

Project members

- Janfire
- NIBE
- Sandvik Heating Technology
- Swerea IVF
- Chalmers

Background

- In the combustion of bio-based fuels the critically exposed burner parts in small boilers are typically uncooled and are usually made of FeCr or FeCrNi alloys.
- These materials can suffer attack from the ashes because of the formation of alkali chromate.
- The reaction depletes the protective oxide in chromia, leading to accelerated corrosion.
- This ultimately results in failure of the boiler unit and/or is limiting the service life of critical burner components.

Goals

- To develop practically oriented knowledge about HTC in small and medium sized plants fired mainly by pellet based bio-fuels
- Apply this knowledge and assist the SME producers with current urgent problems
- Increasing lifetime of selected critical components by a factor of 2-3 and decreasing failure complaints to below 5%

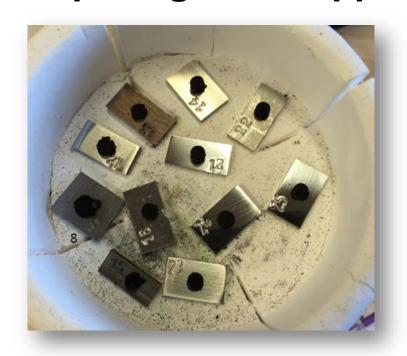
Status and time plan

Year	Activity
2014	Planning and production of materials to be investigated
2015	Cyclic lab exposures (Sandvik Kanthal) 850°C
	Analysis of exposed materials at Swerea IVF
2016	Cyclic lab exposures (Sandvik Kanthal) 600°C
	Analysis of exposed materials at Swerea IVF
	Field exposures ~800°C (Janfire)
	Analysis of exposed materials at Swerea IVF
2017	Cyclic lab exposures with elevated Cl-content at
	600°C (Planned)
	Analysis of exposed materials at Swerea IVF

Production of model alloys

- Performed at Kanthal site in Hallstahammar
- Coupons were prepared from reference and model alloys

Lab scale vacuum melting and hot rolling


Testing – Ranking test, thermal cycling

- Performed at Kanthal Site in Hallstahammar
- Cycling, 1 hour hold time at high temperature, 30 minutes at RT
- 850°C (2015) and 600°C (2016 and 2017)
- Reference wood pellets ash (Janfire) was manually placed on the samples. Ash was replaced each 10th cycle in order to maintain its corrosiveness.

Cyclic test furnace

Samples, general appearance

At start

After 60 cycles

Field test – Ranking test, thermal cycling

 Performed by Janfire and exposed at commercial installation

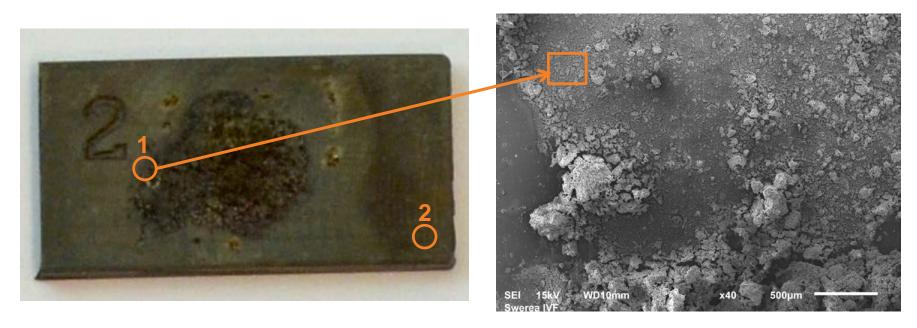
Samples

Field exposure test set-up

850°C Analysed samples (2015 – 2016)

No.	Material	No. of cycles	Fe	Ni	Cr	Al	Other
2	model	50			5	4	2 Si
4	model	50			10	4	2 Si
7	253MA	50	Bal	11	21		RE
8	Kanthal D	60	Bal		21	4.8	RE
9	Kanthal APMT	50	Bal		21	5	Mo 3, RE
	Kanthal APMT + CS repeated dipping*	50	Bal		21	5	Mo 3, RE
21	Nikrothal PM58	60	18	Bal.	20	5	RE
22	Inconel 625	60		58	21	0.4	Mo 9, Nb 3-4

