SNB might be of interest to analyze. The
eigenvalue of J with the smallest attainable absolute value (modulus) closest to
λ0 = PD,0 was with the local LINDO solver −1.0014 · 10−4. From a practical
point of view, this must be considered close-enough. Lower values of ε could be
used, but its numerical implications need to be evaluated. A bit peculiar from
the numerical point of view, was that with the models and methods used in this
study, smaller values than −1.0014 ·10−4 of the eigenvalues were not possible to
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Figure 11: The absolute values (moduli) of the eigenvalues of J = Fz at the
identi�ed SNB point closest to PD,0

obtain. Using the global LINDO solver, the value obtained was 1.0016 · 10−4,
for a signi�cantly longer computation time. Due to time constraints, not many
alternative formulations of the SNB-identi�cation constraints besides the one
presented in Section 3.4.6 have been evaluated.

In Fig. 11, the moduli of the eigenvalues of J = Fz are depicted. Their order
of appearance is related to the MATrix LABoratory (MATLAB) command eig.
It is clear that the 28th eigenvalue is the one related to the SNB. In Fig. 12,
the same eigenvalues of J = Fz are plotted in the complex plane, C. The SNB-
related eigenvalue is easily identi�ed, as it is located in the origin. Since HB
were not sought for in this study, no analysis of the eigenvalues of A has been
made.

In Fig. 13 one can see that the SNB point is slightly beyond the thermal
limit of line 4-5. That is con�rmed in the numerical results of Table 17 by the
red �gures. Moreover, one can see that the SNB surface and the surface of the
thermal limit of line 4-5 intersect each other. In cases when the SNB surface is
fully on the inner side of a thermal limit, that thermal limit can and will never
be reached. The intersection of the SNB and line 4-5 thermal limit surfaces is
further illustrated in Fig. 14. In the view of Fig. 13 it is clear that the thermal
limit's surface is inside the SNB's surface for higher values of PD,5 and PD,6,
whereas for lower values of PD,5 and PD,6 (and higher values of PD,9) the SNB's
surface is inside the thermal limit's surface.

An alternative way of illustrating that the closest SNB point is further away
from PD,0 than the closest 4-5 point, is in Fig. 15. In that �gure, a sphere with
the same radius as the distance to the closest SNB point has been inserted.
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Figure 12: The complex-valued eigenvalues of J = Fz at the identi�ed SNB
point closest to PD,0

Figure 13: Illustrating that the closest SNB point is slightly beyond the closest
thermal limit of line 4-5, and that their corresponding surfaces intersect
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Figure 14: Illustrating the SNB surface intersecting the surface of the thermal
limit of line 4-5

That sphere surpasses the 4-5 surface exactly in the area where the closest 4-5
point is located. It should be noted that parts of the 4-5 asterisk poke out of
the sphere on the Load 1-side of Fig. 15.

In a similar way, it is illustrated in Fig. 16 that the closest SNB point is
further away from PD,0 than the closest 4-6 point. Also in this case the di�erence
is small, actually so small

2.1365− 2.0815 = 0.0550 (209)

that only the outer parts of the 4-6 asterisk are visible.

4.1.2.4 Thermal limit of Line 7-8 This is the operation limit fourth clos-
est to the present stable operating point, PD,0, or λ0. The shortest Euclidean
distance from PD,0 to this limit is 2.8897 p.u., where the particular net loads
PD are presented in Table 18 together with PG and QG. Since the load power
factor is kept constant, QD is not listed, but can easily be computed from PD,
PD,0, and QD,0.

For completion, the bus voltages U at the point of solution are presented in
Table 19, and the transferred active powers are presented in Table 20.

The surface of the thermal limit 7-8 is illustrated in Fig. 17, where it is
located high up in the third dimension of load space, that is for high positive
values of PD,8. The surface approximation is above most of the other surface
approximations in most of load space, except for low loads in bus 5 (that is, Load
1) where the thermal limit 4-5 surface approximation lies above the thermal limit
7-8 surface. For high values of load in bus 6 (that is Load 2) and low values
of load in bus 5 (that is Load 1), the thermal limit 5-4 surface approximation
exceeds the thermal limit 7-8 surface approximation, and for low or negative
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Figure 15: Illustrating that the closest SNB point is slightly further away from
PD,0 than the closest point of the thermal limit of line 4-5

Figure 16: Illustrating that the closest SNB point is slightly further away from
PD,0 than the closest point of the thermal limit of line 4-6
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Table 18: Resulting loads and generation at the closest point from PD,0 to the
surface of the busses 7 to 8 (line 6) thermal power transfer limit. Units: p.u.

Load l PD Generator g PG QG
5 0.4441 1 3.8777 3.1487
6 1.7467 2 1.6300 2.3173
8 3.6427 3 0.8500 1.8121

Table 19: Resulting voltage levels at the closest point from PD,0 to the surface
of the busses 7 to 8 (line 6) thermal power transfer limit. Units: p.u.

Bus b U
1 1.0225
2 0.8751
3 0.8615
4 0.8729
5 0.8055
6 0.7305
7 0.7190
8 0.5495
9 0.7405
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Table 20: Resulting power transfers at the closest point from PD,0 to the surface
of the busses 7 to 8 (line 6) thermal power transfer limit. Units: p.u.

Line From bus i To bus j Pi,j
1 1 4 3.8777
7 2 7 1.6300
9 3 9 0.8500
1 4 1 -3.8777
2 4 5 1.3922
4 4 6 2.4855
2 5 4 -1.3615
3 5 7 0.9173
4 6 4 -2.3118
5 6 9 0.5652
7 7 2 -1.6300
3 7 5 -0.8698
6 7 8 2.4998
6 8 7 -2.3382
8 8 9 -1.3046
9 9 3 -0.8500
5 9 6 -0.5408
8 9 8 1.3908

values combined of loads in buses 5 and 6 (Load 1 and 2), the thermal limit 7-8
surface approximation lies above the thermal limit 7-8 surface approximation
in the dimension of load in bus 8. Finally, the SNB surface approximation
seems related to the thermal limit 7-8 surface approximations like a compromise
between the thermal limit 4-5 surface approximation and the thermal limit 7-8
surface approximation.

The surface of the thermal limit 7-8 is illustrated in Fig. 18 to droop in the
bus 8 load direction for large loads in bus 6 and no net load in bus 5. Moreover,
the graph shows that the curvature in bus 5 load direction is also increasing for
large loads in bus 6.

4.1.2.5 Thermal limit of Line 7-5 This is the operation limit �fth closest
to the present stable operating point, PD,0, or λ0. The shortest Euclidean
distance from PD,0 to this limit is 3.2991 p.u., where the particular net loads
PD are presented in Table 21 together with PG and QG. Since the load power
factor is kept constant, QD is not listed, but can easily be computed from PD,
PD,0, and QD,0.

For completion, the bus voltages U at the point of solution are presented in
Table 22, and the transferred active powers are presented in Table 23.

The most plane-like surface encountered within this study is the thermal
limit 7-5 surface, depicted in Fig. 19. Comparatively large amounts of net
power generation (that is, negative net loads) in bus 8 in the IEEE 9-bus test
system is needed for this thermal limit to be reached according to the second
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Figure 17: Illustrating that the thermal limit 7-8 surface is located high up in
the PD,8 dimension in load space above the other surface approximations with
some exceptions.

Figure 18: Illustrating that the the thermal limit 7-8 surface approximation is
quite �at, but drooping downward in PD,8 direction
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Table 21: Resulting loads and generation at the closest point from PD,0 to the
surface of the busses 7 to 5 (line 3) thermal power transfer limit. Units: p.u.

Load l PD Generator g PG QG
5 2.8733 1 0.0000 2.0698
6 0.9934 2 1.6300 0.4939
8 -1.8706 3 0.8500 0.1345

Table 22: Resulting voltage levels at the closest point from PD,0 to the surface
of the busses 7 to 5 (line 3) thermal power transfer limit. Units: p.u.

Bus b U
1 1.0337
2 0.9655
3 0.9838
4 0.9184
5 0.7694
6 0.8906
7 0.9395
8 0.9966
9 0.9771
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Table 23: Resulting power transfers at the closest point from PD,0 to the surface
of the busses 7 to 5 (line 3) thermal power transfer limit. Units: p.u.

