Contents

• Introduction, FS Dynamics
• Introduction, ”Pipe vibration – analysis and mitigation” project
• Workflow for the analysis and mitigation of pipe vibrations
• Pipe vibration analysis methods
• Classification of pipe vibration problems occurred
• Pipe vibration mitigation
• Evaluation of the mitigation methods
• Conclusions
• Future work
Introduction

FS Dynamics
FS Dynamics’ Organisation

- Founded in January 2004 in Sweden
- Head Office in Gothenburg
- 8 Local offices, 6 countries
- Corporation + 6 daughter companies
 - FS Dynamics Denmark founded in 2009
 - FS Dynamics Finland founded in 2010
 - FS Dynamics Norway founded in 2013
 - FS Dynamics Portugal founded in 2016
 - FS Dynamics UK founded in 2016
- 3 competence based departments
- 170 co-workers, 33 in Finland
The FS Dynamics Concept

- Focus on CAE only
 - FEM, CFD, MBS
- Multiple Industries
- In-house & On-site services
- Collaboration & Learning
- Excellent engineers
- Long-term relations

Business infrastructure

- Full In-house CAE – environment
- ISO 9001:2000 Certified
- Partnerships with major clients & Satellite setups available
Introduction

"Pipe vibration – analysis and mitigation” project
Background

• Elforsk/Energiforsk project in 2014 – 2015:
 • “Pipe vibrations – Analysis and Mitigation”

• The objective was to:
 • Assemble knowledge and experience in the area of pipe vibrations problems
 • Obtain information of how they were examined and mitigated.

• The nuclear power plants participating in the project were:
 • Oskarshamn
 • Ringhals
 • Forsmark
 • Olkiluoto
Motivation: Example of losses due to unplanned unavailability

Source: IAEA Operating Experience with Nuclear Power Stations in Member States 2016 edition

Pipe and valve vibrations
Conducting the work

• Obtaining and investigating reports from the participating nuclear power plants

• Visiting the sites and interviewing the staff.

• Obtaining and investigating additional documentation as agreed in the interview meetings.

• Analyzing and grouping the pipe vibration problems and mitigation methods.
Workflow for the analysis and mitigation of pipe vibrations
Different workflows

• Existing vibrations
 • Vibrations that have already been observed or are suspected to exist at the plant
 • The emphasis in the analysis is often in measurements of the existing system

• Potential future vibrations
 • Vibrations which do not exist or are at low levels
 • There is a suspicion that vibrations might arise, e.g. due to:
 • Power uprate
 • Component replacement
 • Typical analysis methods are simulations or physical model tests.
Typical workflow, existing vibrations

1. Finding a vibration problem
2. Measuring the vibrations
3. Analyzing and interpreting the vibration measurements
4. Decision of the mitigation project
5. Vibration and root cause analysis
6. Brainstorming ideas for mitigations
7. Analyzing potential mitigations
8. Deciding the mitigation
9. Planning and implementing the mitigation
10. Measurements after mitigation
11. No (further) mitigations are needed

Immediate actions, if needed

Continuous or regular monitoring for vibrations
Typical workflow, uprate or replacement

1. Decision of a modification
2. Mapping of potential pipe vibration problems after the modification
3. Measurements before the modification
4. Analysis of expected vibrations after the modification
5. Designing components for the modification
6. Implementing the modification
7. Measurements after the modification
Pipe vibration analysis methods
Analysis methods

• Can be divided into two main categories:
 • Measurements
 • Calculation methods

• Often measurements and calculation methods complement each other
Calculation methods

• Different process conditions and mitigation solutions can be tested without restrictions

• Relevant variables can be investigated at any location

• Different calculation methods include:
 • Spreadsheet calculations
 • Structural simulations (FEM)
 • Fluid dynamics simulations (CFD)
 • Thermohydraulic simulations
 • Acoustic simulations
Measurement methods

• Will be covered in the next presentation in the agenda
Classification of pipe vibration problems occurred
Classification

• Two different kinds of classification are used for the problems based on
 • Location
 • Physics

• Different classes of these two categories were created

• The mapping between problems and classes is not one-to-one
 • Many of the problems belong to several classes
Classification based on location

• Pipe vibrations related to valves
• Main steam line vibrations (not valve related)
• Pump induced vibrations
• Other vibrations
Classification based on physics

- Flow induced vibrations
- Acoustic resonances
- Water hammer
- Structural resonance
- Flexible piping
- Multiphase mixture
- Other vibrations
Classification of occurred problems

