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Foreword 

Icing of wind turbine blades poses a great challenge for wind farms in cold climate. 
Some wind farms can suffer production losses of more than 10 % of the annual energy 
production. Knowledge of how the production is affected by icing is of great 
importance, especially since a large part of the planned wind farms in Sweden are 
located in the north. Post-construction production assessment, that is, estimating 
production and losses in operating wind farms, provide valuable insights in this 
question.  
 
The aim of the project “Assessment and optimization of the energy production of 
operational wind farms” is to develop methods for post-construction production 
assessment, and to identify ways to optimize wind power production in operating 
wind farms. The project has been divided in three parts: Part 1 - Post-construction 
production assessment, Part 2 - Use of remote sensing for performance optimization, 
and Part 3 – Quantification of icing losses. This report presents the results from Part 3.  
 
Methods for estimating production losses in operating wind farms developed in Part 1 
have been compared to existing models for estimating icing losses. The results can be 
used for optimizing the operation of existing wind farms, as well as facilitate the 
planning of new wind parks in cold climate.  
 
This project has been carried out by Kjeller Vindteknikk, with Sónia Liléo (May 2014-
June 2015) and Johan Hansson (from June 2015) as project leaders. Reference group has 
consisted of Johannes Derneryd (Stena Renewables) and Jenny Longworth (Vattenfall). 
The project has been a part of Energiforsks’ research program Vindforsk IV.  
 
Stockholm, July 2016 

 

Åsa Elmqvist  
Progam manager, Vindforsk IV 
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Sammanfattning 

Detta är den tredje rapporten i projektet “Assessment and optimization of 
the energy production of operational wind farms”. Undertiteln på rapporten 
är “Part 3: Quantification of icing losses”. 

Del 3 har fokus på förluster relaterade till nedisning av vindturbiner. En stor andel av 
de svenska vindkraftparkerna är byggda på platser som årligen berörs av is. 
Produktionsförluster på grund av nedisning kan på årlig basis uppgå till mer än 10 % 
för de mest utsatta vindparkerna; det är av yttersta vikt att ta hänsyn till detta i 
produktionsuppskattningar inför byggnation.  Issituationen i tre svenska vindparker 
studeras i projektet genom analys av observationer av produktion och vind 
tillsammans med information om driftstatus hos varje individuell turbin. 

Att identifiera när bladen på vindkraftverken är täckta med is är den första 
utmaningen. I det här projektet används en tröskeleffektkurva i kombination med 
information om turbinens status och lufttemperaturen. 

Förlustuppskattningar med hjälp av metoder som utvecklats i den första rapporten i 
projektet (Lindvall, Hansson, & Undheim, 2016) jämförs med modellerade förluster. 
Valet av metod är viktigt när det handlar om att uppskatta förluster på grund av is. 
Metoder som är beroende av att en eller flera turbiner i parken är fria från is, fungerar i 
allmänhet inte. Istället rekommenderas metoder baserade på vind, uppmätt eller 
modellerad, och uppmätt produktion. De modellerade förlusterna är baserade på en 
numerisk väderprognosmodell som använts i kombination med en modell för istillväxt. 
De observerade och modellerade förlusterna har god överensstämmelse. 

En viktig sak att ta hänsyn till när observerade och modellerade förluster jämförs är hur 
turbinerna styrs då is finns på bladen. Stora skillnader mellan observationer och 
modellresultat kan förekomma om inte hänsyn till turbinregleringen tas i modellen. 
Resultaten visar att isregleringsstrategier som inte är optimala kan orsaka onödigt stora 
förluster. 

Användning av nacellemonterad lidar väntas inte innebära några förbättringar när det 
gäller detektering av is på bladen eller i uppskattningen av förluster på grund av is. 

Operationella energiprognoser som tar hänsyn till is har validerats för de två 
vindparker som har högst isfrekvens. En jämförelse mellan prognoser som inte tar 
hänsyn till is och prognoser som tar hänsyn till is visar på en signifikant 
kvalitetsförbättring för den senare.  