Line From bus i To bus j Pi,j
1 1 4 0.0000
7 2 7 1.6300
9 3 9 0.8500
1 4 1 0.0000
2 4 5 0.6790
4 4 6 -0.6790
2 5 4 -0.6453
3 5 7 -2.2280
4 6 4 -0.6921
5 6 9 -1.6855
7 7 2 -1.6300
3 7 5 2.4997
6 7 8 -0.8697
6 8 7 0.8807
8 8 9 0.9899
9 9 3 -0.8500
5 9 6 1.8280
8 9 8 -0.9780

order approximation curve.
With the help of the sphere associated to the distance to the closest thermal

limit 7-5 point, one can graphically con�rm that only two more identi�ed sur-
faces, remain to be investigated. This is shown in Fig. 20. These two remaining
surfaces are the ones associated to the thermal limit 5-4 and the thermal limit
6-4.

4.1.2.6 Thermal limit of Line 5-4 This is the operation limit sixth closest
(and the one second furthest away within the scope of this study) to the present
stable operating point, PD,0, or λ0. The shortest Euclidean distance from PD,0
to this limit is 4.0342 p.u., where the particular net loads PD are presented in
Table 24 together with PG and QG. Since the load power factor is kept constant,
QD is not listed, but can easily be computed from PD, PD,0, and QD,0.

For completion, the bus voltages U at the point of solution are presented in
Table 25, and the transferred active powers are presented in Table 26.

Since the point associated to the line 5-4 thermal constraint with the shortest
distance to PD,0 was located quite far away from λ0 = PD,0 (negative net loads
in busses 5 and 6) in load space, many of the other surface approximations were
removed from Fig. 21 in order to visualize the point of shortest distance.

By the help of a sphere centered at PD,0 with the radius of the shortest
distance from PD,0 to the thermal limit of the line 5-4, Fig. 22 shows similarities
in distances of surfaces line 5-4 and the line 6-4.

With Fig. 23, the intention is to visualize the approximated line 5-4 surface.
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Figure 19: Illustrating that the thermal limit 7-5 surface is located slightly tilted
deep down in the PD,8 dimension in load space below the other surfaces with
some exceptions.

Table 24: Resulting loads and generation at the closest point from PD,0 to the
surface of the busses 5 to 4 (line 2) thermal power transfer limit. Units: p.u.

Load l PD Generator g PG QG
5 -1.9642 1 0.0000 3.9879
6 3.2111 2 1.6300 0.7299
8 0.2331 3 0.8500 1.5125

97



Figure 20: Graphically con�rming with the help of the sphere that the closest
thermal limit 7-5 point is further out than all but two of the other found and
identi�ed closest limit points

Table 25: Resulting voltage levels at the closest point from PD,0 to the surface
of the busses 5 to 4 (line 2) thermal power transfer limit. Units: p.u.

Bus b U
1 1.0204
2 0.9549
3 0.8863
4 0.7953
5 0.8854
6 0.4040
7 0.9134
8 0.8579
9 0.7882
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Table 26: Resulting power transfers at the closest point from PD,0 to the surface
of the busses 5 to 4 (line 2) thermal power transfer limit. Units: p.u.

Line From bus i To bus j Pi,j
1 1 4 0.0000
7 2 7 1.6300
9 3 9 0.8500
1 4 1 0.0000
2 4 5 -2.4074
4 4 6 2.4074
2 5 4 2.4998
3 5 7 -0.5355
4 6 4 -1.9368
5 6 9 -1.2742
7 7 2 -1.6300
3 7 5 0.5473
6 7 8 1.0827
6 8 7 -1.0668
8 8 9 0.8337
9 9 3 -0.8500
5 9 6 1.6678
8 9 8 -0.8178

Figure 21: Visualizing the closest point on the surfaces of the thermal limit of
line 5-4 by removing some other surfaces from the plot
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Figure 22: Visualizing the similar distances of the closest points on the surfaces
of the thermal limit of the line 5-4 and the line 6-4 with the help of a sphere

The approximated surface is shaped as an arc, almost a quarter of a circle for
net loads of -5 p.u. in bus 8, in the Load 1-Load 2-plane de�ned by busses 5
and 6, raising in the bus 8 dimension for further decreased net loads in busses
5 and 6. The surface of the 6-4 thermal limit looks quite similar but is slightly
shifted in the bus 5-bus 6 plane as further discussed in Section 4.1.2.7.

4.1.2.7 Thermal limit of Line 6-4 This is the operation limit seventh
closest (and the one furthest away within the scope of this study) to the present
stable operating point, PD,0, or λ0. The shortest Euclidean distance from PD,0
to this limit is 4.0808 p.u., where the particular net loads PD are presented in
Table 27 together with PG and QG. Since the load power factor is kept constant,
QD is not listed, but can easily be computed from PD, PD,0, and QD,0.

For completion, the bus voltages U at the point of solution are presented in
Table 28, and the transferred active powers are presented in Table 29.

Firstly, a peculiarity worth pointing out, clearly viewed in Fig. 24 it is the
similarities between the surfaces representing the thermal limit of power �owing
from bus 6 to 4 and the one for bus 5 to 4.

Another view illustrating the similarity between and complementarity of the
surfaces of the thermal limit of line 6-4 and the one of line 5-4 but from another
viewpoint is Fig. 25. In Fig. 25 it is visible that the line 6-4 surface is closer to
PD,0 when net loads in bus 5 are positive and net loads in bus 6 drops towards
negative values. Conversely, Fig. 25 shows that the line 5-4 surface is closer to
PD,0 when net loads in bus 6 are positive, and net loads in bus 5 drops towards

100



Figure 23: Visualizing the surface of the thermal limit of the line 5-4

Table 27: Resulting loads and generation at the closest point from PD,0 to the
surface of the busses 6 to 4 (line 4) thermal power transfer limit. Units: p.u.

Load l PD Generator g PG QG
5 3.5580 1 0.0000 3.8263
6 -2.4437 2 1.6300 1.6376
8 0.6181 3 0.8500 0.5182

Table 28: Resulting voltage levels at the closest point from PD,0 to the surface
of the busses 6 to 4 (line 4) thermal power transfer limit. Units: p.u.

Bus b U
1 1.0216
2 0.9112
3 0.9588
4 0.8058
5 0.4676
6 0.9231
7 0.8066
8 0.8478
9 0.9286
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Table 29: Resulting power transfers at the closest point from PD,0 to the surface
of the busses 6 to 4 (line 4) thermal power transfer limit. Units: p.u.

Line From bus i To bus j Pi,j
1 1 4 0.0000
7 2 7 1.6300
9 3 9 0.8500
1 4 1 0.0000
2 4 5 2.3531
4 4 6 -2.3531
2 5 4 -2.0915
3 5 7 -1.4665
4 6 4 2.4998
5 6 9 -0.0561
7 7 2 -1.6300
3 7 5 1.7877
6 7 8 -0.1577
6 8 7 0.1606
8 8 9 -0.7787
9 9 3 -0.8500
5 9 6 0.0561
8 9 8 0.7938

Figure 24: Visualizing the similarities between the surfaces of the thermal limit
of line 6-4 and the one of line 5-4
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Figure 25: Visualizing the symmetric similarities between and the complemen-
tarity of the surfaces of the thermal limit of line 6-4 and the one of line 5-4

negative values.
Recalling the topography of the IEEE 9-bus test system in Fig. 4, the sym-

metry between the lines 2 (busses 4 and 5) and 4 (busses 4 and 6) with respect
to the slack bus (bus 1) and the similarly (but not identically) controlled PU
busses, the results are reasonable. Moreover, recalling from for example Table 2
that generator 2 has a higher level of generation than generator 3, one can ex-
plain why surface 5-4 is slightly closer to PD,0 in load space than surface 6-4.
The net load in bus 5 needs to be less negative to reach the limit than the net
load in bus 6 has to be. This is because the generator in node 2 is "helping"
the load in bus 5 more than the generator in bus 3 is helping the load in bus 6.

In Fig. 26, the transparency levels of the surface approximation of line 6-4
has been increased in order to make the asterisk indicating the closest load point
of the thermal limit of line 6-4 easily visible.

