

High temperature corrosion problems during gasification of biomass and waste

Rikard Norling, Ragna Elger, Jesper Liske, Hamed Hooshyar

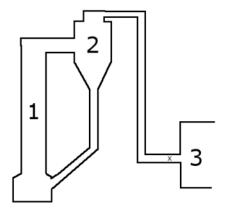
rikard.norling@swerea.se

PART OF RI.SE

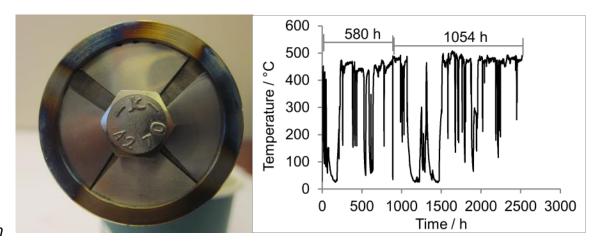
Background - gasification

- Ideally: Use any carbon source for producing synthesis gas (CO/H₂)
- Use as raw material or use for heat/power production

Field exposures, Värö

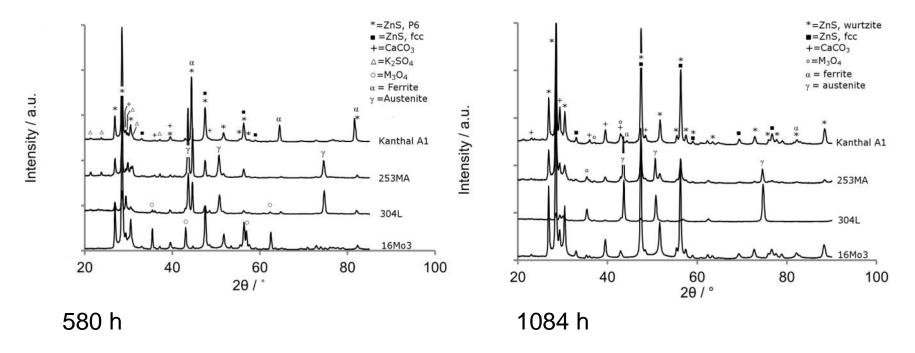


- Forest based feedstock
- CFB process
- Traditional bed material

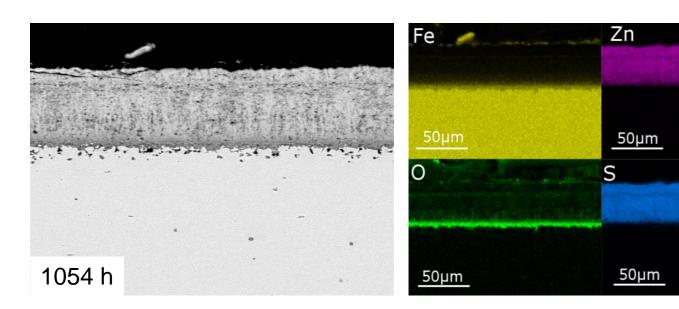

	H ₂	CO ₂	H ₂ O	CH₄	СО	Remarks
Värö	10-15	10-15	10-15	5	15-20	Air blown

Exposures from Värö - experimental

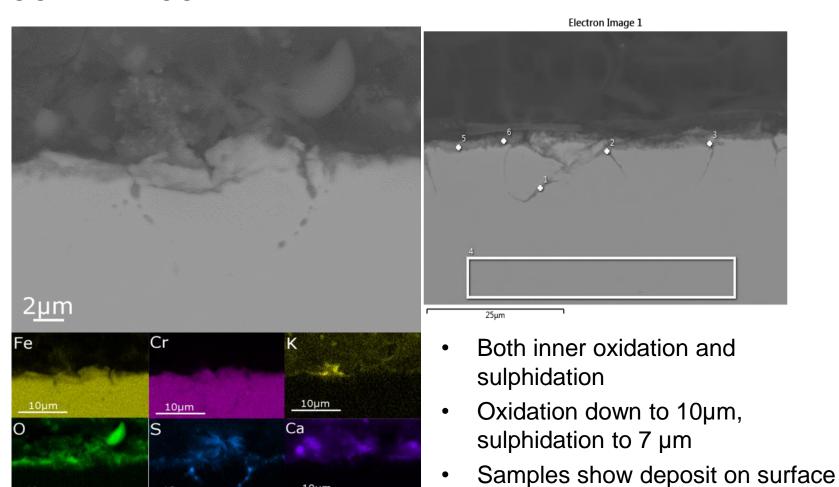
- Three exposures were performed on different occasions in a noncooled probe at the inlet of the lime kiln
 - One exposure 20 min (4 min above 350°C)
 - One intermediate exposure (580 h above 350°C)
 - One long-term exposure (1054 h above 350°C)


1:Gasifier, 2: Cyclone, 3: Lime kiln X: Position of corrosion probe

Exposed materials


Material	Fe	Cr	Ni	Si	Mn	Övrigt
16Mo3	Bal	-	-	-	0.4-0.9	Mo 0.25-0.35
253MA	Bal	20.75	11.11	1.61	1.44	Ce
304L	Bal	18.25	8.05	0.28	1.63	
Kanthal A1	Bal	21.2	-	0.18	0.08	AI 5.6

Results: XRD results


- All exposures show presence of CaCO₃ and ZnS
- K₂SO₄ signal only after intermediate exposure
- Ferrite phase clearly distinguishable for intermediate exposure

