

Potential of Small Modular Reactors

Energiforsk 2017

January 2017

Dr Fiona Rayment Director Fuel Cycle Solutions

UK Experience of Different Reactor Systems

> Experience with advanced fast and thermal reactors:

- Gen III, III+, IV
- Fast Reactors
- HTGRs
- SMRs
- Molten Salt Reactors
- Th fuelled based systems

History of participation in international projects

- European Fast Reactor development
- Numerous European Framework 5, 6 & 7 projects
- South African PBMR project
- Generation-IV VHTR, SFR, and GFR systems

The Carbon Plan: Sustainable Energy

- Legally binding 80% emission reduction by 2050
- Low carbon generation needed for:
 - Electricity
 - All transportation
 - Domestic and Industrial Heat, Light & Power
- Electricity grid grows from ~85 GWe to ~300GWe
- Generation sources Renewables, CCS and Nuclear

New Nuclear Build

Nominated sites for new nuclear power stations

Source: DECC

➢Government recently announced a 5-year, £250M programme of nuclear R&D

The UK's Nuclear Innovation & Research Advisory Board (NIRAB) recommended research in 5 main areas to;

Build on UK skills, experience and facilities

Maintain a balance across the whole fuel cycle

Establish international co-operations

Programmes

- 1. Making the fuels of the future
- 2. 21st century manufacturing
- 3. <u>Next generation reactor design</u>
- 4. Advanced spent fuel recycling
- 5. Strategic toolkit

Department for Business, Energy & Industrial Strategy

SMRs – Critical Characteristics

- Compared with large nuclear stations EPR 1,600Gwe:
- Lower generating capacity < 300 - 500MWe
- Simpler in design
 Fewer pipes and welds
- Less on-site construction Modular built in factories
- Faster construction times
 ~ 3 years
- Greater flexibility
 Load-following with renewables
 Dual use including district heating
 More potential sites

Oldbury Magnox: 2 x 220MWe

Range of SMR designs

...And a range of fuel cycle options

- Fuel type:
 iPWR: standard PWR fuel (shorter length)
 HTR: fuel pellets (Triso)
 MSR: fuel and coolant together
- Accident tolerant fuel development
- Enrichment
 - iPWR: < 5% HTR: > 10% MSR: < 5%
- Uranium supply expected to be stable
- Waste management
 Modest increase in waste volume per MWh
- Potential fuel supply from UK Urenco (enrichment) Springfields Fuels Ltd (manufacture)

FUEL ELEMENT DESIGN FOR PEMR

Guide Tub

Economic driver: opportunity for UK content and IP

Detailed design

Manufacture

Nuclear fuel

Construction

Design for Manufacturing and Assembly (DfMA)

Economic driver: opportunity for UK content and IP

Economic driver: international export opportunities

"Small Modular Reactors (SMR) Feasibility Study", National Nuclear Laboratory, 2014

Economic driver: international export opportunities

SMRs in the UK – Why? Energy Driver

SMRs in the UK – Why? Energy Driver

Energy driver: fit within the UK energy network

- Siting assessment
 - 250 potential sites
 - Up to ~70GWe
- SMR application
 - Baseload power
 - Variable power (load follow)
 - Duel use (district heating)

- UK has experience across a variety of reactor systems and fuel cycles
- New Nuclear Power Plant construction programme underway (16GWe)
- New Nuclear Energy R&D Programme underway need for more than 16GWe?
- Advanced systems being studied and specifically how SMRs could enable more energy production based on key economic and energy drivers.

NATIONAL NUCLEAR LABORATORY