4.1.3 On the usability of second order approximations

In [6, Chapter 7.4], it was demonstrated that the second order approximations
and the distance function, as de�ned in that publication, resulted in small er-
rors compared to reality for the pre-contingency case study. That study di�ers
however from the one of this report in two relevant aspects:

• Only the �rst encountered operational limit was considered.

• The search for surfaces and limits was only done in the positive eighth of
the three-dimensional net-load space. That means that negative net-loads
were not considered. Such would represent large amounts of uncontrollable
power production, or possible storage systems discharging on the consumer
side.
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Figure 26: Visualizing the closest load point of the thermal limit of line 6-4 with
respect to PD,0

Some indications have been found in this early study that suggest that the
second order approximations made of the operational limit surfaces might not
always be accurate enough in the context of the aims (presented in Section 1.2) of
this project. Often they seem to be accurate however. Figs. 27 and 28, illustrate
examples on when the approximation seems reliable because of consistency, and
when it does not, respectively:

• Fig. 27 shows that the point of shortest distance to surface 6-4 is very close
to the surface of 4-5. This can be con�rmed by the power transferred from
bus 4 to 5 (2.35 p.u.) listed in Table 29 in Section 4.1.2.7.

• For Fig. 28 there are two symmetrical counterexamples, where the approx-
imation does not seem reliable:

� Fig. 28, on the other hand shows that the closest point from the
present load, PD,0, to the line thermal limit 5-4 is very closely located
to the surface approximation of the line thermal limit 6-4 . Referring
to Table 26 the power transferred from bus 6 to bus 4 is however -1.94
p.u. Thus, one can conclude that close to P 5-4

D , the power transfer
limit from bus 6 to bus 4 has not been reached.

� Similarly, still in Fig. 28, for the point of shortest distance to surface
6-4 is also very close to the surface approximation of 5-4. This can be
concluded to not be the case at all, when �nding out from Table 29
in Section 4.1.2.7 that the power transferred from bus 5 to bus 4 is
-2.09 p.u.
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Figure 27: Illustrating that when transfer 6-4 is at its limit, the approximations
suggest that transfer 4-5 is as well

By very logical and obvious reasons, the surface representations of both line
thermal limit 4-5, and line thermal limit 5-4 cannot be close to each other in
load space. Since line thermal limit 4-5, and line thermal limit 5-4 represent the
same connection, but opposite directions of power �ows, both of them cannot
reached or violated for the same load situation. An occurrence of this problem
is clearly visible in Fig. 13.

Analogously, one can for the pair of surface approximations representing line
thermal limit 6-4 and line thermal limit 4-6 note that in Fig. 24 they intersect
each other which is not making sense technically. Thus, one can conclude that
the surface approximations are not valid all over the illustrated load space. One
clear such case in Fig. 24 is for bus 6 (Load 2) net loads of about 3 p.u. and bus
5 (Load 1) net loads of about -1 p.u. That point of intersection is, as can be
seen in the �gure, comparatively far away from P 6-4

D and "medium-far" from
P 4-6
D .
This phenomenon is not deeper analyzed in this report. One can at least

conclude that the distance in load space between P 6-4
D and P 4-5

D is 3.9308 p.u.,
whereas the distance between P 6-4

D and P 5-4
D is 7.9133 p.u. The latter be-

ing more than twice as large as the former distance. Is it a well-known fact
that Taylor-approximations are typically more valid, the closer to the point of
approximation you are.
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Figure 28: Illustrating that when transfer 5-4 is at its limit, the approximations
suggest that transfer 6-4 is as well

4.2 Structured Outline of Future Work

Naturally, the immediate continuation of the work within this project (if the
time would have been unlimited) is comparatively clear, whereas the further on
in the future, the research line also starts to be obstructed by uncertainties that
might come up as the research work proceeds. The parts of the future work
that are comparatively clear and straight-forward are listed in the following:

1. Obtain relevant stochastic models of the uncontrollable net loads of the
test system

2. Identify a small, but reasonable number of important contingencies

3. Determine the post-contingency surface approximations of the in Point 2
identi�ed contingencies, and the pre-contingency surface approximation
with respect to the stochastic models obtained in Point 1

4. Obtain realistic probabilities for the selection of explicitly modeled con-
tingencies

5. Approximate the distance functions

6. Obtain relevant and representative regulating bid prices for the test system
in question

The steps following thereafter are less clear, and thus presented di�erently.
From here on, there are three possible steps to take � all of them with both

pros and cons:
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Starting with Step 1. Apply these regulating bid prices, distance functions,
and contingency probabilities to the proposed Step 1 model of Section 4.2.2.
In order to be able to do that, however, for the SL surfaces, if there
is more than one, considerations needs to be taken to the pairwise ex-
clusion method presented in e.g. [9], in order to not account for certain
SL-subspaces more than once.

And thereafter Step 2. In this approach Section 4.2.3, the SL surfaces are
not longer treated as an aggregated surface with chance constraints merely,
and the possibility of total blackout is also considered and cost-weighted.
However, for this model to be applied, and estimation of all the possible
costs related to rapid emergency control actions related to SL-occurrences
needs to be obtained. Similarly, costs for OL violation, in particular their
violation over time and in depth of surface penetrations needs to be esti-
mated. Then there are some design parameters that must be empirically
de�ned by the user of the model.

And the remaining Step 3 being proposed. In this approach, Section 4.2.4
no more information compared to Step 2 is needed. However, some experi-
ence of the solutions of the previous steps might be bene�cial for heuristi-
cally choosing a relevant sampling grid of u. It is not stated explicitly how
the sampled expected cost functions should be handled. Without seeing
the resulting one possible way forward could be piecewise hyperplane ap-
proximations with e.g. the usage of Specially Ordered Set of type 2 (SOS2)
variables [69,74,75] in GAMS. There might be many other options.

Until the �rst three steps of Sections 4.2.2 to 4.2.4 have been approached and
evaluated, it is too early to go any further and speculate how these modeling
approaches would perform. At the level of "Step 3" being implemented and
evaluated, one is anyhow pretty close to the initially stated aim of this project,
as stated in Section 1.2.

In parallel with the above described work, model improvements and expan-
sion with regards to consideration can take place with respect to the issues
targeted in Chapters 5 and 6.

4.2.1 Identifying the targeted goal

Recall the SOPF approach presented in Section 2.7.5.2

min
u

C (u) (210)

s.t.
∑
∀i

piP

(
min
j∈Ji

di,j (u, ζ) < 0

)
≤ α (211)

in which the overall risk of violating any of the operational limits were forced
to be below the small nonnegative number α. The reader should note that the
risk-de�ning parameter α used in the SOPF models in this report has nothing
to do with the parameters and binary variables named α in Section 3.4.

Ideally, following the aims for this project, Section 1.2, the intention would
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be to have a SOPF of the kind:

min
u

C (u) +
∑
∀i

pi ·

(
Edi,j(u,ζ),∀j∈SL

[∑
∀k

cSLk · uSLi,j,k

]
+

+
∑
∀j∈OL

cOL
j · Edi,j(u,ζ)

[
d−i,j (u, ζ)

] (212)

such that
di,j

(
u, uSLi,j,k, ζ

)
≥ 0, j ∈ SL,∀k (213)

and such that

d−i,j (u, ζ) =

{
−di,j (u, ζ) , di,j (u, ζ) < 0
0 , di,j (u, ζ) ≥ 0

,∀j ∈ OL (214)

in which cSLk denotes the costs for the load shedding or production curtailment
that has to take place in order to meet Eq. (213). Moreover, note that uSLk
generally contains both a subset of all the u that exists in the model Eqs. (210)
and (211), but also includes possible disconnections and switching operations.
Finally, cOL

j denotes the costs related to OL violations, and since the distance
function is de�ned negative when a surface is violated, the constraint Eq. (214)
is needed. For simplifying and already complex problem, the costs cSLk and cOL

j

are set to be constants in the above. Indeed, cSLk could in reality be likely to vary
with uSLk , and cOL

j could similarly be likely to increase for increased levels of
d−i,j (u, ζ). The sets OL and SL, respectively, denote the surface approximations
of OL-type and of SL-type, respectively.

