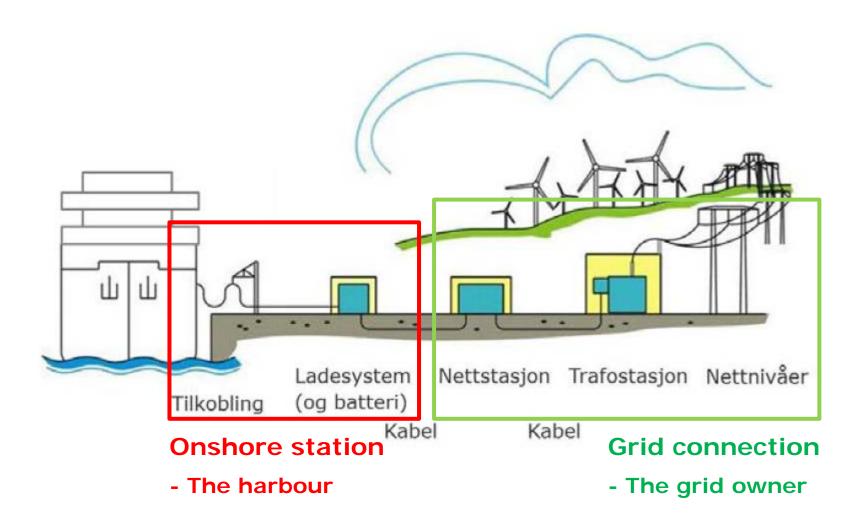
DNVGL

ENERGY


Electricity to Reduce CO₂ Emission in Harbours and Coastal Shipping

Daniel Karlsson 12 May 2017

Content

- Grid connection of ships in harbours
 - Requirements and needs from the ships
 - Different conditions for the land based substations
 - Grid connection
 - Safety
 - Who to pay?
- Electric ferry boats Different projects in Sweden
 - Small ferry boats for short distances Picking the low-hanging fruits...
- Electric ferry boats A big project in Norway
- Charging and weak networks Batteries also in the land station

Grid Connection – Overview

Present technology for grid connection of ships in harbour

- Available in larger harbours where ships stays for longer time
 - Supply of the electric power to the ship, when in the harbour
- Not available in smaller harbours and for smaller ships
- Present installations :

Port	Country	Connection voltage	Frequency
Port of Göteborg	Sweden	400 V / 6.6 kV / 10 kV	50 Hz
Port of Stockholm	Sweden	400 V / 690 V	50 Hz
Port of Helsingborg	Sweden	400 V / 440 V	50 Hz
Port of Piteå	Sweden	6 kV	50 Hz
Port of Antwerp	Belgium	6.6 kV	50 Hz / 60 Hz
Port of Zeebrugge	Belgium	6.6 kV	50 Hz
Port of Lübeck	Germany	6 kV	50 Hz

Ship electricity systems – flexibility for connection?

- The ship electricity system and connection possibilities put requirements on the onshore system
- DC, 50 Hz eller 60 Hz?

	380 V	400 V	440 V	450 V	460 V	6.6 kV	10 kV	11 kV
Container vessels (< 140 m)	42 %	16 %	42 %	-	-	-	-	-
Container vessels (> 140 m)	6 %	79 %	-	3 %	-	12 %	-	-
Container vessels (total)	19 %	6 %	64 %	2 %		9 %		
Ro/Ro- and Vehicle vessels	-	30 %	20 %	43 %	7 %	-	-	-
Oil- and Product tankers	13 %	-	40 %	47 %	-	-	-	-
Cruise ships (< 200 m)	14 %	18 %	59 %	9 %	-	-	-	-
Cruise ships (> 200 m)	-	-	12 %	-	-	48 %	4 %	36 %
Cruise ships (total)	6 %	9 %	34 %	4 %	-	26 %	2 %	19 %

- Electric main engine for propulsion of the ship?
 - The power need & the distance -> Energy requirements [kWh]
 - Time at shore & Energy need -> Charging requirements [MW]

The power need and the distance -> Energy requirements

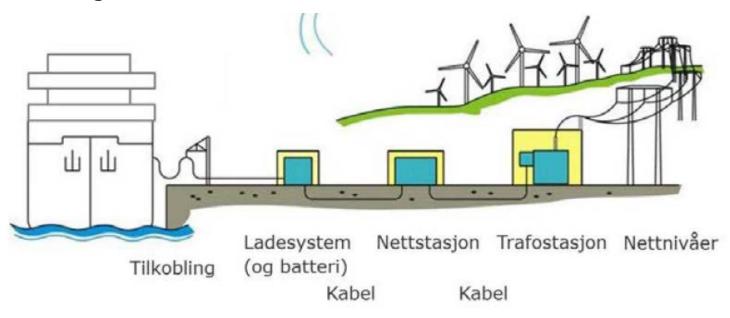
- Most demanding crusing conditions (wind, waves, currents, etc.)
- Longest distance between charging + reserves
- Electricity needs for other purposes, lighting, heating, control, etc.
- Where is the limit for beneficial electrification?

