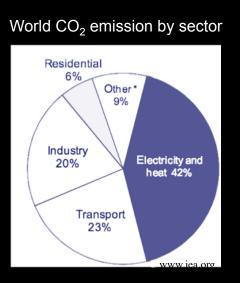


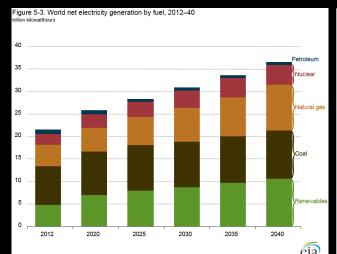
Design of Z-phase strengthened steels KME-710

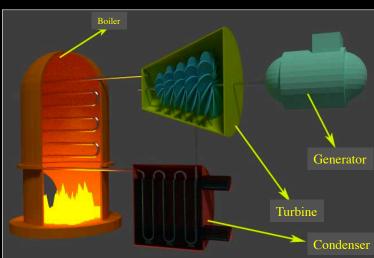
Prof. Hans-Olof Andrén, Ass. Prof. Fang Liu, PhD student <u>Masoud Rashidi</u> Chalmers

Prof. John Hald
Technical University of Denmark
Lennart Johansson

Siemens Industrial Turbomachinery AB




Outline

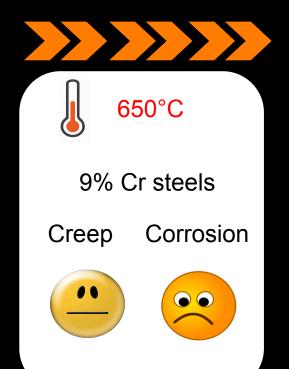

- Motivation
- Overview of Z-phase strengthened steels
- Core-shell structure of intermediate precipitates
- Effect of C on Z-phase formation

Motivation

Efficiency
$$\eta = 1 - \frac{T_C}{T_H}$$

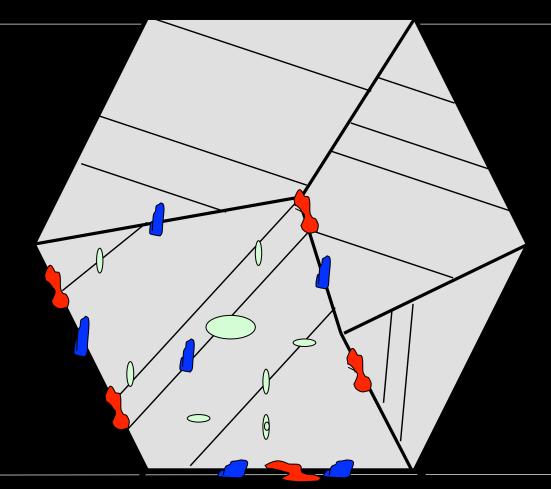
Higher steam temperature and pressure $\rightarrow \rightarrow \rightarrow \rightarrow$ more efficient power plants