Since an SL cannot be violated more than instantaneously, rapid automatic
control actions uSL need to take place, immediately bringing the system out
of the instability. There is no time to wait for 15 minutes of executing reg-
ulating bids. Possibly some extremely rapidly ramped production units could
be considered as part of uSL. Some customers are paid by the TSO for being
prepared for disconnections. Therefore, the costs of disconnection, cSLk can be
signi�cantly di�erently valued.

Since an OL, as discussed before, can be violated, the resulting operating
costs depend on how deep and for how long duration of time each surface is
being penetrated. Since these kinds of models (confer Section 2.7.5.3) work in
the present, and are continuously updated, the historical depth-duration com-
binatorial a�ects the actual values of cOL

j in each time-instant. The penetration
depth is directly taken care of in the third term in the objective Eq. (212).

Clearly, the ideal problem formulation of Eqs. (212) to (214), cannot be
implemented straight-away in line with the project approach of Section 1.3. The
distribution functions can probably be used as they are in the ideally proposed
SOPF above, but the expectation values are not implementable straight-away.

Also note that even in the ideal model, Eq. (213) needs to be modi�ed
for distribution functions di,j which do not have compact support, and maybe
also for distribution functions with long tails. Then, still, one needs to accept
Eq. (213) to be violated for some probability β. It is however reasonable to
assume that probability β � α considering the inclusion of the emergency
control actions uSLk into the model. In real life, the distribution functions fΛ (λ)
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of the net-loads must have compact support, bounded from below for each bus by
the aggregated maximal consumption, and conversely, bounded from above for
each bus by the aggregated maximal production. For practical reasons however,
there might be cases when normal distributions might be used, and such do not
have compact support.

A clear bene�t with the ideal approach, compared to the one used in [6, 9]
and the work related to them, is that pairwise exclusion due to overlapping
instability spaces does not need to be considered.

4.2.2 Step 1

A �rst, tiny step from Eqs. (210) and (211), towards the idealized goal of
Eqs. (212) to (214), can be

min
u

C (u) (215)

s.t.
∑
∀i

piP

(
min
j∈SL

di,j (u, ζ) < 0

)
≤ αSL (216)∑

∀i

piP (di,j (u, ζ) < 0) ≤ αOL
j , j ∈ OL (217)

which, besides working in load-space has some similarities with [51], in which
each OL is treated individually. Here, the accepted risk for violating the OL
surfaces, αOL

j can be set much higher than αSLj .
A possible bene�t with this approach compared to the one used in [6,9] and

the work related to them is that pairwise exclusion due to overlapping instability
spaces does not need to be considered for the thermal operational limits. Each
thermal limit can be assumed to be overridden with some probability. That can
be technically justi�ed by the fact that one thermal limit (OL) being overridden
will not explicitly a�ect the other thermal limits (OL) unless it would result in
a contingency that in turn would result in a post-contingency system with more
overload.

In this approach, however, power system stability (SL) is still being main-
tained to a certain level of probability. This probability, αSL in Eq. (217), is
de�ned as the probability of violating one aggregated stability surface that for
practical reasons is modeled as a patchwork of many surfaces rather than many
di�erent surfaces actually representing di�erent instabilities.

4.2.3 Step 2

The second step towards the idealized model of Eqs. (212) to (214) introduces
certain operational costs depending on how deeply the OL surface is penetrated.
In this second step, also the SLs will be treated as individuals.

The proposed objective function is

min
u

C (u) +
∑
∀i

pi ·

 ∑
∀j∈SL,∀s∈{1,2,...,S}

(
pSLi,j,s−1 − pSLi,j,s

)
cSLs · uSLi,j,s+

+
∑

∀j∈OL,∀t∈{0,1,...,T}

cOL
i,j,t · pOL

i,j,t

 (218)
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such that

P (di,j (u, ζ) ≤ −lj,t−1)− P (di,j (u, ζ) ≤ −lj,t) = pOL
i,j,t

∀t ∈ {1, 2, ..., T − 1, T}
∀j ∈ OL

∀i

(219)

and such that

P
(
di,j

(
u, uSLs , ζ

)
≤ 0
)

= pSLi,j,s

∀s ∈ {1, 2, ..., S − 2, S − 1}
∀j ∈ SL

∀i

(220)

for which pOL
i,j,t are variables, and cOL

i,j,t are parameters. For SLs, the cost-
minimizing actions uSL are hard to determine beforehand. Therefore they are
modeled as variables. The probabilities pSLi,j,0 are variables as well, resulting in
a slightly more nonlinear contribution to the objective function. These proba-
bilities are given prede�ned interrelations

pSLi,j,s−1 = ki,j,s · pSLi,j,s
∀s ∈ {1, 2, ..., S − 2, S − 1}
∀j ∈ SL

∀i

(221)

for which the parameters/constant ki,j,s > 1 are prede�ned interrelation factors.
The control actions uSL0 for s = 0 are none, whereas the control actions uSLs for
s = S are all possible control actions maximized. Thus, pSLi,j,S = 0, since there is
nothing left of the power system when everything has been disconnected. Thus,
the complete black-out possibility is explicitly considered in this model.

The the approach decided for in this project, Section 1.3, was to continue
with working with PDFs, rather than outcomes of stochastic variables. One
identi�ed possible way forward, still working with probability constraints de-
termined by polynomial approximations using the Edgeworth series expansion
method is to discretize the problem. For OLs, the discretization can be done
into a �nite number T of thermal limit penetration depths. The di�erent pene-
tration depths of Eq. (219) are spanning from long-time thermal violation t = T
to short-term violation t = 0. That is done for each contingency i and each
thermal limit j, where the beginning of the �rst discretized slice is represented
by the short-term limit

lj,0 = 0,∀j ∈ SL (222)

and where the outer end of the last discretized slice representing the long-term
thermal violation of the line/unit j,

lj,T =∞,∀j ∈ SL, (223)

and thus
P (di,j (u, ζ) ≤ −lj,T ) = 0,∀i,∀ ∈ SL. (224)
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Moreover, pOL
i,j,t are variables representing the probabilities for each layer of

thermal violation, for which the associated costs ci,j,t used in the objective
function Eq. (218) are pre-de�ned costs for each contingency (including the non-
contingent state) i, each thermal limit j and each level of short-term thermal
overload t. The historical loading of lines (and other equipment) can be taken
into account in (at least) three alternative ways.

1. By rede�ning the numerical values of the costs ci,j,t in order to re�ect the
induced risks of the system by further load on level t of item j.

2. More physically; by rede�ning the T levels of overload such that e.g. the
long-term limit is much lower for an already heated line.

3. Yet another possible step to take could be to let the contingency proba-
bilities pi be updated depending on historical heating of equipment.

For the SLs, the problem is discretized in a slightly di�erent fashion. Here,
it begins in one end of the discretization, for s = 0, with the probability pSLi,j,0
of instability given no automatic emergency control actions (introduced in Sec-
tion 4.2.1). Then the automatic emergency control actions uSL1 needed for having

the power system at risk level of a probability pSLi,j,1 =
pSLi,j,0
ki,j,1

can be determined.
In the objective, the costs related to the automatic emergency control actions
are weighted against the incremental change in probabilities, pSLi,j,s−1 − pSLi,j,s.
This then continues for s = 2 until s = S − 1. On the other boundary of the
SL discretization, s = S, the probability pSLi,j,S−1 is in the objective Eq. (218) is
weighted against the total black-out costs.

4.2.4 Step 3

The third step is based upon parametrization. For each given control decision
of u, and each uncontrollable net-load stochastic parameter ζ, the minimal-cost
control actions of the second term in the ideal objective Eq. (212) under the
constraint Eq. (213) can comparatively easily be obtained. Since the stochastic
distribution of ζ is known, the expected cost with respect to ζ for each given
u can be computed o�-line beforehand. Thereafter, the number of given u:s
need to be sampled in a way that considers the compromise between problem
size and accuracy. The expected cost function related to SLs are now sampled
with respect to u. These samples can be put together in a variety of ways, for
example piecewise linearly between the sampling points.

