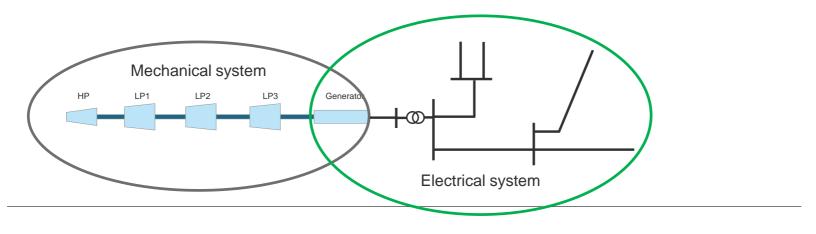
SSR Analysis and Design of SSR Protection in Sweden

Per-Olof Lindström

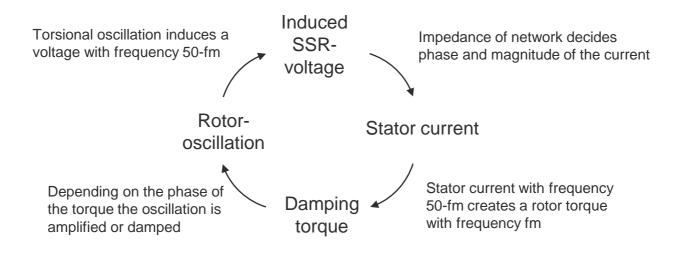
Sub-Synchronous Resonance

There are three different SSR phenomena that can occur for a synchronous generator connected to the grid.


- > **Torsional Interaction**. Undamped resonance between a torsional frequency in a turbo-generator and an electrical resonance in the grid.
- Induction Generator Effect. As the generators behave as asynchronous generators towards a sub-synchronous resonance frequency on the grid, negative resistance is supplied. If this resistance is greater than the positive resistance of the grid, the resultant resistance can be negative, causing self-induced electrical oscillations to arise in the grid.
- Shaft Torque Amplification. Switching sequences close to the turbo-generator unit can subject it to high instantaneous stresses. Resonances in the grid can result in these stresses becoming many times greater.

Analysis of Torsional Interaction

In this presentation analysis and protection against **Torsional Interaction** (TI) is discussed.


- > The analysis method developed by Vattenfall is used.
- > Mechanical and electrical system are analysed separately.

Torsional Interaction

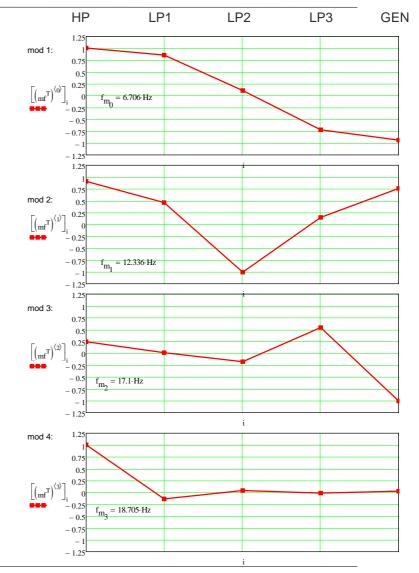
SSR can occur if a torsional frequency in the generator interacts with a resonance frequency in the grid, and creates an undamped oscillation.

Torsional Frequencies

A turbo-generator can be represented with a mass-spring model Input data

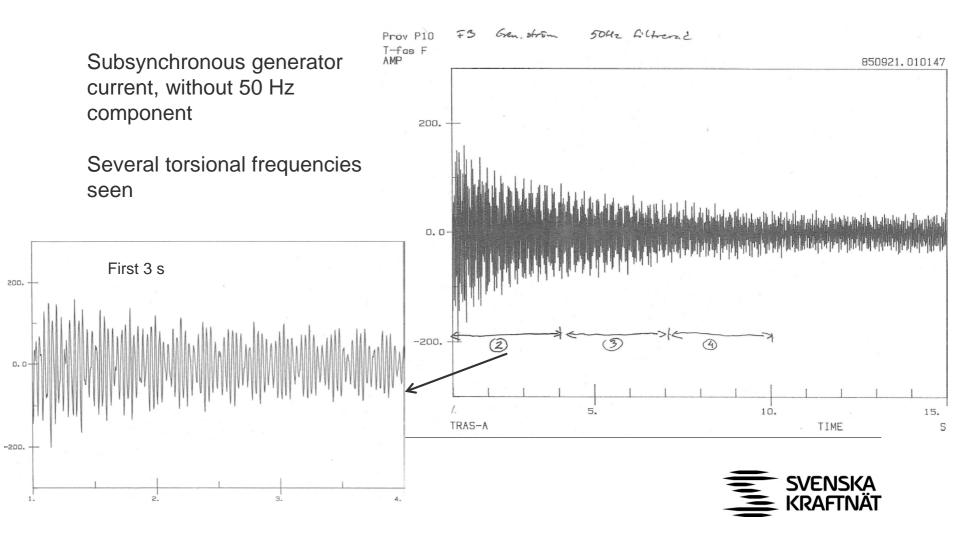
- Masses: moment of inertia, J [kgm²]
- Shafts: spring constant, K [Nm/rad]

