

Task 3.1: Literature review on synergistic effects in polymer ageing & modelling possibilities

COMRADE workshop, SP Borås, 22.9.2016 Antti Paajanen

COMRADE Task 3.1

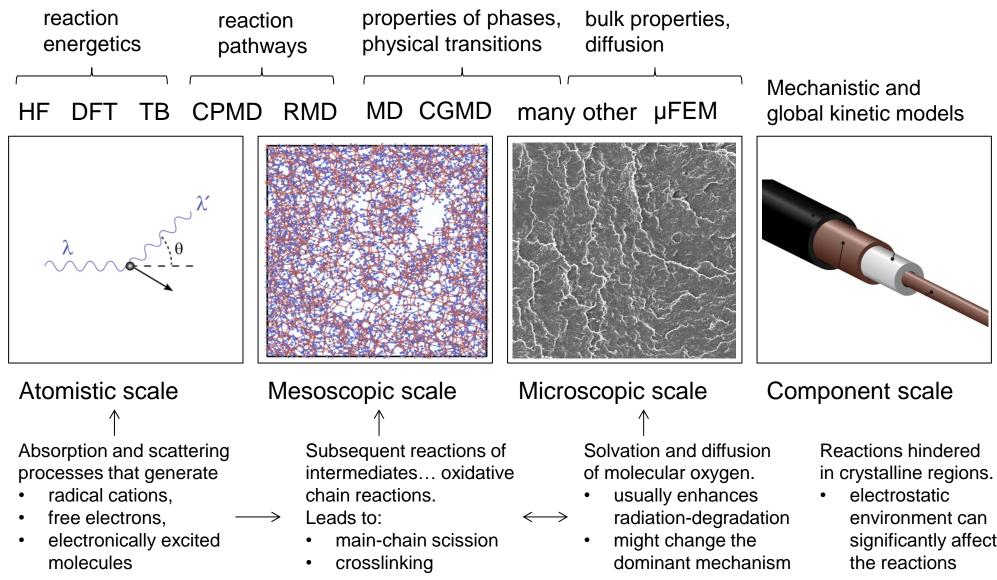
Goals:

Combined effects higher than the individual effects applied separately...

- 1. to carry out a literature review on the synergistic effects of thermal and radiation ageing in polymeric materials
- 2. to identify modelling methods that could be applied to study these phenomena
- ...with the lifetime prediction of NPP components in mind.

A brief recap

- Pristine polymeric component:
 - amorphous or semicrystalline base polymer
 - fillers, plasticisers, stabilisers, antioxidants, pigments etc.
- Observed mechanical properties
 - molecular structure \rightarrow properties of component phases
 - microstructure + interfaces \rightarrow macroscopic properties
- Primary stressors in an NPP environment:
 - thermal motion


 - ionising radiation \vdash + (potentially) complicated couplings
 - molecular oxygen
- Long-time exposure results in changes in the molecular structure, which translates into degradation of mechanical properties
 - degradation behaviour depends strongly on the formulation

Lifetime prediction methods

- Semi-empirical methods that are based on simulating in-containment conditions by accelerated ageing tests
- Practical methods include:
 - Arrhenius relation
 - Power law extrapolation model
 - Superposition of time dependent data
 - Superposition of dose to equivalent damage data
- thermal aging
 radiation aging
 coupled effects of both
- Remarkably, most types of polymers can be addressed with this toolbox
- Underlying assumptions:
 - the degradation mechanism/pathway stays the same throughout the considered range of conditions
 - molecular collision probability increases at a constant rate with increasing temperature

Scales and processes of radiation ageing

Temperature-independent

Segment mobility increases towards higher temperatures

Same thing for O_2 diffusion

significantly affect

Temperature effects here as well