In a similar way, for OLs, the third term of Eq. (212) can be computed
for a cleverly chosen set of samples of control variables u. In this approach,
like for the above discussed SLs, quite complicated cost functions cOL

j can be
considered without introducing any extra complexities in the resulting SOPF.
After sampling in u, the expected cost with respect to ζ, under the condition
of Eq. (213) can be computed o�-line beforehand. Thereafter, the solutions of
each sample u needs to be interpolated in an appropriate way.

The resulting SOPF

min
u

C (u) +
∑
∀i

pi ·

 ∑
∀j∈SL

cE,SLi,j (u) +
∑
∀j∈OL

cE,OL
i,j (u)

 (225)
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have no explicit constraints. But for accuracy, the sampling in u might be dense
and the problem size could be a challenge, especially for larger power systems
with many players participating in the tertiary control.

4.3 On margins

In [6, Chapter 6.6] it is stated that safety margins are not only useful and imple-
mentable when working with traditional OPF or SCOPF. Also with the surface
approach margins can be considered. It is proposed that margins to stability
limits can be considered when computing the second-order approximations in
the following ways for the di�erent smooth parts:

SNB For SNB points, stability limits are de�ned as the point at which the
system Jacobian J has a zero eigenvalue, or equivalently, at which either
the dynamic Jacobian A or the static Jacobian gy has a zero eigenvalue
[11]. Let µ be this eigenvalue for A. The boundary corresponding to
µ = −ε < 0 can be considered instead of the stability boundary with
µ = 0. Note that if we use the eigenvalue µJ of the system Jacobian J
or the eigenvalue µgy for the static Jacobian gy, then the margin must be
applied on the absolute value instead, such that |µ| = ε constitutes the
border.

HB For HBs, as for SNB, the boundary corresponding to < (µ) = −ε < 0 can
be considered instead of the stability boundary < (µ) = 0, where µ is the
eigenvalue that becomes purely imaginary at the HB point.

OL OL For an OL characterized by Eq. (33), the right-hand side of it would
be changed from P lim

i,j to P lim
i,j + ε, ε > 0.

When computing the second-order approximations, the characterizations of each
smooth part are proposed to be changed according to the margins de�ned above.

It is however not clear how well a surface approximation around such a point
as described in the above would follow the original surface but with a constant
o�set to the feasible side of the surface strictly de�ned by µ in load space.

There might exist an attractive alternative to the proposed margin approach
where the margin is de�ned in the load space instead; for instance, let λc be the
most important point determined to approximate the surface around. Then a
margin can be de�ned for a certain amount of load along the inward pointing
vector in load space from λc to λ0. At that point the approximation of the
surface can be done. A comparison between these approaches and how well they
represent the ideal constant o�set of the actual surface would be a technically
and academically relevant topic for future studies.

The approach proposed in this report and the one of [6, Chapter 6.6] are
likely to behave similarly for operational limits representing active power �ow
limitations on lines, but for most other operational limits they would behave
di�erently.
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5 Discussion

5.1 Obstacles working with stochasticities

5.1.1 General and common practical obstacles

Limitations with stochastic approaches are discussed in for instance [14]. There
it is highlighted that su�ciently accurate values may not be available for proba-
bilities of disturbances. That can be by the simple reason that some equipment
fails so seldom that it is hard to accurately estimate the associated probabilities.
To complicate things further, the probability of a contingency may, according
to [14], also depend on the circumstances (e.g. adverse weather conditions or
terrorist threat).

5.1.2 Challenges with possible multimodal distributions

As brie�y mentioned in Section 2.3.1, the there proposed, and in [9] used ap-
proach, is clearly attractive as long as the distribution functions of the net loads
are unimodal. In the unimodal cases, the most important point on a surface to
be detected is clearly the one point on that surface with the highest probability
density.

For a multimodal distribution it is less clear. Imagine a bimodal distribution,
with two equally probable peaks located on the surface of the operational limit
to be detected. With the approach presented in Section 2.3.1 and in [9], the
resulting most important point would be one of these two points, here denoted
λc

1

and λc
2

, respectively. If these points are comparatively far away from each
other in load space, a surface approximation made around λc

1

might result in
inaccuracy in the neighborhood of λc

2

, and vice versa.
Within the scope of having simply one unique most important point, the

procedure of �nding it might need to be rede�ned in a more complicated manner.
One possible approach is to aim at �nding the expectation value of λ, provided
that λ ∈ Σ. There might be other, computationally more e�cient approaches
as well.

It is left for future research and investigations whether and when, in practice,
one can assume the distributions of ζ (and thus indirectly probably also of u)
to be unimodal. Moreover, the actual impact on the solutions by using the
approach presented in Section 2.3.1 for multimodal distributions needs to be
investigated and compared with more accurate approaches. Many aspects will
a�ect such an impact; how pronounced the modes are, how curved the surface
is, how important the surface is for the resulting SOPF solution; to name a few.

5.1.3 Impact of stochastically modeling u for the most important
point

As mentioned in Section 2.3.1, the control variables u are modeled as normal
variables with covariances de�ned by linearizing u around the solution of a
SCOPF approximation of the SOPF problem to be solved. Thus, u becomes a
function of the stochastic uncontrollable net loads ζ.

From a practical engineering point-of-view it is more important to have a rea-
sonable estimate of u, than not having one at all. And it is not straight-forward
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to the author of this report how to quickly �nd an approximative solution of
the SOPF to be solved, other than approximating it with a SCOPF.

The normal assumption in this procedure does not need to have any sever
impact. Stochastic distributions can be approximated as series expansions of
normal distributions, wherefore a good-enough accuracy could be obtained by
just not cutting the series expansion at the �rst coe�cient.

5.2 SOPF problem size

A possible critique against treating operational limit surfaces individually as
proposed in di�erent ways in Section 4.2 could be that the problem size of the
SOPF problem would increase. Compared to the approach, that this project
is based upon [5�9, 70�72] however, the sizes of the problems are likely to be
in the same orders of magnitude. That is since the uni�ed aggregated surface
there seems to be treated as a compound of second order approximations of all
the closest surfaces found in positive net-load space.

In the approach proposed in this report, also surfaces beyond the �rst OLs
being encountered are considered, and the models are generalized to consider
also the possibilities of negative net-loads. This would still probably not result
in a tremendous increase of surface approximations being considered in this
approach. If the SOPF size turns out to be a problem from the computational
time point-of-view, the number of surfaces could be limited. Such a limitation
is considered in the method presented in Section 3.5. The issue of limiting
the load space in which operational limit surfaces are searched for considering
stochasticities is discussed in Section 5.4

5.3 Improvement for surface detection

5.3.1 Load �ow constraints nonlinearities

In the models used in this study, the load �ow constraints in the optimization
problem Eqs. (124) and (125) �nding the operational limit surfaces are of the
form

Pi = < (Ui · I∗i ) = <

Ui∑
j

Y ∗i,jU
∗
j

 (226)

Qi = = (Ui · I∗i ) = =

Ui∑
j

Y ∗i,jU
∗
j

 (227)

for complex valued voltages U , admittances Y , and currents I. The constraints
Eqs. (226) and (227) are quadratic in voltage absolute values for j = i, and
bilinear in voltage absolute values multiplied with sin or cos functions of the
voltage angles for j 6= i.

For some solvers, and some problem types it might be more computationally
e�cient to use the formulation

< (Ii) = <

∑
j

Y ∗i,jU
∗
j

 (228)
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= (Ii) = =

∑
j

Y ∗i,jU
∗
j

 (229)

Pi = < (Ui · I∗i ) (230)

Qi = = (Ui · I∗i ) (231)

in which by the separation being done the left-hand sides of Eqs. (228) and (229)
contains the absolute values of the complex valued currents I, multiplied by sin
or cos functions of the corresponding current angles. The right-hand sides of
Eqs. (228) and (229), analogously contains the absolute values of the complex
valued voltages U , multiplied by sin or cos functions of the corresponding volt-
age angles. Clearly, Eqs. (228) to (229) are "less nonlinear" than Eqs. (226)
and (227). Finally, the right-hand sides of Eqs. (230) and (231) are bilinear
in voltage and current absolute values, but only once for each i (and not for
every j 6= i), multiplied by sin or cos functions of the corresponding voltage and
current angles.