<table>
<thead>
<tr>
<th>Problem</th>
<th>Location</th>
<th>Physics</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oskarshamn 3: Steam dryer</td>
<td>A.1.</td>
<td>x</td>
</tr>
<tr>
<td>Oskarshamn 3: Main steamline vibrations after extended power uprate</td>
<td>A.2.</td>
<td>x</td>
</tr>
<tr>
<td>Oskarshamn 3: Main steam isolation valves</td>
<td>A.3.</td>
<td>x x</td>
</tr>
<tr>
<td>Oskarshamn 1: Steam and condensate lines</td>
<td>A.4.</td>
<td>x x</td>
</tr>
<tr>
<td>Oskarshamn 1: Cooling system for RPV top</td>
<td>A.5.</td>
<td>x</td>
</tr>
<tr>
<td>Forsmark 1/2: Control valves in the 314 system</td>
<td>A.6.</td>
<td>x x</td>
</tr>
<tr>
<td>Forsmark 2: High pressure turbine valves</td>
<td>A.7.</td>
<td>x</td>
</tr>
<tr>
<td>Forsmark 3: Steam dryer</td>
<td>A.8.</td>
<td>x x</td>
</tr>
<tr>
<td>Forsmark 3: Condensate water system</td>
<td>A.9.</td>
<td>x x</td>
</tr>
<tr>
<td>Forsmark 3: Steam lines from reactor to turbines</td>
<td>A.10.</td>
<td>x</td>
</tr>
<tr>
<td>Forsmark 1/2/3: Oil pipe vibrations excited by gear oil pumps</td>
<td>A.11.</td>
<td>x x</td>
</tr>
<tr>
<td>Forsmark: Other pumps</td>
<td>A.12.</td>
<td>x</td>
</tr>
<tr>
<td>Ringhals 3: Main steam lines</td>
<td>A.13.</td>
<td>x x</td>
</tr>
<tr>
<td>Ringhals 3: Piping between high pressure turbine and the reheaters</td>
<td>A.14.</td>
<td>x</td>
</tr>
<tr>
<td>Ringhals 2: Main condensation system</td>
<td>A.15.</td>
<td>x</td>
</tr>
<tr>
<td>Ringhals 1: Emergency core cooling system</td>
<td>A.16.</td>
<td>x</td>
</tr>
<tr>
<td>Olkiluoto 1/2: Coolant piping of the generator stator circuit</td>
<td>A.17.</td>
<td>x x x</td>
</tr>
<tr>
<td>Olkiluoto 1/2: Main steam lines</td>
<td>A.18.</td>
<td>x x x</td>
</tr>
<tr>
<td>Olkiluoto 1/2: Auxiliary feed water system</td>
<td>A.19.</td>
<td>x</td>
</tr>
<tr>
<td>Olkiluoto 1/2: System 351</td>
<td>A.20.</td>
<td>x x</td>
</tr>
<tr>
<td>Olkiluoto 1/2: Fire water pump</td>
<td>A.21.</td>
<td>x x</td>
</tr>
</tbody>
</table>
Pipe vibration mitigation
Classification of mitigation methods

• The mitigation methods were divided into two main categories:
 • Methods that aim to reduce excitation for vibrations
 • Methods that aim to reduce vibration response
Mitigation reducing excitations

- Improved fluid dynamic design
- Reduced gas/liquid interaction
 - Dissolved air
 - Condensation/vaporization cycles
- Expansion chamber
- Replacing a component
- Avoiding certain operating conditions
- Other possible mitigation methods (not used in the studied cases):
 - Reducing excitation from a pump
 - Modified system to reduce acoustic resonances
 - Frequency converters
Mitigation reducing response

• Vibration dampers
• Added weight
• Added supporting
• Building valves together
• Hydraulic hoses

• Other mitigations:
 • Changing pump rubber feet and foundation
 • Steel wool dampers
 • Welding stiffener in the foundation
 • Stiffening pipes to the wall
 • Wood bars to support the piping
 • Motion limiters
Applied and considered mitigations (excitation)