^{*} CS = colloidal silica


600°C Analysed samples (2016)

No.	Material	Fe	Ni	Cr	Al	Si	Note
1	model	Bal.		5	4		
3	model	Bal.		5	4	2	
6	model	Bal.		10	4		
7	model	Bal.		10	4	2	
15	model	Bal.		21	3	2	
16	model	Bal.		15	3	2	
19	model	Bal.		10	3	2	
23	model	Bal.		10	4	2	
NiCrAl	Nikrothal PM58	18	Bal.	20	5		
FeCrAl	Kanthal AF	Bal.		21	5		
FeCrAlMo	Kanthal APMT	Bal.		21	5		

- Model alloys with potential for alumina protection
- Model alloys have variations in Cr, Al and Si
- Model Alloys compared to advanced commercial HT alloys
- Model alloys are Fe-base and relatively lean for sustainable performance

SEM top view

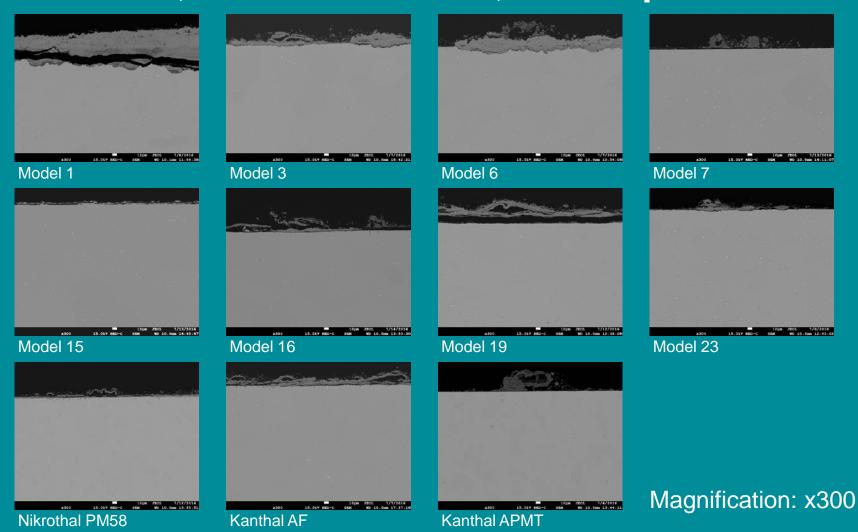
- Topographical contrast, magnifications: (x120), x300, x1000 och x3000. Pictures in two areas, see below.
 - Analysis on two positions
 - 1: close to the rim of the ash deposited area
 - 2: close to the edge of the coupon

SEM cross sections

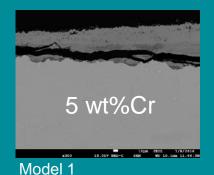
 The whole sample was molded in epoxi resin and then cut to the center (in order to protect the surfaces during subsequent cutting and and grinding/polishing)

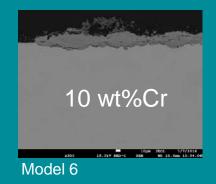
 Then again the sample was molded into epoxy resin and finally the cross section was ground and polished for investigation

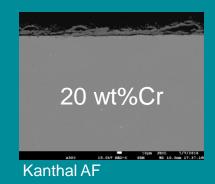
- Investigation was done mainly on two positions:
 - 1: in the middle of the ash deposited area
 - 2: close to the edge of the coupon surface
- Elemental analysis (with EDS):
 - Mapping in x1000 (centre)
 - In other areas in case of interesting features