In future studies, alternative, potentially computationally simpler load �ow
formulations could be evaluated in the optimization model of Section 3.4, in
order to reduce computational times. One example of such is Eqs. (228) to (231)
introduced above.

5.3.2 Computation-e�cient surface identi�cation modeling

There are also many alternative ways of identifying SLs on. It would make sense
to empirically be evaluated which formulation that is the computationally most
e�cient approach.

5.3.2.1 SNB detection For the particular case of SNB, there are a variety
of alternatives. One possible drawback with the present approach is that no
particular eigenvector is followed all through the search space of the algorithm.
That might cause undesired discontinuities in the process.

The left hand sides of Eqs. (200) and (201) are quite nonlinear, so it might
be undesired having a binary variable in the right-hand side of them as is the
case in the present proposed approach. One alternative formulation could be

2gns+2g+2b∑
i=1

(
uri + iuii

)
Ji,j = (σ + iω)

(
urj + iuij

)
,

∀j ∈ {1, 2, ...
..., 2gns + 2g + 2b} (232)

σ2 ≤ |J |max
(1− β) + εβ (233)

σ2 ≥ 0 (234)

ω2 ≤ |J |max
(1− β) + εβ (235)

ω2 ≥ 0 (236)
2gns+2g+2b∑

i=1

(uri)
2

+
(
uii
)2

= 1 (237)

2gns+2g+2b∑
i=1

(uri)
2 ≥ ε (238)
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2gns+2g+2b∑
i=1

(
uii
)2 ≥ ε (1− β) (239)

2gns+2g+2b∑
i=1

(
uri − uii

)2 ≥ ε (240)

2gns+2g+2b∑
i=1

(
uri + uii

)2 ≥ ε (241)

for which superscripts "r" and "i" denote the real and imaginary parts of the
eigenvector, respectively. Moreover, σ denotes the real part of the eigenvalue,
and ω the imaginary part of it. The eigenvector is normalized by Eq. (237),
and the trivial solution is avoided by Eqs. (238) and (239). For completeness,
Eq. (240) outrule the resulting "imaginary eigenvector" for an SNB-point from
being a blue-copy of the actual real eigenvector, whereas Eq. (241) outrules the
possibility of a copy of the real eigenvector but with opposite signs. With this
approach it is more likely that the algorithm "follows" the eigenvector that will
cause an SNB a bit longer than in the approach used in this report. Moreover,
this approach can with only tiny modi�cations be used for identi�cations of
HBs; by introducing another binary variable, γ, by considering A instead of J ,
and by adapting the dimensions of the vectors and matrices accordingly. Since
solvers work with real numbers, Eq. (232) needs to be separated into a real and
an imaginary part for practical usage.

Another approach, somewhat simpler than the one presented above is to only
consider real valued eigenvectors and eigenvalues, respectively. That results in a
slightly smaller optimization problem, but there might be risks associated to an
eigenvector changing to become complex valued through the iteration procedure.
Such would probably result in an undesired discontinuity for the solver. This is
however not yet investigated.

One possible alternative way forward is making use of the Schur decompo-
sition for which the Jacobian matrix J can be decomposed into

J = QBQ−1 (242)

in which Q is a unitary matrix, and and in which B is upper triangular with the
eigenvalues of both J and B in the diagonal. In that approach, each eigenvalue
would be "followed" by the algorithm, all the way to �nding the SNB or another
operational limit. A possible drawback with this approach is that the problem
size is likely to increase even if taking advantage of matrix sparsity. In the
framework of GAMS, which like most optimization programs, work with real
values, a separation would have to be done into real parts and imaginary part
of Eq. (242).

It is an open question, even if it seems unlikely, whether usage of deter-
minants of the Jacobian matrix for �nding eigenvalues could be an attractive
approach. Speaking against the determinant approach is that a very compli-
cated polynomial would be needed in the optimization problem formulation.
Like with the Schur decomposition, using determinants would correctly imple-
mented result in �nding all the possible eigenvalues.

5.3.2.2 Sparsity As already mentioned in Section 3.6, there is a great po-
tential in exploiting the sparsity of the Jacobian matrix. In [12, p. 330] it is
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clearly stated that "The use of very e�cient sparsity techniques is essential, in
order to preserve the computational advantages of optimization over the sim-
pler continuation methods.". Thus, in order to keep the proposed optimization
method approach of this report competitive in all aspects, sparsity needs to be
concerned in future model development.

A small case study was done, investigating the potential in formulating the
optimisation program such that it took advantage of the sparsity. For the objec-
tive of �nding the globally (using the LINDO global solver) closest SNB point
in a small �ctitious 2 node purely static system with one slack bus and one
load, bus keeping P and Q equal, the computational performance was evalu-
ated. With the explicit Jacobian, solving the program took 0.842 seconds, while
for the model using sparsity of the Jacobian it took only 0.078 seconds to solve
� a reduction in computation time with 91 %. Additionally, the number of it-
erations reduced from 229 down to 67 � a reduction by 70 %. In the explicit
Jacobian model, the optimization problem had 47 equations and 48 variables,
whereas the model using sparsity had 15 equations and 16 variables � a reduc-
tion by 68 % and 67 %, respectively. The time savings of exploiting sparsity in
problems like the one presented in Section 3.4 cannot be expected to be exactly
as drastic, since such a problem considers so many other issues. Just for the sake
of clarity: the two modeling approaches resulted in exactly identical solutions,
as would be expected from such a solver.

5.3.2.3 HB detection with optimization methods From the literature,
as explained in Section 2.2.1.3, it has been concluded that HBs are detected
when the A-matrix of Eq. (8) has complex-valued pairs of eigenvalues 0 ± iω.
For A to be computed, as shown in Eq. (8), the matrix-inverse of gy needs to
be computed.

Since the optimization problem of Section 3.4, and also future, improved
versions of it, are likely to search for and encounter SNB points, this might be
an obstacle for including the detection of HBs in that optimization problem. If
the SNB is in the dynamic part of the power system model, A, this indeed not a
problem. The SNB can however also be a simple transfer limit, for which gy is
singular. This makes it unattractive, but nevertheless probably not impossible
to detect HBs by explicitly computing A in the optimization program. If an
SNB is reached, one could formulate the problem such that the A matrix is not
computed when β of Eqs. (200) to (202) equals 1. It might be possible also to
consider generalized matrix inverses or pseudoinverses, but it is out of the scope
of this report.

More attractive for the point-of-view of the continuation of this project, is
however to �nd out if there are any general relations by eigenvalues of A of the
type 0±iω, to the eigenvalues of J . It is not yet clear to the author of this report
whether; such a general relation has been identi�ed in the literature, if such a
relation actually can be found, or if it is possible to at least empirically �nd
relations that hold (at least locally) for the particular application in question.
If it would be possible detecting HBs directly from J and/or its eigenvalues, it
would be very attractive for the optimization method approach initiated in this
project. It would reduce the memory usage and the number of variables working
with "only" J , and not both J and A simultaneously. Moreover, inversions of
the sub-matrix gy would not be needed, neither the increased complexity in
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managing the cases when gy actually is singular.

5.3.3 Reactive modeling of uncontrollable loads

By simplistic reasons, and in alignment with [6], the assumption, Eq. (139) of
Section 3.4.3, was that the reactive loads follow the active load changes linearly,
keeping the power factor cos (φ) constant. This is an assumption that might
need to be let go o� when practically justi�ed.

For some (net-)load models, a generalized modeling approach might be nec-
essary, in order to re�ect reality. For some load types, it is likely to assume
reactive and active consumption to be decoupled. For example for solar cells,
railway power system feeding converters, and possibly for Voltage Source Con-
verter (VSC)-HVDC link connections, it is attractive to control the reactive
power net-consumption with regards to, for instance, voltage quality. In the
cases when the reactive parts of the net-load become independent of the active
parts, the reactive power consumption might be needed to be considered as a
dimension in the net-load space λ of the SOPF.

For future tertiary control, it might even be attractive to include regulating
bids and trade also in reactive power.