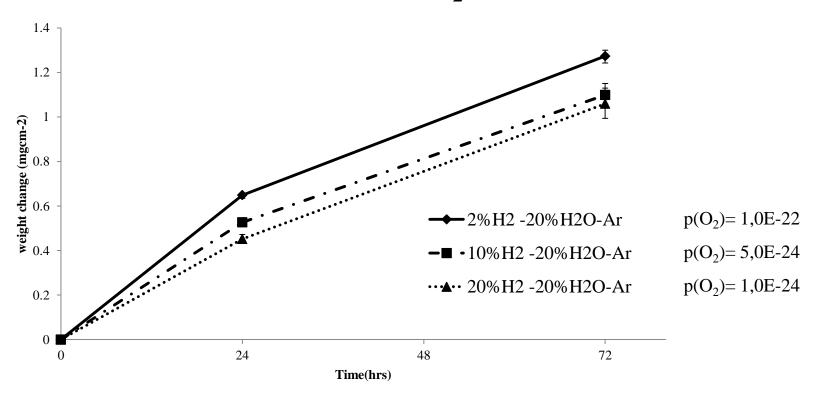
16Mo3 – long-term exposure

- Fe and O enriched at the metal/deposit interface.
- Zn and S abundant in outer deposit

304L - 1054 h

10µm

10µm

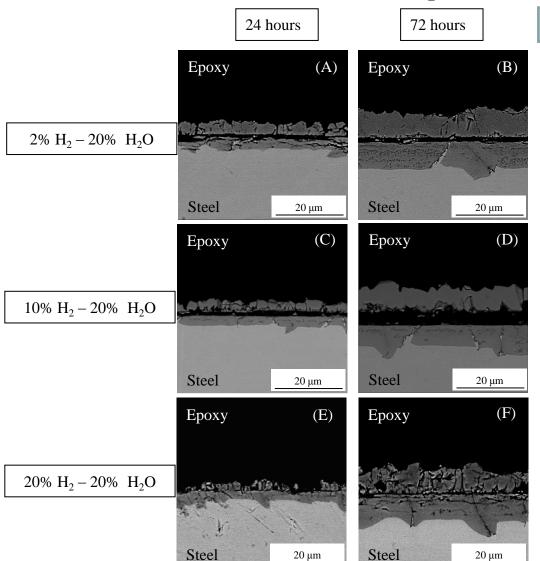

10µm

Field exposures – final remarks

- Exposures were performed below 500°C and with temperature variations
- Cl levels of the fuel were present in levels comparable to literature. No Cl was detected on the samples
- Metal loss small for 16Mo3
 - Low alloyed steel shows potential at this temperature
- All materials show signal from deposit of ZnS and CaCO₃ (XRD)
- Zn was present in significant amounts on the surfaces. Zn is proposed to affect the materials' behaviour
 - It is argued that zinc plays a key role in capturing sulphur in this environment, thus preventing iron from sulphidation.

Lab. Exposure

The Effect of H₂



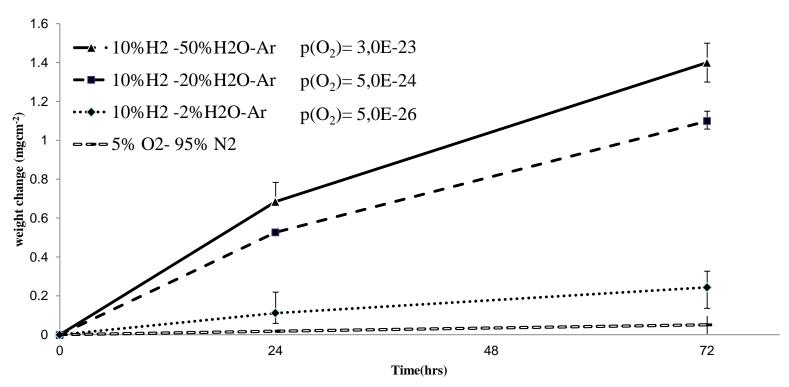
- Samples: 304L
- Temperature= 600 °C

Composition [wt%]	Cr	Al	Мо	C	Mn	Si	Minor Add.	Fe	Ni
304L	18,18	-	0,53	0,022	1,53	0,31	Present	Bal.	8,10

Increase in H₂ content

Lab. Exposure The Effect of H₂

Increase in Time


Increase in oxide thickness

Lab. Exposure

The Effect of H₂O

- Samples: 304L
- Temperature= 600 °C

Composition [wt%]	Cr	Al	Mo	C	Mn	Si	Minor Add.	Fe	Ni
304L	18,18	-	0,53	0,022	1,53	0,31	Present	Bal.	8,10

Lab. Exposure The Effect of H₂O

The Effect of H₂ and H₂O

Final remarks

- Marginal chromia formers, e.g. 304L, can be subject towards accelerated corrosion in low oxygen activity environments.
- Breakaway may be triggered by a deep chromium depletion of the alloy substrate.
- The chromium depletion was deeper in H2-H2O environment than it is in, e.g. dry O2, because the pure chromia scale formed in H2-H2O environment grew faster than the Cr1-xFex)2O3 scale formed in air and dry O2.

Ongoing work

- Material exposures have been made in the Cortus' gasifier in Köping
 - Very high temperature, ~1100 °C
- Samples were recently removed and are about to be investigated

Thank you for your attention!

We would like to acknowledge:

PART OF RISE