Summary, reaction products on surface

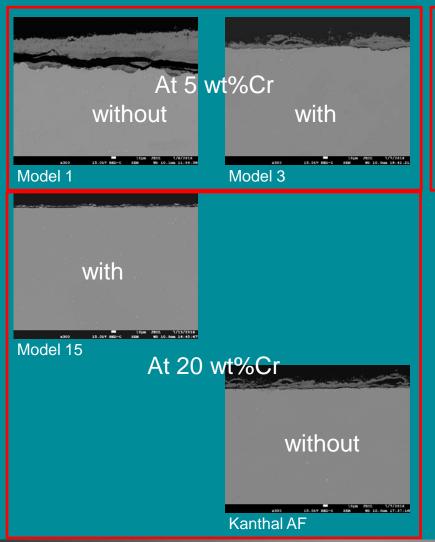
	Total layer	Composition (Layer thickness)				
No.		Inner	Center	Outer		
1	50-80 μm	Al, Cr, (20-30 μm)		Fe (30-40 µm)		
3	2-30 μm	Al, Cr, Si (2-5 μm)		Fe (5-40 µm)		
6	0-50 μm	Al, Cr, Fe (10-20 μm)		Fe (20-30 µm)		
7	0-3 µm	Al (<3 μm)				
15	2-10 μm	Al (+Fe, Cr, ej oxid)				
16	0-35 μm	Al, Cr (2-8 μm)		AI, Fe (5-30 μm)		
19	2-40 µm	Al, Cr, Fe (25-40 μm)				
23	0-30 µm	Al, Cr, Si (1-5 μm)		Fe (5-30 µm)		
NPM58	1-20 µm*	Ni (5 μm)	Al, Cr (1-4 μm)	Al, Ca, Fe (7-20 μm)		
AF	1-30 µm**	Al, Cr (1-10 μm)		Al, Ca, Fe, K (5-20 μm)		
APMT	0-2 µm	Al (<2 μm)				

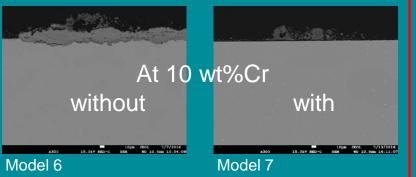

^{*} Grain boundary attack 5-10 µm deep in the centre of the sample


^{**} Spotwise small grain boundary attacks


Overview, section in centre, all samples

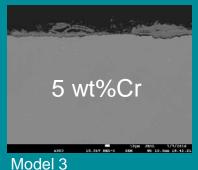
Role of Cr content (without Si)

