

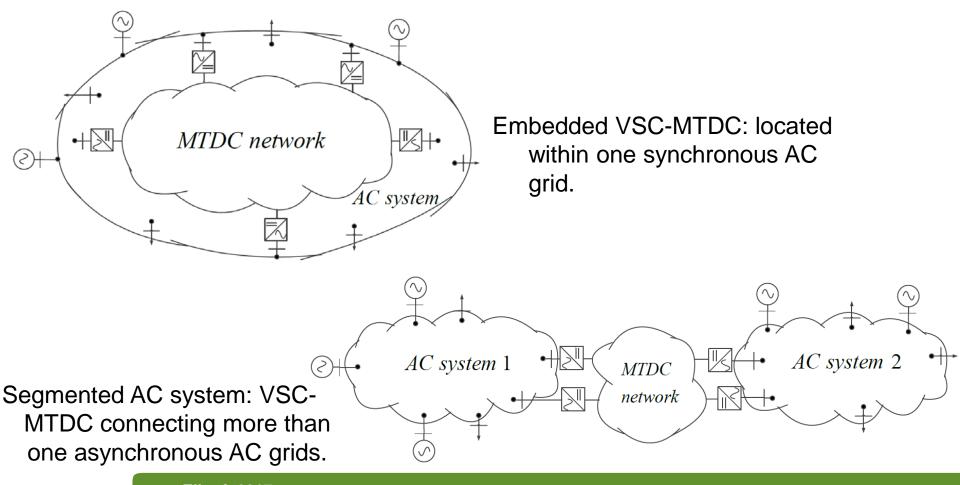
On the Design and Placement of a Supplementary Damping Controller in an Embedded VSC-MTDC Network

Omar Kotb*, Mehrdad Ghandhari*, Robert Eriksson**, Javier Renedo***, Luis Rouco***,

*Department of Electric Power and Energy Systems, KTH, Stockholm, Sweden
**Svenska Kraftnät (Swedish National Grid), Sundbyberg, Sweden
***Institute for Research in Technology, Comillas Pontifical University, Madrid, Spain

Presented by:

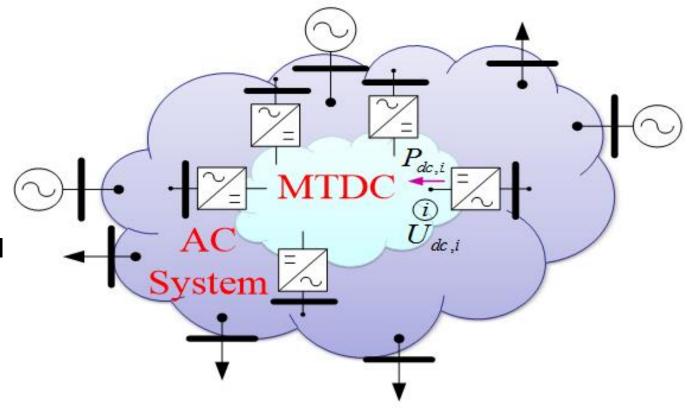
Omar Kotb



Presentation Outline

- Introduction
- Motivation
- Power System Model
- Controller Design
- Conclusions

Introduction: Embedded VSC-MTDC Network


Introduction: Embedded VSC-MTDC Network

AC/DC Power System Model:

One slack bus

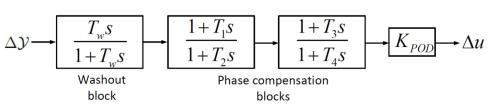
 VSC represented by average model

 Master-slave DC voltage control

Introduction: Embedded VSC-MTDC Network

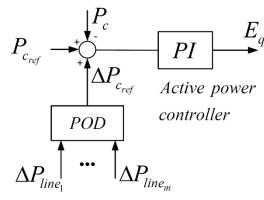
MTDC Control Imperatives in AC/DC Power System

- Primary control: active&reactive power, DC voltage, AC voltage
- Supplementary control: Power Oscillation Damping (POD), frequency support
- Control coordination: PSS, other FACTS POD