	Mode	Alstom	Siemens	Simplified
Results	1	6,7	6,7	6,7
 4 torsional frequencies 	2	12,5	12,5	12,3
 Alstom's och Siemens's calculations are 	3	17,1	17,0	17,1
made with a detailed model	4	18,7	19,0	18,7

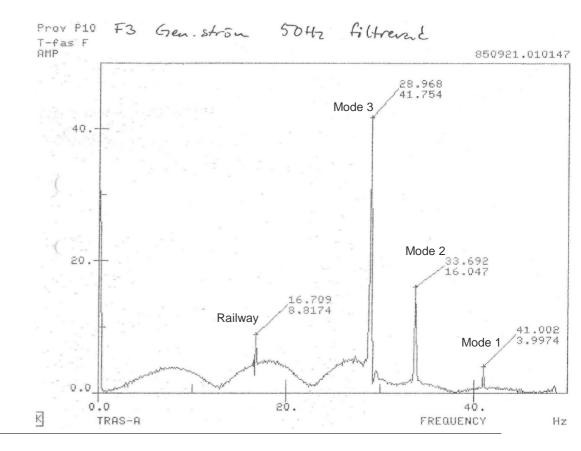

Mode Shape

A mode diagram shows how the masses are oscillating in each mode.

Calculated from the Spring-Mass model


The oscillation of the generator rotor decides the interaction with resonances in the grid.

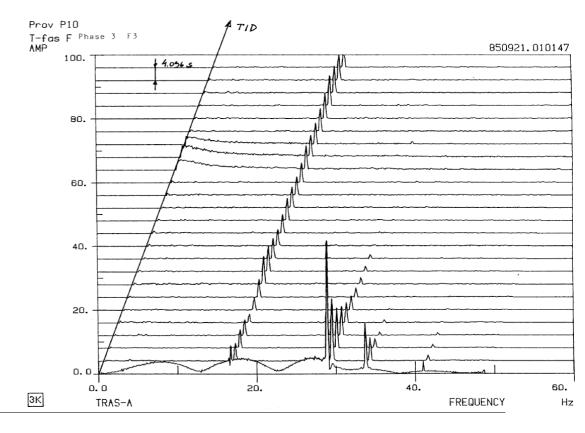
Each shaft has a different torsion in respective mode, one of them will be most critical.


Short circuit field test of F3, 1985 (P10)

P10: Fourier-analysis of the current

Torsional modes are seen

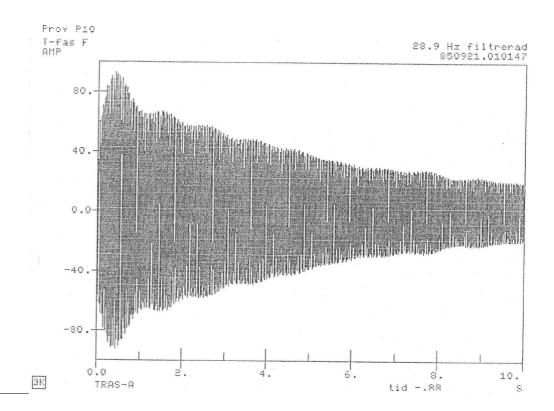
Electric railway operates at 16 2/3 Hz



P10: Consecutive Fourier-Analyses

Consecutive Fourieranalyses with 4 s time frame are shown.

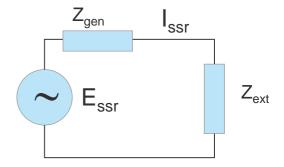
Damping of each torsional modes is illustrated.