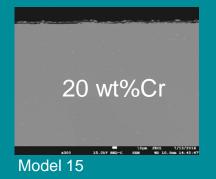


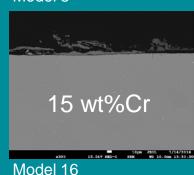


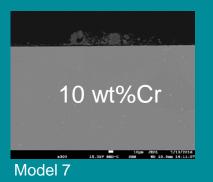
Magnification: x300

Role of 2 wt%Si addition

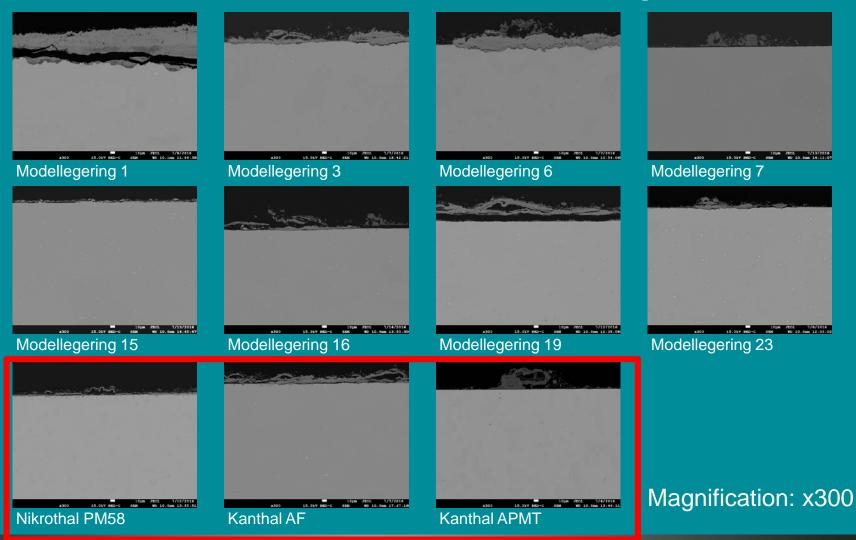


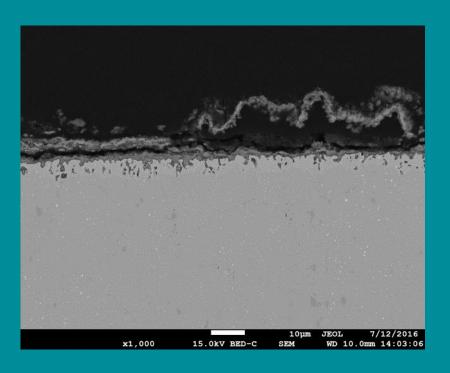


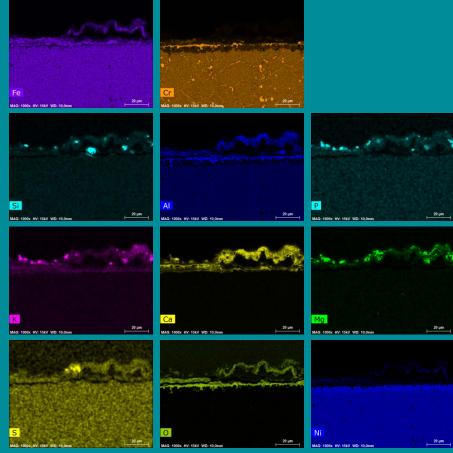



Magnification: x300

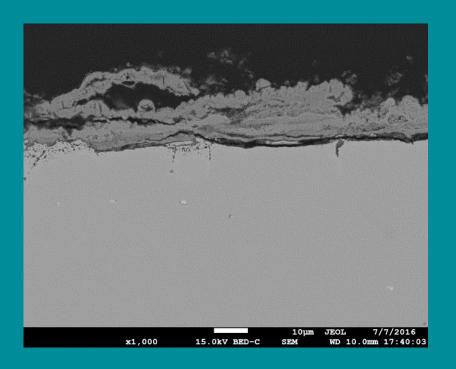
What about Cr content with 2% Si?

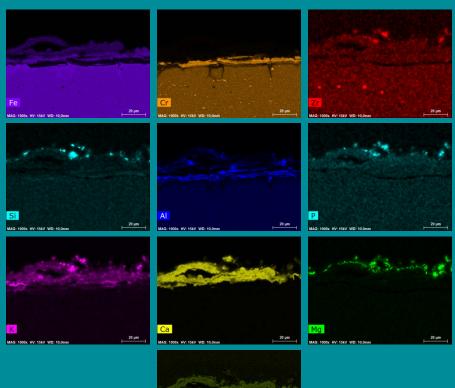


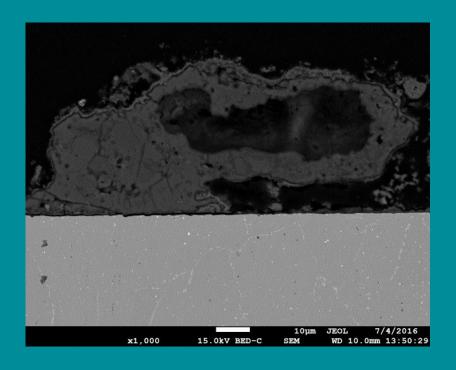


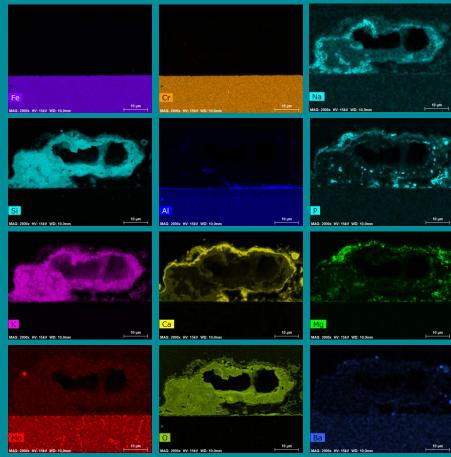

Magnification: x300

Overview, section in centre, all samples




Nikrothal PM58: Cross section, centre, EDS-analysis




Kanthal AF (21Cr, 5Al): Cross section, centre, EDS-analysis

Kanthal APMT (21Cr, 5Al, 3Mo): Cross section, centre, EDS-analysis

Field exposure Janfire, temperature up to 800°C

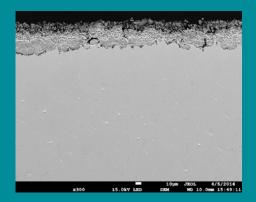
Start 150930

End 160307

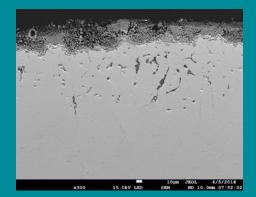
Materials:

