Torsional Vibration Measurement and Model Based Monitoring of Power Trains

Energiforsk Seminar: Vibrations in nuclear applications Stockholm

E. Knopf, M. Golebiowski, T. Krüger 4 October 2016

Problem statement

#poweringeveryone

GE Company Proprietary & Confidential GE © 2016 – All Rights Reserved

Rotordynamic Characteristics

111 1<mark>- 200</mark>01111 - 11 - 11 - 11

Lateral dynamics

- 90 % focus in rotordynamics
- High damping (journal bearings)
- Vibration limits defined in ISO standards
- Measured with standard instrumentation
- Included in monitoring and protection in all shaft trains

Assessment

Critical speeds, stability, unbalance response, ...

(FE)

GE Company Proprietary & Confidential GE © 2016 – All Rights Reserved

Torsional dynamics

Rotordynamic Characteristics

H 3 - C 🕰 (3 H) - - - -

Lateral dynamics

- 90 % focus in rotordynamics
- High damping (journal bearings)
- Vibration limits defined in ISO standards
- Measured with standard instrumentation
- Included in monitoring and protection in all shaft trains

Assessment

Critical speeds, stability, unbalance response, ...

Torsional dynamics

 Rotational oscillations of rotor sections

- Low damping (material only)
- Excitation: grid electromechanical interaction
- No standards about vibration limits
- No standard instrumentation
- No monitoring/protection

Assessment

Eigenfrequency separation margins, shaft stresses and torques, ...

Typical OEM torsional assessment and criteria

State Sector

Considered load cases

- steady state grid excitation
- electrical fault cases:
 - short circuits
 - out-of-phase synchronisation

Criteria

- eigenfrequency separation margin
- assessment of shaft stress vs. limit stress

Validity / Accuracy excellence

• model quality and design criteria heavily rely on OEM knowledge

- \rightarrow rotor-blade-interaction
- \rightarrow generator model
- testing and validating
- leverage fleet experience

New market situation may add additional boundary conditions.

Situation

- Interaction with the grid can lead to excitation of Subsynchronous Torsional Resonances (SSR)
- SSR is a well known phenomenon but with increasing importance → HVDC lines , share of renewables
- Today's mitigation measures are on the grid side.
- Excitation frequencies depend on: grid topology, operation and potential future installations
- → Wider range of grid-related excitation mechanisms
- Robustness against excitation of SSR is not achievable on shaft train design level alone

Estimation of impact on shaft trains not possible with standard instrumentation

Solution: Model Based Monitoring

#poweringeveryone

GE Company Proprietary & Confidential GE © 2016 – All Rights Reserved

Model Based Monitoring Principle

- Excitation of torsional vibration needs to be estimated on shaft train level
- Most loaded sections linked to torsional mode shapes
 → frequency dependent
- OEM rotordynamic models suitable to estimate torques & stresses along the shaft

Model Based Monitoring to estimate shaft stresses

Model Based Torsional Vibration Monitoring **Input:** Normalised harmonic torque ┼┊<mark>┊╶╗╧╕╴╖╶╴┊╕╖┊┽╸</mark>┥┱╼┑╸┟╼╍┑╸┥╸┥╸┥╸┼╸┼╸┍╸╸╸┥╸┍╸╸┝╸┥╸╴╸ for all significe ubstructures Deflection shape at resonance Utilisation Torque

Best suited for long time monitoring: robust & reliable. An accurate and validated model is a prerequisite \rightarrow OEM

frequency / Hz

Single sensor position sufficient to monitor the shaft train. An accurate and validated model is a prerequisite \rightarrow OEM

Last stage blade modes identified in off-grid conditions.

Opportunities

- Insight into torsional vibration state

 → transparency of plant condition
 → long term monitoring
- Support targeted maintenance
- Real-time protection against abnormal excitation in offdesign conditions (severe SSTI)
- Localization and quantification of faults

Availability of plant ... Insight ... Long term monitoring

GE – Requirements and Offering

- Sensor position defined according rotordynamic model
- Sensor selection: typically existing speed sensors can be used

- Stress prediction according to rotordynamic model
- Demonstrated resolution $\Delta \phi = 0.0001 \text{ mrad}$ (= 0.025 um on 500 mm shaft diameter, 50 Hz speed)
- Measurement & signal processing hardware available

GE – Requirements and Offering

• Integration to GE Predix launched

www.ge.com/digital/predix

The Industrial Internet: Digital Transformation Starts Here

As the world's first industrial operation system, Predix powers the modern digital industrial businesses that drive the global economy. Predix-based applications are connecting industrial assets, collecting, and analyzing data and delivering realtime insights for optimizing industrial infrastructure and operations, including GE and non-GE assets. Learn more.

GE Company Proprietary GE © 2016 – All Rights Reserved

Operational Experience

#poweringeveryone

GE Company Proprietary & Confidential GE © 2016 – All Rights Reserved

Power Plant Birr - Switzerland

- Converter operated generator in the >350MW class
- Model based torsional measurement fully integrated in shaft protection logic
- > 6 month operational experience, no issues

Torsional Vibration Measurement

Validation of torsional eigenfrequencies and mode shapes in a wide frequency range on **rotor level**

Encoder based Torsional Vibration Measurement

Validation of rotordynamic models

Typical deviation in eigenfrequencies: 1.5 %

GE Company Proprietary GE © 2016 – All Rights Reserved

Integration in protection logic – online

Real-time monitoring

Frequency dependent vibration limits (up to 1000 Hz) including stress limits of \rightarrow GT blades \rightarrow rotor \rightarrow main fan and \rightarrow retaining ring generator

Full integration in shaft train protection

Postprocessing capabilities

Identification and tracking of modes \rightarrow long term condition monitoring

GE Company Proprietary GE © 2016 – All Rights Reserved

GE – Offering

- Best-in-class data acquisition hardware
- OEM know how and in depth knowledge of shaft train dynamics
- Unique knowledge of component-specific stress
 margins
- Online monitoring capabilities
- Operational experience