P10: Time plot

Filtered current, 28.9 Hz.

Interference seen between mode 3 and mode 4.



Mechanical ---- Electrical Frequency

A torsional mode with frequency f_m induces voltages in the stator:

Sub-synchronous frequency: 50 - f_m

Super-synchronous frequency: 50 + f_m

Mode, f _m	Sub-synchronous	Super-synchronous
2, 12.5 Hz	37,5 Hz	62,5 Hz
3, 17.1 Hz	32,9 Hz	67,1 Hz

Analysis Method

Calculation of grid damping, seen from studied generator (rotor)

Sub-synchronous damping: $D_1 = -\frac{f_e}{2f_m} \frac{R}{R^2 + X^2}$ Supersynch.: $D_2 = \frac{f_e}{2f_m} \frac{R}{R^2 + X^2}$

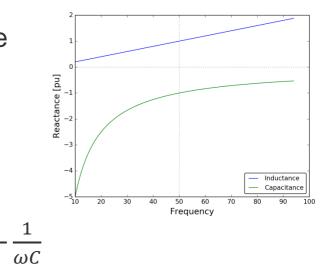
Mechanical damping D_r is always positive, but rather small. Can be measured at field test. (Has not been done for F3 after 1990)

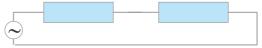
 D_1 , D_2 and D_r can be compared in pu. Damped if $D_r + D_1 + D_2 > 0$

D₁ depends on grid impedance at frequency f_e

D_r depends on turbo-generator design and loading

Resonances in the Grid

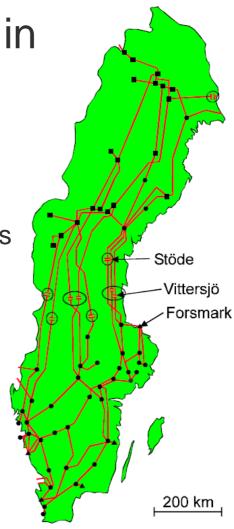

Series resonance. A series compensated line gets higher compensation degree at subsynchronous frequencies


Line reactance decreases: $x = \omega l$

Series capacitor reactance increases : $x_c = -$

Series resonance: (R+j0)

Parallel resonance: (R>>0)



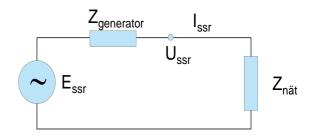
Torsional Interaction Problem in Sweden

Forsmark 3 is connected to Stackbo/Ängsberg

Strong electrical coupling to the 3 eastern, series compensated lines in transfer section 2

Development of Analysis Tools

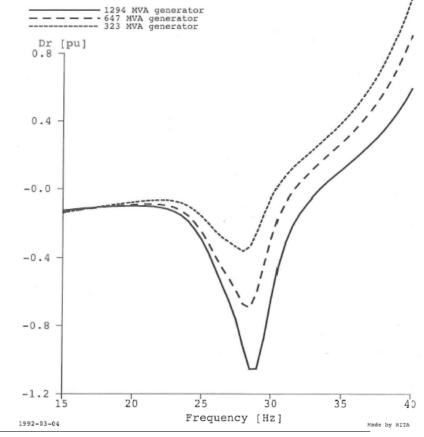
- > Late 70's: FRERED, frequency reduction program. Calculating network impedance for sub- and supersynchronous frequencies. Results: $R, X \rightarrow D_1$
- > 1982: Master Thesis by Carl Johan Dahlgren. Analysmetod för beräkning av subsynkrona strömmar i kraftnätet, SD-5125
- > This led later to the idea to use PSS/E for the SSR analysis!
- > Iplan-program was developed for SSR-scanning in PSS/E. Results: R,X, D₁, I_{gen}, I_{line}, U_{ssr}.