- 1. 253 MA
- 2. Nikrothal N60
- 3. Kanthal D
- 4. Kanthal APMT
- 5. Kanthal AF
- 6. Model alloy 7

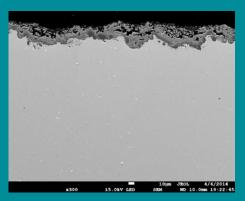
Exposed samples

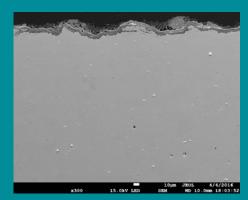

Nominal composition

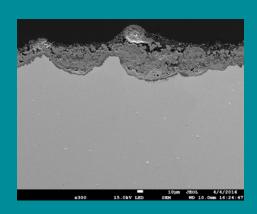
No.	Material	Ni	Cr	Al	Si	Other
1	253 MA	11	21		1	
2	Nikrothal 60	60	15		1	
3	Kanthal D		21	4.8		
4	Kanthal APMT		21	5		Mo 3
5	Kanthal AF		21	5.3		
6	Model alloy 7		10	4	2	

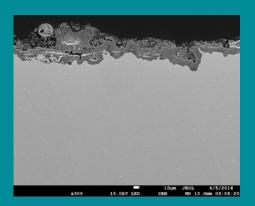

Summary of results

No.	Material	Oxide	Layered oxide				
NO.	Material	thickness	Inner	centre	Outer		
1	253 MA	30-50 μm	Islands of Si	Cont. Cr inner (1-2 µm) / Cr-Ca (+Ni- particles)	Si-Ca		
	Nikrothal 60	20-50 μm	Varying oxide layers:				
2			Cr (1-2 µm)	-	Cr-Fe-Ca		
			Si (0-2 μm)	-	Si-Ca		
3	Kanthal D	20-50 μm	Al (< 1 μm)	Al-Ca	Si-Ca		
4	Kanthal APMT	5-25 μm	Al (1-4 μm)	Al-Ca	Si-Ca		
5	Kanthal AF	20-80 μm	Al (1-4 μm)	Al-Ca	Si-Ca		
6	Model alloy 7	20-50 μm	Al (0,5-3 μm)	Al-Ca	Si-Ca		

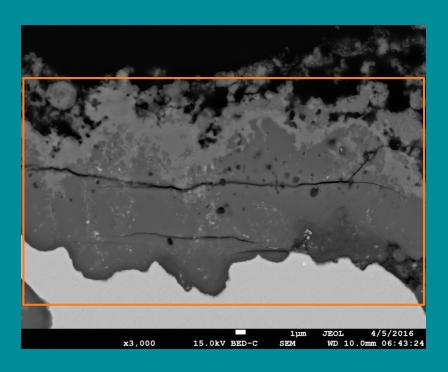

Results, visual

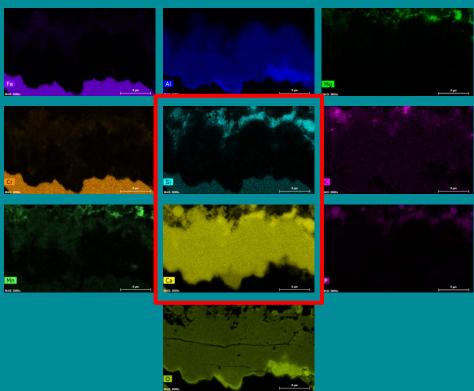

253 MA


Nikrothal 60


Kanthal D

Kanthal APMT


Kanthal AF



Model Alloy 7

Magnification: x300

Example, model alloy 7 **Cross section at centre**

Conclusions

- Useful results from lab ranking test is possible
- Deposits in the field exposure differs from the ash used in lab testing
- Further work to clairify the mechanisms is needed
- Specifically the role of elevated Cl contents need investigation
- Model alloy system seems to have potential for further development

Vi arbetar på vetenskaplig grund för att skapa industrinytta. www.swerea.se