	speed [knot]	distance [nau mil]	Energy need [kWh]	Shore connect. [min]	Onshore staion power requirement [MW]
/	5,5	4,5	100	10	0,6
	8,5	6,5	400	10	2,4
	18,2	4,5	200	3	4
\	13	3,2	280	3	5,6
	20,2	23,5	1500	5	18

Time shore connected – Energy need – Charging requirement

- Time for loading and unloading of people, cargo, vehicles, etc.
- Keep the time table
- Time requirement for charging to cover the energy need at max charing speed
- Possibility to charge more than one ship at a time?
- In the grid.....
- Perhaps onshore battery banks are needed

Speed [knot]	Distance [nau mil]	Energy need [kWh]	Shore connect. [min]	Onshore station power requirement [MW]
5,5	4,5	100	10	0,6
8,5	6,5	400	10	2,4
18,2	4,5	200	3	4
13	3,2	280	3	5,6
20,2	23,5	1500	5	18


- Charging of ship / ferry boat batteries for propulsion might need significantly higher power than the present grid can handle
 - very often weak grids close to the coastline
 - not dimensioned for this type of battery charging
- Onshore stations for short ferry boat tours, e.g. the Swedish "Trafikverket" or the Norwegian "Statens Vegvesen", use similar types of ships
 - The same frequency (50 Hz) for all ships
 - The same voltage levels
- Harbours for cargo ships must be more flexible
 - Different frequencies 50 Hz or 60 Hz
 - Different voltage levels
 - > Higher costs

Grid capacity in the	Energy need [kWh]	Shore connect. [min]	Onshore station power requirement [MW]
point of connection	100	10	0,6
	400	10	2,4
	200	3	4
	280	3	5,6
 Often weak networks 	1500	5	18

- Short charging times require high charging power > might require grid reinforcements
- Examples on reinforcements
 - Voltage level increase, e.g. from 11 kV to 33 kV or 66 kV
 - Parallel feeders
 - Reactive power compensation
 - Battery storage also at the onshore substation (which is charged with a constant low power – and supplying the ship with a higher power)
- A great possibility for the grid owner to reinvest, upgrade, improve, and approach a new market segment ...

Safety

 Galvanic separation between the ship power system and the grid is often required (transformer -> "magnetic" connection)

- Arcs are not accepted, at connection or disconnection
- The cobination of salt seawater and electricity might also put requirements on the connection.

Who pays?

- Investments are needed:
 - On the ships
 - In the harbours
 - In the grid
- In Sweden Grid owners are obliged to connect any load, but may charge the specific grid user
- Crusing costs for ships may be reduced over time but investments are needed
- Government subsidies to reduce CO₂ emission, etc.

The 4th electricity driven cable ferry boat in Sweden (source NT)

- Kornhallsleden:
 - 200 m
 - 730 000 cars annually
 - 2 el. motors
 - 2 converters for speed control
 - Transformer on board for galvanic separation
 - Diesel engine as backup

- Other ferries in a similar way: Hamburgersund, Malö, Kastellet
- Hamburgersund: 2 first years 107 tons of CO₂ emission saved!!
- Plans for more installations!!
- Also Scandlines are converting two ships to electricity with batteries

Today – Commuters between Nacka and Solna goes by electric ferry

"E/S Sjövägen"

- 7 knots
- 15 minutes travel
- 150 passengers
- 2 asynchronous motors
- Total power 320 kW
- Lithium-Ion battery:
 - 5 tons
 - 750 V
 - 500 kWh
 - 5 hour operation
 - 10 years life time
- Dieselbackup

Norway

- "Statens vegvesen" is responsible for the operation of the national road ferries
- Private operators operates the ferry boats on cotracts
- 130 ferry lines; 200 ferry boats

Parlament instruction to the government:

«Stortinget ber regjeringen sørge for at alle kommende fergeanbud har krav til nullutslippsteknologi (og lavutslippsteknologi) når teknologien tilsier dette»

Statens vegvesen

Ampere – The world's first electrically-powered car ferry

- Entered into service early 2015 in Sognefjord between Larvik and Oppedal
- 120 passengers
- 360 cars
- 34 fjord-crosses /day
- 6 km / 20 minutes
- 2 electric motors
- Each motor 450 kW
- Lithium-ion batteries
- Total 1 MWh
- Onshore batteries of 260 kWh at each end
- Savings:
 - -2680 tons of CO₂
 - -37 tons of NO_X

- Speed, distance, size and margins set the energy requirements
- Energy and time for shore connection set the power requirements for charging
- The electricity system on-board set the requirements on the flexibility of the onshore substation
- Safety is always a major concern and must be sufficient
- Who will pay for what.....?

Thank you for the attention

- Questions?
- Comments?
- Welcome to contact me in any electrical issue

Daniel Karlsson daniel.karlsson@dnvgl.com +46-732-49 89 23

www.dnvgl.com

SAFER, SMARTER, GREENER