En jämförelse mellan en nacellemonterad lidar och en nacellemonterad anemometer 
under perioder med och utan nedisning har gjorts. Installationen av lidarn har gjorts 
enligt gällande rekommendationer. Trots detta så finns det tecken som tyder på att 
anemometern påverkas något av lidarn. Jämförelsen är gjord på ett begränsat 
datamaterial och att osäkerheterna är stora. Fler mätkampanjer behövs för att bättre 
slutsatser skall kunna dras. 

.   
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Summary 

This is the third report of the project “Assessment and optimization of the 
energy production of operational wind farms”. The subtitle is “Part 3: 
Quantification of icing losses”.  

Part 3 treats the issue of icing loss estimates. A large number of the Swedish wind 
farms are built in cold climate sites which experience atmospheric icing. The 
production losses caused by icing are an essential part of the pre-construction 
production assessment, since icing losses can be larger than 10 % of the annual energy 
production for the most exposed sites. Production and wind measurement data along 
with information of the operative status from individual turbines (WTGs) of three 
Swedish wind farms (WFs) in operation are analyzed in order to study the icing 
situation in the WFs. 

To detect ice on the blades is the first challenge. A threshold power curve in 
combination with turbine status and temperature criteria are used in this project. This 
method has been found to be performing well in the literature.  

Methods for estimating losses of operational wind farms developed in the Part 1 report 
(Lindvall, Hansson, & Undheim, 2016) are compared with modelled icing losses. It is 
important to select an appropriate method when icing losses are estimated. Some 
methods rely on neighboring turbines, which most likely also are influenced by icing. 
Methods based on wind speed, measured or modelled, and measured power are 
appropriate for periods with icing.  The modelled losses are based on a numerical 
weather prediction (NWP) model that is used in combination with an ice accretion 
model. It is seen that the operational losses and modelled losses in general are in good 
agreement. 

One important thing worth noting is that when icing losses are assessed in operational 
data and compared to model results, it is important to consider how the turbines are 
operated during periods with ice on the blades. There can be large discrepancies if the 
model results are not assuming the actual regulation strategy of the turbine. It is seen in 
the project that non-optimal regulating strategies can cause unnecessary large losses. 

The use of a nacelle mounted lidar is not expected to improve the detection of ice on 
the turbine or the estimation of losses due to icing. 

Operational short-term energy forecasts that accounts for icing are validated for the 
two wind farms that experience the largest amounts of icing. The forecast performance 
is significantly improved when icing is accounted for. 

A comparison between a nacelle mounted lidar and the nacelle anemometer during 
icing and non-icing period is made. The mounting procedure of the lidar used in this 
project seems to cause a small disturbance in the measurements made by the nacelle 
anemometer. The result from the comparison is based on a limited data material and 
the uncertainties are large. More measurement campaigns are necessary in order to 
further study this topic. 
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1 Introduction 

The need of accurate production estimates requires assessment methodologies that 
describe in a proper way the wind conditions and the wind farm performance at sites 
of diversified characteristics, with the most challenging ones being mountainous, 
forested and cold climate sites. Several national and international research and 
development projects have therefore been conducted during the last years aiming to 
develop tools and models to assess the energy production at such sites. The majority of 
these projects have however focused on the development of pre-construction 
assessment methodologies, that is, methodologies that are used to estimate the 
expected production of wind farms during the development phase of the wind farms. 

There has been a rapid increase in the installed wind power capacity in Sweden during 
the last decade. Many of the projects have been developed by small companies with 
little or no experience from the energy business. While traditional power plants have 
been closely monitored and performance optimized, wind turbines have more or less 
been left alone. They have of course been monitored in order to avoid longer stand 
stills and the manufacturers require regular maintenance. Apart from perhaps one or 
two exceptions, detailed analyses of production data in order to optimize the 
performance or to re-evaluate the long-term production have not been made. 

The existence of a large number of wind farms that have been in operation during 
several years gives however a new perspective to the development of assessment 
methodologies. Operational data from existing wind farms contain valuable 
information on the wind conditions, and on the performance of the turbines, under the 
site-specific conditions. The analysis of operational data is therefore a key tool for the 
identification of shortcomings on the existing pre-construction assessment 
methodologies, and for the further development of more accurate methods.  