<table>
<thead>
<tr>
<th>Mitigation</th>
<th>Flow induced vibrations</th>
<th>Acoustic resonances</th>
<th>Water hammer</th>
<th>Structural resonances</th>
<th>Flexible Piping</th>
<th>Multiphase mixture</th>
<th>Other vibrations</th>
</tr>
</thead>
<tbody>
<tr>
<td>Improved fluid dynamic design</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>A.1.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>A.13.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>A.8.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Replacing a component</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>A.21.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Reduced gas/liquid interaction</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(A.16.)</td>
<td>(A.16.)</td>
<td>(A.4.)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(A.19.)</td>
<td></td>
<td>(A.19.)</td>
</tr>
<tr>
<td>Avoid certain operation conditions</td>
<td></td>
<td></td>
<td></td>
<td>A.15.</td>
<td></td>
<td>A.17.</td>
<td>A.17.</td>
</tr>
<tr>
<td>Expansion chamber</td>
<td>A.11.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Reducing excitation from pump</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(A.17.)</td>
<td>(A.17.)</td>
<td>(A.17.)</td>
</tr>
<tr>
<td>Modified system to reduce acoustic resonances</td>
<td>(A.19.)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(A.19.)</td>
</tr>
</tbody>
</table>
Applied and considered mitigations (response)

<table>
<thead>
<tr>
<th>Mitigation</th>
<th>Flow induced vibrations</th>
<th>Acoustic resonances</th>
<th>Water hammer</th>
<th>Structural resonances</th>
<th>Flexible Piping</th>
<th>Multiphase mixture</th>
<th>Other vibrations</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vibration dampers</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>A.11.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>A.15.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>A.4.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Added weight</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Added support</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Building valves together</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hydraulic hoses</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Mitigation for response

- Vibration dampers
- Added weight
- Added support
- Building valves together
- Hydraulic hoses

Evaluation of the mitigation methods
Evaluating mitigation

• Evaluation of a mitigation project consists of:
 • How much pipe vibrations have been reduced
 • What kind of problems have there been during the mitigation project
 • What kind of adverse effects has the mitigation caused
Problems and adverse effects

• Effect on RPV level measurement
• Increased valve opening times
• Accessibility and maintenance issues
• Increased pressure drop
• Attachment of the added weights
Success of reducing vibrations

Reducing excitations

- Improved fluid dynamic design
- Replacing a component
- Reduced gas/liquid interaction
- Avoid certain operation conditions
- Expansion chamber
- Reducing excitation from pump
- Modified system to reduce acoustic resonances

Reducing response

- Vibration dampers
- Added weight
- Added support
- Building valves together
- Hydraulic hoses

Number of occurrences

- Mitigation solved the problem
- Mitigation reduced vibrations, but caused other problems
- Mitigation reduced vibrations but significant vibrations still remained or other mitigations were needed
- Mitigation did not significantly reduce pipe vibrations
- Mitigation was not implemented
Conclusions
Conclusions

• Knowledge of pipe vibration analysis and mitigation methods is very valuable for ensuring the continuous and safe production at the nuclear power plants

• Pipe vibration problems occurred at the sites over the years cover a wide range
 • Several small problems that can be easily mitigated
 • But also larger problems which have required years of work
 • Severe problems are not frequent
 • But when they occur, the effect on unit operation is large
Conclusions

• Many similarities between the problems at different sites
• Problems were grouped according to location and physics
 • Problems belonging to the same groups typically had many similarities with each other
• The investigation showed that there have already been very large benefits from cooperation between the sites
 • Information from other sites has been used to avoid problems
 • Used components have been exchanged between sites
• Many of the problems are still rather unique
 • It is not always possible to reuse a previously successful mitigation method
Conclusions

• It is always preferable to take into account possibility of pipe vibrations before:
 • Power uprates
 • Major modifications

• Handling the vibrations before they exist is often easier than when they already have occurred

• The workflows for analysing and mitigating vibrations are different for existing and potential future vibrations

• It is preferable to analyse vibrations both with measurements and simulations
 • Measurements give more accurate information of the current status
 • Simulations provide more predictive information
Conclusions

- Mitigation methods were divided into two main categories, based on whether they target:
 - The excitation for the vibrations
 or
 - The vibration response
- The mitigation targeting the excitation was found to be on average more successful
- Often mitigation targeting on response is implemented first
 - These kind of mitigations are usually simpler to implement
 - They give time for planning and implementing final mitigation
Future work
Ongoing work

- M.Sc. thesis work ongoing
 - B.Sc. Mikko Merikoski: "Pipe vibrations and mitigation in power plants"
 - The previous work will be extended with:
 - Literature survey of pipe vibrations at other nuclear power plants worldwide
 - More quantitative information e.g. of the vibration levels in the problems studied in the previous work
Thank you!