Example of FRERED Result from 1984

- Frequency scanning from 10 to 38
 Hz (electric frequency)
- > Electric damping, D₁, is printed with "line printer plotting".
- > Assumed mechanical damping is indicated with arrows

										K	I	M	SI	A	D		-	(L	A	N		+	t			U fe		i		K	IN	(S	T	AJ	D	U	ır		dı	ri	f	t									, ,		2	Ţ.	a		
DI (PU)	10000-0-	000000	-0.02000	-0.6560	-0.6949	-0.6531	-0.60.55	~0.C4000	-0.64605	-0.04220	-0.04550	-0.000 m	-0. 64957	-0. 6.0000	-0.6412	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	0.000	0.0000	10000	10-80202	0.0000-0-	-0.04000	-0.0000	-0.0501	-0-0461	-0-0400	-0-0404	-0.054S	-0.6623	0920.0-	-0.999.0-	······································	-0.127 B-	-9.4276	-0.4360	-0.7336	-1.0205	-1.1125	-0.93657	-0.65% S	-0.6382	-00.7'2	-0.282%	-0.2540	-0.202.0-	-0. 410.00V	00000	20204A	-0.425/40	-0.13329	-0-23257	-0.1007	-0.1600	-0.1403	-0.1303	-0.1209	-0.3365	
0																Same .																																										
2.0																					•														,																*				,			
1.6						1	•													ł,	•	•		ľ			•							,			1		•								,		•	•			•				1	
1.2																								,	,		,														•												•				,	
0.8			,																																												×						,		,			
Ĩ																																																										
0.4																					j			į																							1											
0	Ì	•														•																																										
0.0	• •		1	4	+	+	÷	*	+	+	-		4	ġ	4				ŗ.	ċ.	ć	÷	÷	+	÷	+	+	*	+	•		*	•					1	•		1	ľ					1	1	1		1	•			•	+	•	
																																	+	+										÷	÷	4				1	÷	+	Ŧ	4				
÷.0-	•	•					1								ç		•		•	•	•		•	,	,	0		,					•		4			•	•	•	1	•									•	•	•	•	•	•		
Ċ																																									*									Ψ								
-0.9																																				+				+						1				•								•
ĩ																																							+																			
61								ì																														+																				
-1.2																																																										
9																																																										
-1.6	•	•	•				•						•			•	•	•	•	•	•	•	•	•		1	•		•	•	•	•	•	•								•						•		•		•	•	•				
-2.0	•	•	•	-	• •	•	•					•	•	6	•	•	•		•	•	•	•	•	•	•	•	•	•	•	•	•		•		•	•		•	•	•	•	•		•	-		•	•	•	•		•	•	•	•	•		
	10.000	11 000	11 500	12.000	12.500	13.000	18.500	16.000	14.500	15.000	15.500	16.000	16. 500	17.000	17. 500	10.000	10 500	10.000	0000.01	000 000	20.000	20.000	21.000		22.000	22.509	23.000	23.500	24.000			25.500	26.000	26.500	27.000	27.500	28.000	28.500	29.000	29.500	80.000	30.500	81.000	31.500	32.000	32.500	000 000	000-000	000.000	29.000	22.000	35.000	86.500	36.000	36.000	37.000	37.500	
																						-					-				-		<	5		/	ſ		1				5	k	<		Δ											
																								-	-		2		-															V														

Analysis of SSR and Line Currents

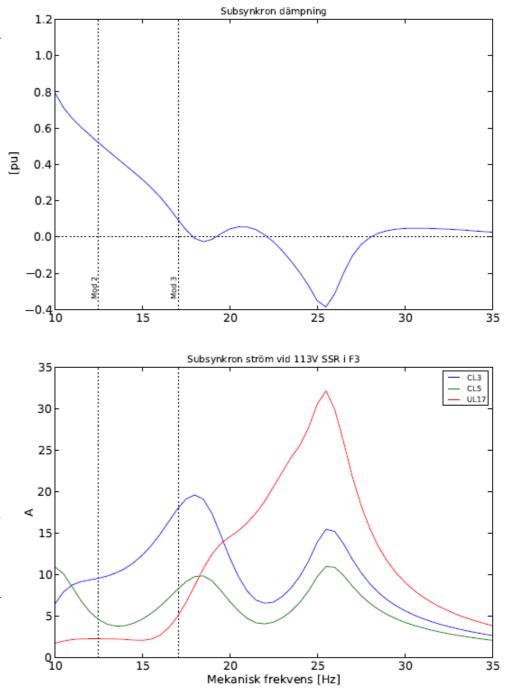

- > Analysis in PSSE
- > Frequency scanning: network model recalculated to studied frequency
- > Study of one selected generator. E.g. F3
- > Normal operations and several contingencies
- > Sub-synchronous damping and line currents are calculated