Motivation

- Supplementary (POD) control not sufficiently investigated as compared to primary control in VSC-MTDC
- Multiple damping controllers: adverse control interactions
- Control coordination problem through nonlinear optimization:
 - Complex objective functions
 - Time-consuming solutions
- Strategic placement of supplementary controller(s)

Motivation


■ MLQG-MISO control allows damping of targeted modes of interest, other modes are not affected

SISO control structure

Assumptions:

- Negligible time delays
- PMUs readily available

MISO control structure

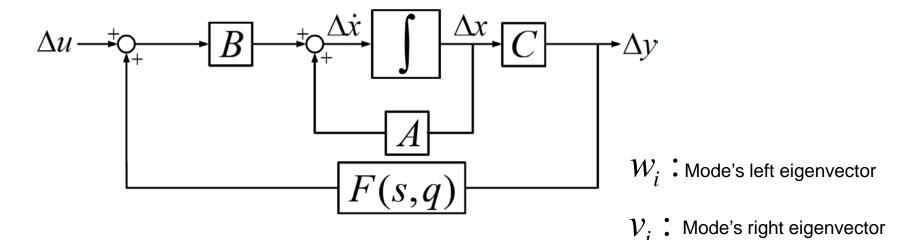
Power System Model

- Nonlinear DAE system model:

$$\dot{x} = f(x, y, u)$$

$$0 = g(x, y, u)$$

Linearized system model:


$$\Delta \dot{x} = f_x \Delta x + f_y \Delta y + f_u \Delta u$$

$$0 = g_x \Delta x + g_y \Delta y + g_u \Delta u$$

Linearization conducted around the equilibrium point of the DAE system.

Power System Model

Eigenvalue sensitivity to controller parameter (q):

$$\frac{\partial \lambda_i}{\partial q} = R_i \frac{\partial F(s, q)}{\partial q} \big|_{s = \lambda_i} = w_i^T B \frac{1}{\left(1 - F(\lambda_i, q)\right)^2} C v_i$$

Power System Model

- Linearized state-space system model:

$$\dot{x} = Ax + Bu + \Gamma w$$

$$y = Cx + \upsilon$$

W: Process noise

 υ : measurement noise

- Modal variables:

$$z(t) = Mx(t)$$

MLQG Control Design

- Cost function:

$$J_{k} = \lim_{T \to \infty} E \left\{ \int_{0}^{T} \left(x^{T} \left(M^{T} Q_{m} M \right) x + u^{T} R u \right) dt \right\}$$

 Q_m : Weighting matrix for modal variables

R: Weighting matrix for controller output

M: Mapping matrix

Feedback control law given by: $u(t) = -K\hat{x}(t)$

K: MLQG controller gain

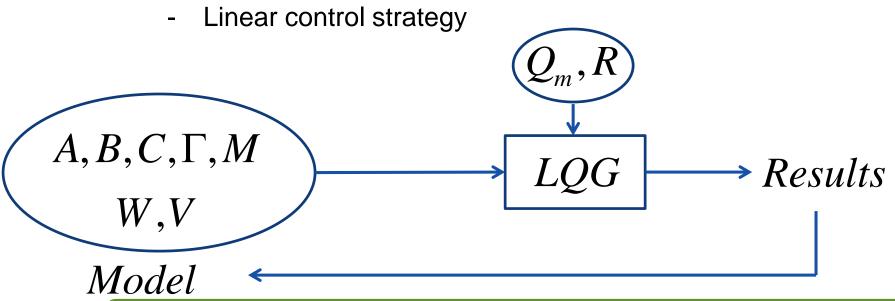
MLQG Control Design

$$\hat{x}(t)$$
 obtained using Kalman filter: $\dot{\hat{x}}(t) = A\hat{x} + Bu + L(y - C\hat{x}) + Lv$