Two other important applications of the analysis of production data from operational 
wind farms are the following: re-calculation of the wind farms expected energy 
production, so-called “post-construction assessment”; and the identification of 
potential optimization needs.  

The project “Assessment and optimization of the energy production of operational 
wind farms” consists of three work packages (WPs). The first work package is called 
“Post-construction production assessment”. Methods for long term adjustment of 
operational wind farm data are developed in WP1. The uncertainty in AEP estimations 
based on operational data is significantly reduced compared to AEP estimations based 
on pre-construction wind measurements. Methods used to assess losses in the 
operational data are also developed in WP1. The second work package is called “Use of 
remote sensing for performance optimization”. In WP2 the use of a nacelle mounted 
lidar (Wind Iris) for turbine performance optimization is evaluated. The yaw 
alignment, the power curve, and the nacelle transfer functions are studied during four 
measurement campaigns in two different wind farms. This report contains the results 
from work package three (WP3). 

WP3 treats the issue of icing loss estimation. A large number of the Swedish wind 
farms are built in cold climate sites which experience atmospheric icing. The 
production losses caused by icing are an essential part of the production assessment, 
since icing losses can be larger than 10 % of the annual energy production for the most 
exposed sites.  
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The objectives of WP3 are: 

1. Present a description of methodologies used to estimate the icing losses of 
operational wind farms. 

2. Present further developed tools to perform post-construction estimates of icing 
losses. 

3. Provide results from the comparison of the icing losses estimated based on 
operational data with the icing losses modeled using the IceLoss model. 

4. Report on the importance of the use of nacelle-mounted lidar measurements for the 
accuracy of the estimated icing losses. 

5. Present results of the further development of the IceLoss model (Chapter 4) that 
leads to higher accuracy in the modeled icing losses. 
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2 Input data 

2.1 WIND FARMS USED IN THE PROJECT 

Supervisory control and data acquisition (SCADA) data from three operational onshore 
wind farms have been used in WP3. They are, due to confidentiality aspects, only 
described in general terms.  

The first 6 months of operational SCADA data has been excluded from the analysis to 
avoid the startup phase of the wind farms to contribute with uncertainty. 

2.1.1 SCADA parameters 

The SCADA parameters used in the WP3 analysis are mainly the time stamp, average 
power, nacelle-anemometer (ultrasonic anemometers for all three wind farms) based 
upstream wind speed and alarm/operating state information. In addition RPM, yaw 
angle and temperature are used in some of the studies.  

The SCADA data is provided for each wind turbine and with a 10-minute temporal 
resolution. Also wind direction1 and ambient air temperature are available in the 
provided SCADA data. However, in terms of wind direction there was a substantial 
difference in the offset of the individual turbines nacelle positions and the offsets are in 
addition changing throughout the analyzed period. Wind direction from a long-term 
reference dataset (Section 2.2) is therefore used as the source for wind direction. The 
use of wind direction from a long-term reference dataset will introduce some 
additional uncertainty in the results compared to if correct on-site measurements 
would have been available. 

Air temperature data is also taken from the reference dataset, since we have no 
knowledge of the location of the temperature sensor; the heat from the nacelle can 
create a bias.  

In the provided SCADA data of the three wind farms, the level of detail regarding 
alarms/operating state varies substantially. The level of detail of alarm information of 
wind farm 1 (WF1) and wind farm 3 (WF3) enables a relatively precise filtering while 
less detail are provided for wind farm 2 (WF2), which results in a somewhat more 
conservative filtering. No external ice-detection equipment is available for any of the 
WFs in this analysis.  

2.1.2 Wind farm 1 

WF1 is located in a forested area with complex terrain experiencing rather long and 
harsh winters.  The turbine layout consists of five 2.0 MW turbines with hub height 80 
m and 12 2.0 MW turbines with hub height 105 m. The wind farm was built in two 
stages and only the complete park, 17 turbines, is considered in this report. The 
minimum distance between neighboring turbines varies from 3.5 to 10.8 rotor 
diameters with an average of 5.2 rotor diameters. 