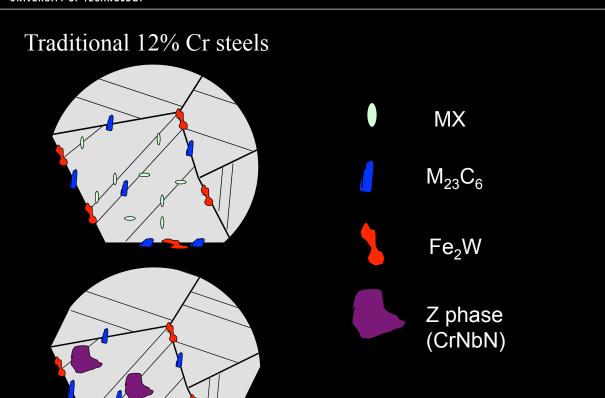
Current status

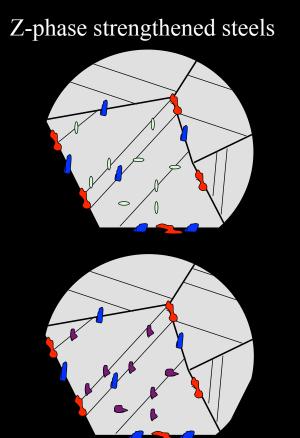

600°C

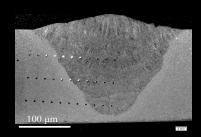
9% Cr steels

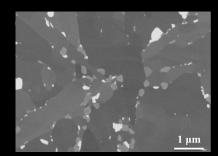
Creep Corrosion



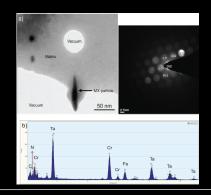




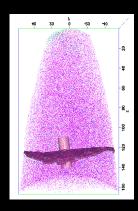




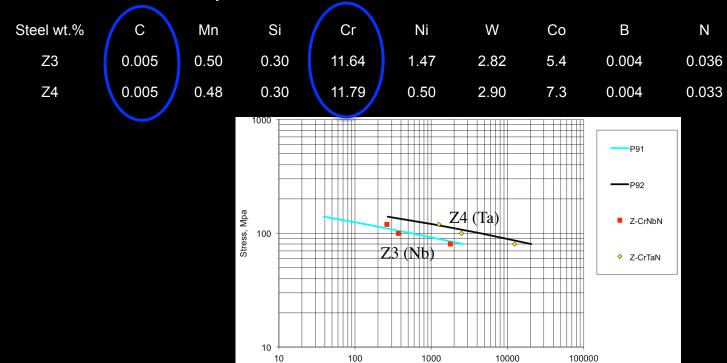
Light Optical microscopy



Microstructure characterization


Scanning
Electron
Microscopy

Transmission Electron Microscopy



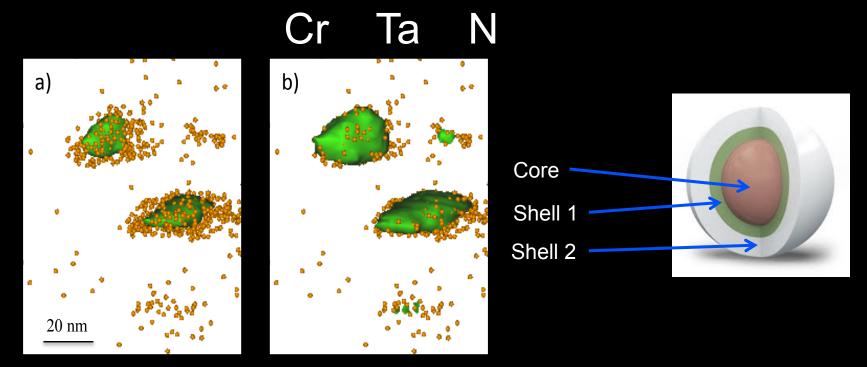
Atom Probe Tomography

Proof of concept

M.Rashidi, et al." Microstructure characterization of two Z-phase strengthened 12% chromium steels" Proc. 10th Liège Conference: Materials for Advanced Power Engineering 2014