SSR damping as function of generator rating

> Damping becomes worse with increasing generator size

Results from SSR analysis 2015

In the following slides some results from an SSR-study are shown

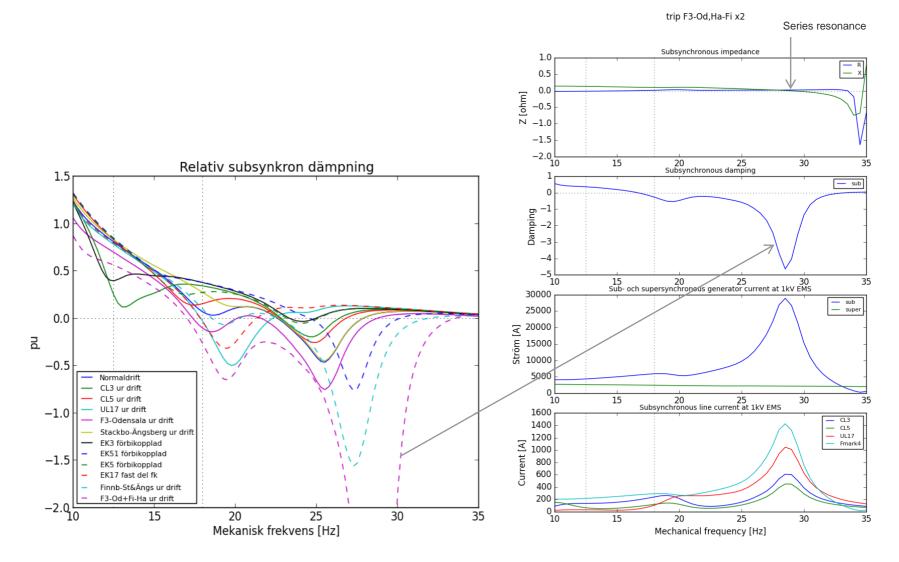

Results

Normal operation

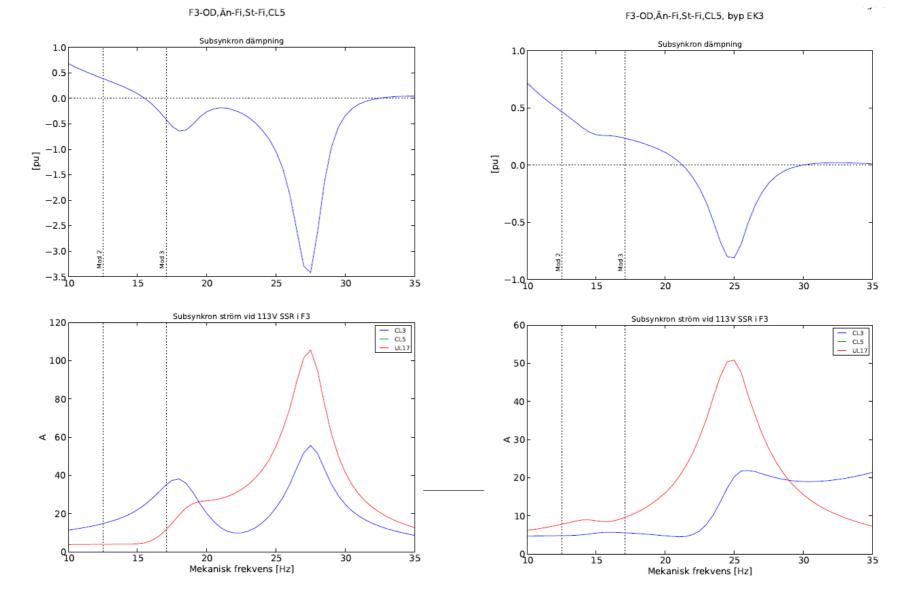
Scanning 10-35 Hz mechanical frequency (40-15 Hz electrical frequency)

Critical torsional frequencies at 12.5 and 17.1 Hz (indicated with dotted lines)