5.3.4 Parallelization

If, in a future implementation of more completed models from this project would
take place, and the creation of the operational limit surface approximations
would be time critical, it would possibly be very e�cient to parallelize the
surface identi�cation process of Sections 3.4 and 3.5 for the pre-contingency
scenario and each of the post-contingency scenarios of relevance [6, Chapter
7.5.1]. Such computations would reduce the computation time signi�cantly,
the more Central Processing Units (CPUs) there are available, and the more
contingencies there are of considered relevance.

5.4 Generalizing the threshold in load space in which to
search for operational limits considering stochastici-
ties

Regarding having a threshold in distance in load space for the number of sur-
faces to identify in Section 3.5, a stochastic equivalent is not straightforward to
determine:

One possible and "good-enough" approach could however be, using the ap-
proach of the most important point introduced in Section 2.3.1. By de�nition,
that point is the point on the the particular surface approximation with the
highest probability to be reached within the following 15 minute time period.
In such an approach, one can decide a lowest level of probability of the most
important point determined, for which the search for more surfaces should con-
tinue.

If the TSO wants to consider the entire probability of ending up on, or
beyond a certain surface approximation, there seem however to be no easy way
out. Then all of the surface needs to be found or approximated �rst, before
that probability can be computed. The probability of ending up on, or beyond
a surface approximation depends both on the probability distributions as well as
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on the surface's geometry. Therefore, it would in general not be any guarantee
for surfaces found in the order of declining probabilities of the most important
points, to also have a declining order of probabilities of being encountered or
surpassed. This is a topic worth, if not further investigations, at least be kept
in mind as a risk factor.

5.5 SLL surfaces

5.5.1 SLL surface regionality in load space

An issue introduced in Section 2.3.3.1, was the challenges of SLL-surface treat-
ment within the scope and the aims of this project, confer Section 1.2. It was
stated that many aspects in this regard are still not cleared out, making it an
issue for future studies. As explained in for example [6, Chapter 5.3.5], due
to the nature of an SLL of representing switching (control) actions resulting in
instabilities, an SLL surface is only de�ned for a limited region in load space.
Therefore, unlike for example SNB surfaces, SLL surfaces cannot be found in
any but very speci�c directions of (net-)load changes.

Typically, the SLL surface is at its endpoints tangential (except in very rare
cases [6, Chapter 5.3.5] and [5, 8]) in load space to SNB surfaces, whereas it
intersects with other surface types transversally [6, Chapter 5.3.5]. Examples
of the latter kind of SLL-surface intersections are: one SLL surface intersecting
another SLL surface, SLL surfaces intersecting with HB surfaces, etc.

Since the surface approximations are not explicitly used in the SOPF models
proposed in this report, but rather the distance functions, there is a potential
in �nding attractive ways to overcome this obstacle.

5.5.2 Identifying SLLs

One issue noted under the remark in the end of Section 2.2.1.2 was possible ob-
stacles and challenges in identifying SLL surfaces. Since the system has skipped
passing through the SNB, other means of detecting the SLL might be needed,
especially for large negative tanφ of the loads. Moreover, many net-loads of the
future with consumer-side storage, regenerating electrical vehicles, distributed
generation, etc., is likely to need to consider also φ < 0. This might be an
important part of future work in relation to the other SLL-issues already dis-
cussed.

5.6 Further exploiting results from bifurcation theory

Lots of information is given by analyzing the SNB point in scrutiny; following [1]
the sign and the sizes of Eqs. (21) and (22) will give information about how
the system bifurcates locally. This could probably be utilized in future work, in
order to estimate the costs of an SNB to occur, depending on what causes it and
under which conditions. Also the eigenvectors may give valuable information.

The left hand eigenvectors are related to the constraints, whereas the right
hand eigenvectors are related to the variables. It is likely, but left out of the
scope of this report to investigate it, that this information could be made useful
in a risk-based SOPF considering secure power system operation. It might be
trickier with the left hand eigenvectors since they are related to the constraints,
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which do not explicitly appear in the load-space SOPF. The right hand eigen-
vectors, however, could without too much complications be projected to load
space from state space.

It is reasonable to assume that a thorough analysis of the eigenvectors and
other system properties at the SNB point(s), it will be possible to determine
what causes the bifurcation and where in the system the consequences would
be the most severe. Information like this can be expected to say something
about the expected consequences of a bifurcation to occur under these particular
circumstances, and which control actions that are physically and economically
the most feasible. Altogether, a deeper knowledge about this is likely to result
in a deeper understanding of the risk levels the power system is exposed to at a
given point of operation.

5.7 Instability severities and/or classi�cations

A HB is said to give rise to an (increasing [11]) oscillatory behaviour of the
power system and not an immediate voltage collapse. Thus, one can identify
a possibility that HBs are less severe than SNBs. It needs to further investi-
gated whether one can say that a HB is less severe, or at least needs a longer
time to become severe than an SNB. That would have implications of the emer-
gency control actions available in e.g. Eqs. (218), (220) and (221), as well their
corresponding costs.

Another question that arises is whether SNBs in the dynamic part are less
sever than, or equally severe as, SNBs in the grid. When listing di�erent bifur-
cations in [11], "collapses" and "blackouts" are mentioned speci�cally regarding
gy singularity, but not with respect to SNBs originating from the dynamic part
of the system model.

A thorough description of other bifurcations occurring in power systems can
be found [26,27]. Consideration of such may be an issue for future work, confer
Chapter 5.

6 Conclusions

In this section, the major �ndings are listed in a summarized form alternated
with recommendations related to the �ndings.

1. Finding A general algebraic optimization model approach for �nding the
set of closest (or most important) operational limits with respect to
the present point of operation has been developed. It can be extended
to consider the forecasts for the coming 15 minutes. The bene�ts with
a general algebraic model are that it can be used with di�erent solver
algorithms. Provided a relevant solver is being used, the developed
model will for solving only a handful of optimization problems �nd
the operational limits sought for. Some challenges regarding e�cient
model development remain however.

Recommendation Deeper studies are needed in developing even more
computationally e�cient models considering the balance between for
instance small but complicated mathematical programs or larger but
simpler ones. Is it for example more e�cient to consider only the
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entire system Jacobian, J , and �nd bifurcations within that one, or is
it preferable working also, or only, with the the smaller sub-matrices?

2. Finding When looking for switching-related instabilities using a general
algebraic optimization model, a number of challenges arises:

(a) The sets for state variables as well as the sets for the active
constraints of the power system change in size and in content.
This needs to be managed considering both e�cient memory
usage as well as complexity.

(b) In an algebraic modeling language, such as GAMS [68,69], like in
real mathematic formulations, set sizes and corresponding sub-
sets with sizes need to be clearly declared before sending the
problem to the solver. Thus, set sizes cannot change depend-
ing on where in solution space the solver "stands" for di�erent
iterations.

(c) In reality, all PU-curves do not always have the property of obey-
ing ∂U

∂P < 0 on the upper side of the bifurcation point. Therefore,
it is not enough to study the partial derivatives of voltage with
respect to active power load in order to identify an instability.

(d) In the case of switching modes-of-operation, complementarity
often well describes the switching of active and inactive variables
and constraints. There are however many di�erent approaches
available, and is not yet clear which approach is preferable from
a computational e�ciency point-of-view.

Examples of switching-related instabilities are: SLL, contingency-
induced instabilities, or simply a switching taking place that eventu-
ally leads to a bifurcation.

Recommendation To address these challenges, some possible ways for-
ward have been identi�ed:

(a) The most attractive way forward for larger systems is probably
to create a sparse description of the active constraints and the
system Jacobian. This needs however some deeper investigations
and is strongly intertwined and interrelated with (c) below.

(b) The sets and the corresponding subsets need to be declared and
de�ned such that the above point is ensured. The sets will need
to be "oversized" generally, and then the active parts of them
should be appropriately de�ned within the model.

(c) One possible approach here is the study of higher order deriva-
tives. How often �rst-order partial derivatives are not enough
also needs to be further investigated in study cases.