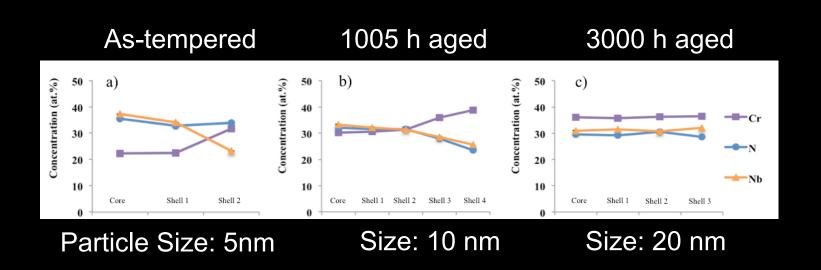
Time to rupture, h

Nb


0.26

Та

0.39


Z-Phase Formation

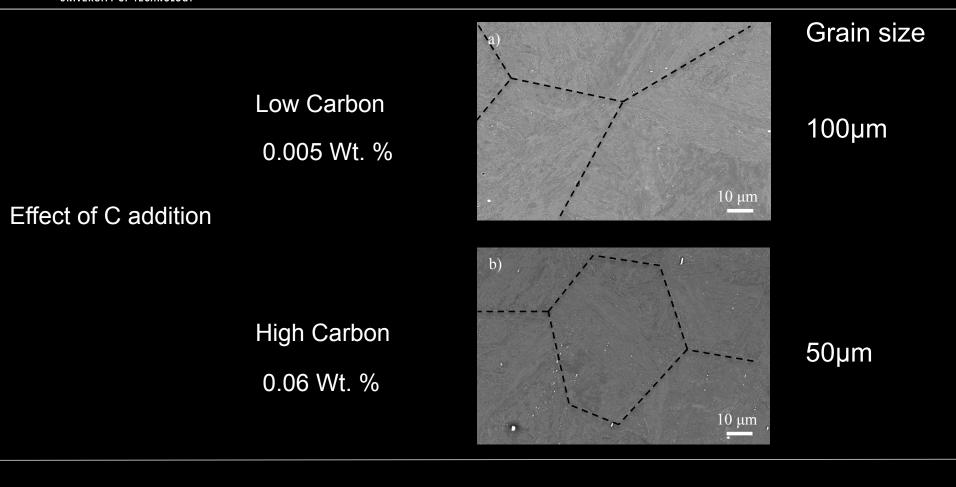
M.Rashidi, et al. "Core-shell structure of intermediate precipitates in Z-phase strengthened 12% Cr steel" Microscopy and Microanalysis 2017, in press

Core-shell structure of intermediate precipitates

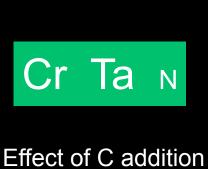
$$MN \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow Cr_{1+x}M_{1-x}N$$

Modell alloy \rightarrow \rightarrow \rightarrow Real alloys

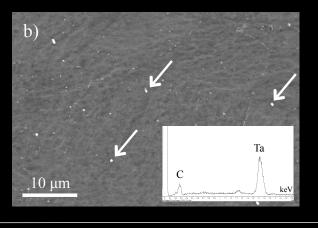
Steel wt.%	Ni	Со	Cr	W	Та	С	В	N	Si	Mn	Cu	Other
S1	0.19	3.5	12.1	2.47	0.36	0.06	0.0063	0.049	0.31	0.21	1.95	-
62.1	0.40	2.7	11.0	2.0	0.25	0.028	0.0042	0.045	0.24	0.12	2.00	
S2–1 S2–2	0.18 0.17	2.7 3.1	11.2 11.2	2.0 2.1	0.35 0.19	0.028	0.0042	0.045 0.042	0.34 0.32	0.12 0.13	2.00 2.10	– Nb 0.16
S2–3	0.20	3.1	11.1	1.8	0.43	0.05	0.0042	0.036	0.23	0.12	_	Mo 0.5
S3-1	0.11	3.93	11.45	2.02	0.38	0.013	0.0026	0.046	0.29	0.08	2.01	_
S3-2	0.11	5.65	11.46	2.47	0.40	0.012	0.0026	0.042	0.28	0.09	1.02	_
S3-3	80.0	5.11	11.33	2.32	0.41	0.011	0.0042	0.043	0.30	0.10	2.01	_
S3-4	0.11	5.60	11.30	2.68	0.43	0.009	0.0025	0.041	0.30	0.93	1.54	_


Effect of C on

Z-phase formation


Material

Steel		C	Mn	Si	Cr	Ni	W	Co	Cu	N	В	Ta
Z-steel	wt%	0.005	0.48	0.30	11.79	0.50	2.90	7.30	-	0.033	0.004	0.39
ZC-steel	wt%	0.06	0.21	0.31	12.10	0.19	2.47	3.50	1.95	0.049	0.006	0.36