                                                             
1 The turbine types are different in the two WFs and the SCADA parameters differ slightly. From two of 
the wind farms the directional data is from the turbine wind vane, from the other it is from the yaw 
system. 
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SCADA data for the period 2008-08-07 to 2015-01-07 was provided by the wind farm 
owner.  In the analysis SCADA data for the period 2009-03-01 to 2014-12-31 are used. A 
revision of the nacelle transfer functions (NTFs), relating the wind speed measured 
behind the rotor to the undisturbed wind speed up-wind of the rotor, was made during 
spring 2010. In terms of power curves, May 1, 2010 is therefore treated as a revision 
date. 

2.1.3 Wind farm 2 

WF2 is located in southern Sweden where the winters in general are short and mild. 
The terrain is rather simple and covered with production forest of varying height. WF2 
is composed of 11 2.5 MW turbines with a hub height of 98.5 m. It has been operational 
since 2012. The minimum distance between neighboring turbines varies from 3.9 to 4.7 
rotor diameters with an average of 4.1 rotor diameters. 

SCADA data for the period 2012-01-01 to 2014-12-31 was provided by the wind farm 
owner. Considering that a major upgrade to most of the WTGs’ power curve occurred 
in the beginning of the summer 2014 and that it is preferable to utilize full year of data 
to avoid seasonal bias, only data for the period 2012-06-01 to 2014-05-31 is considered 
in the analysis. In addition, the wind farm owner has provided us with information 
that the turbine manufacturer performed some changes to the operation in April 2013. 
In terms of power curves, April 1, 2013 is therefore treated as a revision date. 

2.1.4 Wind farm 3 

Wind farm 3 (WF3) is located in a forested area in northern Sweden with long and 
harsh winters. The terrain is considered to be complex. Icing is significant. The turbine 
layout consists of 40 1.8-2.0 MW turbines with hub height 95 m. SCADA data for the 
period 2010-12-01 – 2014-03-18 is used in the analysis. The minimum distance between 
neighboring turbines varies from 3.6 to 6.0 rotor diameters with an average of 4.4 rotor 
diameters. 

2.1.5 Filtering – identifying full-performance 

It is essential that erroneous data is removed from the data set so that the results are not 
affected. If data is removed only for specific wind situations (high/low) any statistics 
derived from the data set will not represent the true values for the period. Alarms 
related to high/low wind speeds can have this effect. Icing might also cause such effects 
depending on during which weather situations that icing occur. This will be site 
dependent. Some methods outlined in this report will not be suitable for data sets with 
large (seasonal) gaps. Periods when the turbines are not in full performance need to be 
filtered out before the data is used to evaluate the occurrence of icing.  

Production is considered as partial- or non-performing when any of the following 
apply: 

• Periods of curtailment, below the rated power. 
• Periods identified as influenced by icing. 
• An alarm code is found. No detailed information on the meaning of the error codes 

of WF2 was available. Through an analysis, an interval of operating states were 
identified to clearly be associated with full-performance, the remaining operating 
states were treated as partial- or non-performing and filtered out. The filtering of 
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WF2 is considered to be somewhat conservative. The time step after an alarm is 
also filtered out. 

• Periods when neither of the above applies and the nacelle wind speed is well above 
cut-in wind speed but production is negligible. 

2.2 LONG-TERM REFERENCE DATASETS 

Since wind speed and wind direction vary from year to year, the yearly energy 
production will also show considerable variation from a year to another. To get an 
expected energy production of the wind farm averaged over its lifetime, it is necessary 
to long-term correct the production data. There are many methodologies to carry out 
this long-term correction; but common for all methods is the need of a long-term 
reference dataset.  

The long-term time-series utilized in the present analysis origin from the dataset 
denoted as KVT Meso. The KVT Meso dataset is produced by Kjeller Vindteknikk 
using the Weather Research and Forecast model (WRF, Skamarock, et al., 2008), which 
is a mesoscale meteorological model used for both research and weather forecasting. 
The KVT Meso dataset uses FNL data (Final Global Data Assimilation System) 
available from the National Centers for Environmental Prediction (NCEP) as 
initialization and boundary data for the model. Table 2.1 summarizes the main 
properties of the KVT Meso dataset. More information is presented in Chapter 4. 