Resonance peak seen at 25.5 Hz

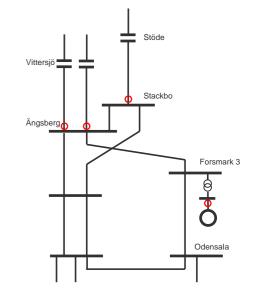

Network Switching Changes the Resonance

Normal operation


Subsynchronous impedance Subsynchronous impedance 0.12 0.12 ____ R — R 0.10 0.10 0.08 0.08 Z [ohm] 0.06 Z [ohm] 0.06 0.04 0.04 0.02 0.02 0.00 0.00 -0.02 -0.02 -0.04 L 10 -0.04 L 10 15 20 25 Subsynchronous damping 30 35 15 20 25 Subsynchronous damping 30 35 0.8 1.0 - sub _____ sub 0.8 0.6 0.6 0.4 0.4 Damping Damping 0.2 0.2 0.0 -0.2 0.0 -0.4 -0.2-0.6 -0.8 -0.415 20 25 30 Sub- och supersynchronous generator current at 1kV EMS 15 20 25 30 Sub- och supersynchronous generator current at 1kV EMS 10 35 10 35 12000 12000 10000 10000 Ström [A] Ström [A] 8000 8000 _____sub _____super _____sub _____super 6000 6000 4000 4000 2000 L 10 2000 15 20 25 Subsynchronous line current at 1kV EMS 20 25 Subsynchronous line current at 1kV EMS 30 35 **1**0 15 30 35 600 600 500 500 ₹ 400 ₹ 400 CL3 - CL3 Current [200 Current — CL5 — CL5 300 — UL17 — UL17 Fmark4 Fmark4 200 100 100 0 ⊨ 10 0 ⊨ 10 15 20 25 15 20 25 30 35 30 35 Mechanical frequency [Hz] Mechanical frequency [Hz]

bypass EK51

Example of Contingency Analysis


Critical Contingency, Before and After Bypass of EK3

Philosophy of Protection

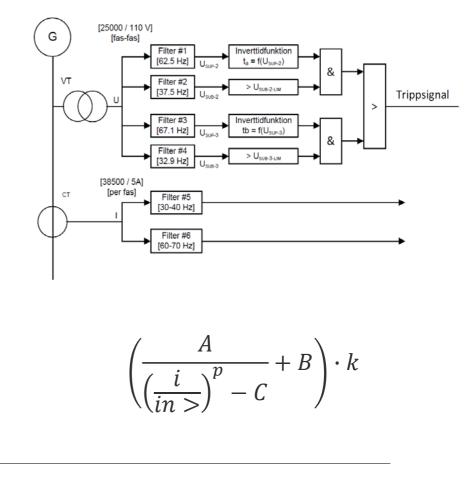
New SSR-protection developed by ABB.

Backup-protection is installed at F3.

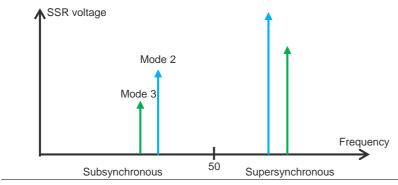
Primary protection is installed on critical lines in Stackbo/Ängsberg s/s.

Same principle as the old protection but line protection moved from series capacitor station to south end of the line.

Today, there is no communication between primary and secondary protection.



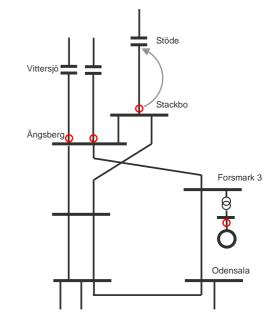
Secondary Protection in Forsmark 3


Measures **super-synchronous voltage** with two narrow band-pass filters. The old protection measured sub-synchronous current.

Protection setting depends on allowed torsional torques for most critical axis.

Invert time characteristic with high exponent.

Primary Protection for Lines


Installed at Stackbo/Ängsberg s/s on lines CL3, CL5 and UL17

Measures **sub-synchronous current** with narrow band-pass filters.

Setting based on SSR studies and actual setting of back-up protection in Forsmark 3.

Selective setting: Primary protection shall act before back-up protection.

Primary protection sends bypass order to series capacitor station.

Setting for Line Protection

Study summer 2015 for calculation of setting values.

Invert time characteristic:

$$\left(\frac{A}{\left(\frac{i}{in}\right)^p}\right) \cdot k$$

Start values, i_n , in the region of 10-20 A

Summary

- > Torsional interactions may occur for large synchronous turbo-generators connected close to series compensated lines.
- > An SSR event may damage a shaft in the generator.
- > Mode shape and endurance data will give input to accepted torsional oscillations.
- > Network study can be made separate, and D_1 compared with D_r .
- > SSR currents and voltages are small compared to synchronous U and I.
- > Protection available for generators and lines.
- > Tuning of protection is complex!