Low Carbon 0.005 Wt. % a)

No Carbide

Cr Ta N

High Carbon

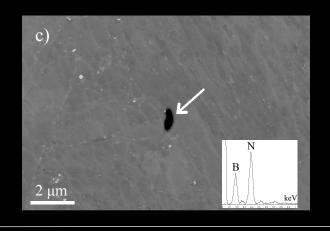
0.06 Wt. %

TaC

 $Cr_{23}C_6$

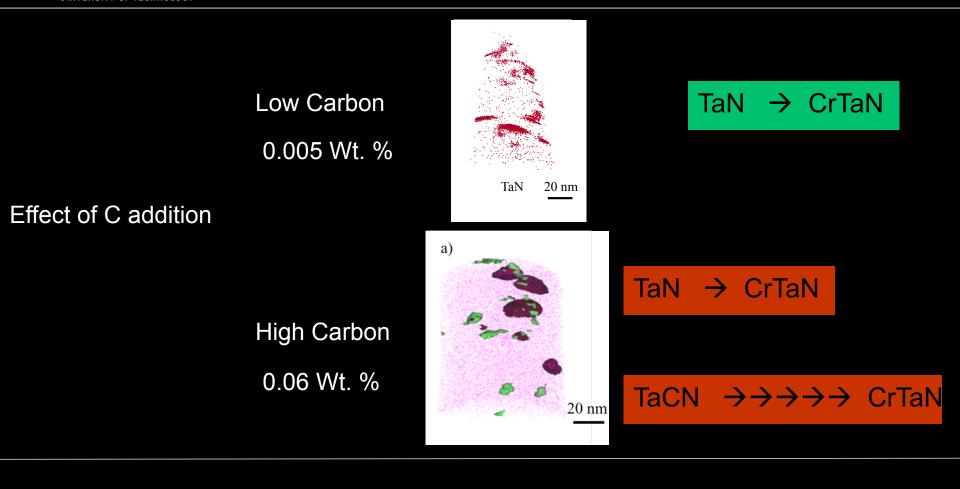
Low Carbon

0.005 Wt. %

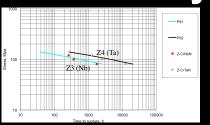

No BN

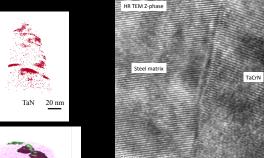
Effect of C addition

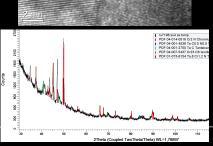
Cr Ta N


High Carbon

0.06 Wt. %


BN




CHALMERS UNIVERSITY OF TECHNOLOGY

Summary

Steel wt.%	Ni	Co	Cr	W	Ta	С	В	N	Si	Mn	Cu	Other
S1	0.19	3.5	12.1	2.47	0.36	0.06	0.0063	0.049	0.31	0.21	1.95	
S2-1	0.18	2.7	11.2	2.0	0.35	0.028	0.0042	0.045	0.34	0.12	2.00	
S2-2	0.17	3.1	11.2	2.1	0.19	0.03	0.0054	0.042	0.32	0.13	2.10	Nb 0.16
S2-3	0.20	3.1	11.1	1.8	0.43	0.05	0.0042	0.036	0.23	0.12		Mo 0.5
S3-1	0.11	3.93	11.45	2.02	0.38	0.013	0.0026	0.046	0.29	0.08	2.01	
S3-2	0.11	5.65	11.46	2.47	0.40	0.012	0.0026	0.042	0.28	0.09	1.02	
S3-3	0.08	5.11	11.33	2.32	0.41	0.011	0.0042	0.043	0.30	0.10	2.01	
S3-4	0.11	5.60	11.30	2.68	0.43	0.009	0.0025	0.041	0.30	0.93	1.54	_

Cr Ta N

Thank you for your attention