(d) For simpler power system models, without generator or load dy-
namics, special application-tailored approaches [65,66] have been
proposed. Simpler models like the ones just introduces can be
used for two main reasons: (1) computational advantages, and
(2) lack of dynamic power system data for many systems. The
applicability and accuracy of those approaches for dynamic load
and generator models needs to be investigated. Modeling ap-
proaches such as the ones proposed in [65, 66] need to be com-
pared with more "classical" optimization approaches managing
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complementarity. Examples of a few possible and relevant such
modeling approaches are: binary variables used for switching
modes of operation, the more "new" modeling approaches with
complementarity constraints that are bene�cial to many modern
solvers, or the Specially Ordered Set of type 1 (SOS1) [68, 69]
variables. These could, at least for smaller systems be compared
for benchmarking, with the naive "base case", where comple-
mentarity is modeled a · b = 0, a ≤ 0, b ≤ 0 when a and b are
complementary.

3. Finding One challenge using Edgeworth series expansions is that they
seem to be very practical for approximating the CDFs, but less so for
expectation values, variances, and other stochastic measures. More-
over, it is indicated in the literature [76], that CDFs containing step
functions, needs special treatment. One example of a function, which
CDF would contain a step function is Eq. (214).

Recommendation Some approaches going around this obstacle has been
proposed in Section 4.2. The approaches proposed in Section 4.2 need
to be evaluated in practice. Many other possible approaches similar
to the ones proposed may exist, and totally other approaches may be
found by deeper studies in stochastic approximation theory.

4. Finding From the second order surface approximations obtained for the
IEEE 9-bus test system, there were cases and locations in load space
identi�ed, for which the surface approximations were clearly inac-
curate. These inaccuracies are presented in further detail in Sec-
tion 4.1.3. The practical implications of this, and possible ways of
getting more accurate surface representations, are yet to be deter-
mined.

Recommendation First of all, it needs to be determined whether the
identi�ed cases of invalid parts of the approximated surfaces are rep-
resentative for practical study cases. It needs, for example, to be de-
termined how large the net-load changes in a 15 minute time-period
can be. Moreover, even if parts of the surface approximations are
invalid, the impact of this on the optimal re-dispatch solution needs
to be evaluated. In the end, the resulting SOPF solutions are what
matters for this project, not accuracy for its own purpose on every
detail. To be able to do such an evaluation however, a more accurate
surface representation needs to be developed. More accurate sur-
face representations may be obtained by for example: higher order
polynomials, patches of hyper planes (without introducing too many
integer variables), or approximating each surface around more than
one point.

5. Finding For a TSO, it is more attractive to have a conservative surface
representation with lower accuracy, than a more accurate one which
is not conservative. By conservative, it is in this report meant that
the surface is represented by points either on the feasible side of it or
right on it, but never on the infeasible side of it. Thus, small average-
errors in any direction are worse than large average-errors in the right

122



direction. Surface conservatism can be increased by introducing mar-
gins. It has been found that margins can be introduced in at least two
di�erent ways, confer Section 4.3. Moreover, it is not unlikely, that
conservative hyper-surface representations could be obtained also by
other means. The questions is though at which computational cost.
In practice, the TSO also wants to use comparatively fresh data in
its 15-minute power balance planning, confer Section 2.7.5.3.

Recommendation Clearly, this point is partly interconnected with the
above point treating di�erent ways of representing the operational
limit surfaces. As proposed in Section 4.3, there should exist at
least two approaches of using margins for creating second-order ap-
proximations of the surfaces that are more conservative than the
non-margin approach. In order to evaluate these two approaches, a
comparison is needed for some representative numerical studies where
many points on the actual surfaces are computed. It has not been
investigated, but it is likely to expect approximation methods to ex-
ist which are able to curve-�t surfaces conservatively. Whether such
surfaces can be found fast enough for a practical application needs to
be studied further. Further studies are also needed on whether that
surface representation would �t well in a chance-constrained SOPF
with respect to computational burden.

6. Finding During the work, it was realized that the present-day approach
for �nding the most important point around which the operation
limit surfaces are approximated is mainly applicable for unimodal
stochastic distributions. It is however not clear how common clearly
pronounced multimodal distributions are for uncontrollable net loads
in power systems.

Recommendation It needs to be determined, �rst how predictions of
uncontrollable net loads in power systems may look, and how com-
monly they are represented by multimodal distributions. Thereafter,
alternative ways are needed for approximating the surfaces (see the
previous �nding), including simply �nding as many most important
points as there are modes in the distribution. Another, but slightly
more complicated approach is de�ning the most important point as
the expected outcome in load space within the planning period, given
that the net load will be located on the surface of interest. If the num-
ber of modes tends to in�nity, the distribution tends to a uniform one,
and then the latter approach seems less attractive. Finally, the new
ways of approximating the surfaces needs to be compared with the
approach presented in [9] and Section 2.3.1 in order to validate if
it is worth the e�ort to consider and treat multimodal distributions
exclusively.

7. Finding It was noticed in [9] that the distance function approach used
and proposed there, and presented in some more detail in Section 2.4.2,
is not the actual Euclidean distance to the approximation of the sur-
face. The impact of this inaccuracy is not clear, neither is it fully
investigated how much more complicated it would be to compute and
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use the actual Euclidean distance (or other distances that might be
relevant for the application).

Recommendation The �rst step to clear this out would be to compare
for some representative study cases the approximated distances to
the surface approximation with the actual distance to the surface
approximation, as well as with the actual distance to the actual sur-
face. If that preliminary study indicates a large discrepancy, a further
investigation in determining a more accurate distance measure will
have to take place. Some preliminary investigations indicated that a
possible closed-form representation can be found since the surface ap-
proximation and the Euclidean distance measure both second order
polynomials.

8. Finding It is in practice hard to �nd both models and model parameters
for actual systems to study. Therefore, (and probably also to obtain
simpler models) it is common in the literature that only transfer lim-
its are studied (that is the gy part of J). For more general instability
studies, generator and load dynamics needs to be considered. In or-
der to model all parts of the automatic control (such as primary and
secondary control) implications for post-contingency equilibria, more
detailed models than the ones of this report are needed.

Recommendation Data gathering is needed, as well as improved models
of the systems being studied.

9. Finding During the work, a substantial obstacle has been a very varying
terminology with regards to denotation and classi�cation of instabil-
ities, and of various methods used for �nding and locating the opera-
tional limit surfaces. Some e�ort has been made to bring some order
to this issue in the report, even if lots of things still need to be cleared
out. Sometimes also notation complicates things more than neces-
sary, especially for di�erential geometric descriptions. Within this
report, the mathematical descriptions are lengthier than common in
the �eld, using classic "calculus" notation, in order to de-dramatize
things that seem incomprehensible, but in reality are not.

Recommendation More studies are needed for �nding coherent, com-
prehensible, and logical descriptions of many of the topics treated in
this report. Di�erent systems of classi�cations need to be translated
between and mapped onto each other.

10. Finding Comparatively late in this project, the existence of SIBs was
"found". When an SIB occurs [11], the entire system Jacobian J , is
non-singular, while the "grid part" gy is singular with a zero eigen-
value. The dynamic part of the Jacobian, on the other hand, has an
eigenvalue passing through ±∞ at the same time as one eigenvalue of
gy passes through ±0 such that the "cancel each other out". Whether
or not this kind of bifurcation is important for the grids of concern for
this project is still not clear, but they seem to be of importance for
power system stability [26,27]. However, if SIBs are to be considered,
one probably needs to create a model that identi�es such a surface
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by �nding the singularity in gy, while at the same time outruling the
SNB possibility by ensuring that the det J ∈ R \ [0− ε, 0 + ε] , ε > 0.

Recommendation More studies are needed in combination with numer-
ical experimental and comparative studies. It might be a numerical
challenge to detect SIBs without explicitly working numerically with
numbers close to in�nity, since that would make the problem ex-
tremely hard to solve.

11. Finding One issue that has been identi�ed, but not addressed due to time
constraints, in this project is the challenge of surface representation
of SLLs. Since switching modes of operation can be "harmless" as
well causing voltage instability, the SLL surface has sharp endpoints.
The topic is treated in some more length in Section 2.3.3.5.

Recommendation Further investigations (experimental as well as in lit-
erature) regarding SLL representation in actual load space are needed
to bring clarity in this issue. When that basic understanding has been
achieved, research with regards to how to manage the end points of
these surfaces when representing them a future SOPF problem in-
cluding them.
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