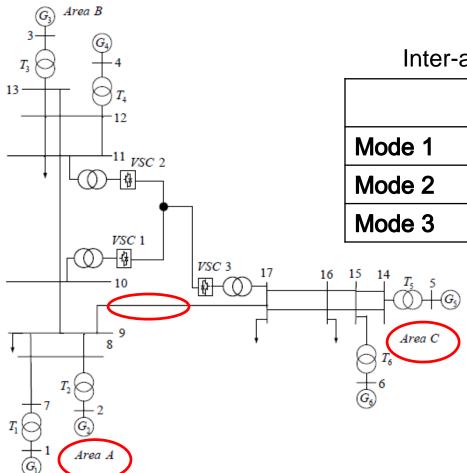
L:Constant estimation error feedback matrix, obtained by the solution of Algebraic Ricccati Equation (ARE):

$$\dot{\hat{x}}(t) = A\hat{x} + Bu + L(y - C\hat{x}) + L\upsilon$$

ARE solution is according to cost function for Kalman filter:

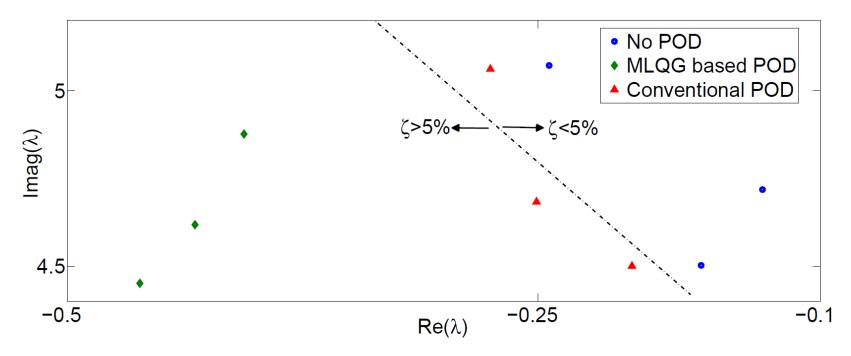

$$J_{L} = \lim_{T \to \infty} E \left\{ \int_{0}^{T} \left(x^{T} W x + u^{T} V u \right) dt \right\}$$

MLQG Control Design


MLQG POD supplementary controller design merits:

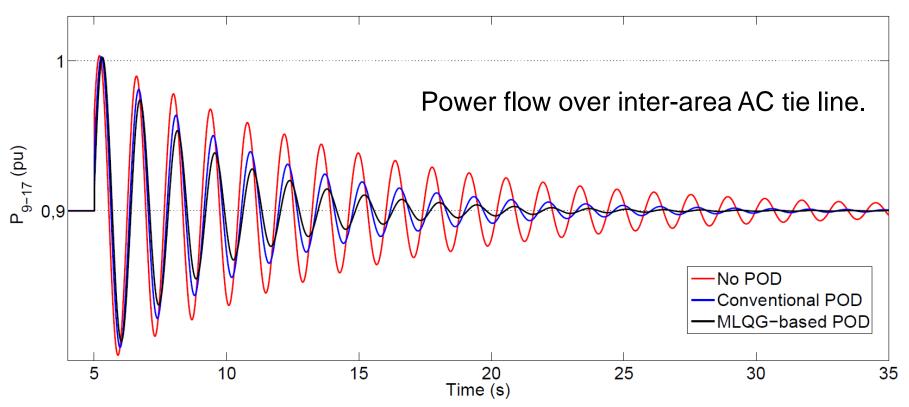
- Enhanced robustness
- Targeted damping of specific oscillatory modes (weighting matrices)

Results



Inter-area modes' observabilities (normalized).

	P12-13	P5-14	P11-12
Mode 1	1	0.4027	0.6974
Mode 2	0.3282	1	0.3402
Mode 3	0.6813	0.3661	1


Results

Inter-area modes' locations in complex plane.

Results

Disturbance: 10% load increase for 100 ms.

Conclusions & Future Work

- □ Research theme: AC/DC power system stability enhancement & control through MTDC supplementary controls
- ☐ Strategic positioning of a single damping controller within an embedded VSC-MTDC network
- ☐ Investigation of supplementary (POD) control in case of droop control used for DC voltage regulation.

Thank you! Questions?