 
Table 2.1. Properties of the long-term dataset KVT Meso produced by Kjeller Vindteknikk. 

Long-term 
dataset 

Horizontal 
resolution 

Temporal 
resolution 

Temporal 
coverage 

KVT Meso 4 km x 4 km 1 hour 2000 – ongoing  

 

Long-term time series of hourly wind speed, wind direction, temperature and air 
density are available in the KVT Meso dataset. 

Several of the methods used to assess losses in the historical data (Lindvall, Hansson, & 
Undheim, 2016) utilize the raw SCADA data with 10 minute resolution. To avoid 
discarding 5/6 of the SCADA data, the hourly KVT Meso dataset (wind speed and wind 
direction) is linearly interpolated to 10 minute values. 
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3 Description of methodologies for estimation 
of icing losses in operational wind farms 

3.1 IDENTIFICATION OF ICING PERIODS IN OPERATIONAL DATA 

The first challenge, before it is possible to assess the losses, is to properly identify the 
periods when icing has influenced the energy production. Methods to calculate icing 
losses based on production data from other wind turbines of the same farm have to 
deal with the challenge of icing often occurring on all the turbines simultaneously. 
Trying to estimate the icing losses based on a comparison between summer and winter 
power curves is often an easy choice. However, turbulence, atmospheric stability, and 
air density may be substantially different during winter as compared to summer, which 
makes the power curve estimated based on summer data unable to represent the 
expected power during winter. 

Other methods assume that the variations around the power curve will equal out if 
averaged over a sufficient long period of time, and that possible deviations from this 
are caused by icing. This method can give reasonable estimates of icing on long-term 
basis, but fails when estimating the icing losses occurred during short time periods. 

Some methods use a threshold value on the power curve, and identify periods when 
the power production comes below this threshold value as periods with icing. 
However, since the power will fluctuate around a given power curve depending also 
on other parameters such as wind direction, atmospheric stability and turbulence, this 
methodology might not find all the cases when icing on the blades resulted on icing 
losses, and might, on the other hand, identify periods as being associated to icing losses 
although icing has not been a problem. In (Davis, Byrkjedal, Hahmann, Clausen, & 
Žagar, 2015) three methods for ice detection is described and evaluated. The method 
assessed to be best suited by (Davis, Byrkjedal, Hahmann, Clausen, & Žagar, 2015), a 
threshold power curve, is used in this report with only minor modifications. It is 
further described in Chapter 5. 

There are different ways to estimate the losses that have occurred in an operational 
wind farm based on production data. Six methods are described in (Lindvall, Hansson, 
& Undheim, 2016), not all are suitable for estimating icing losses. Read more about this 
in Chapter 5. 

3.2 DESCRIPTION OF METHODOLOGIES FOR ESTIMATION OF LONG-TERM ICING LOSSES 
OF OPERATIONAL WIND FARMS 

Long term icing losses are estimated with icing climatologies. The icing climatologies 
are representative for the expected lifetime of the wind farm. The icing losses derived 
from operational data are normally not representative for long-term conditions. 
However, they can be used to adjust the long-term conditions from pre-construction 
tools. This is done in Chapter 5. 

A brief overview of icing climatologies is found in Section 3.2.1. Additional information 
can be found in (Cattin, 2012), which is a survey of existing research in the field of icing 
on wind turbines and also includes an introduction to atmospheric icing. 
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3.2.1 Icing climatologies 

Icing climatologies can be more or less advanced depending on how they are derived. 
The best and most sophisticated icing climatologies are based on high quality on-site 
measurements of relevant variables made over long periods of time. One of the 
relevant variables is direct measurements of ice load. Such measurements are extremely 
rare. Advanced alternative methods consist of using Numerical Weather Prediction 
(NWP) models and ice accretion models while “simpler” ones are based on publicly 
available weather data from airports, national meteorological stations or on-site met 
mast measurements of wind, temperature and humidity.  

In (IEA, 2012) a methodology for site classification is presented. The method consists of 
investigating the frequency of  

• Meteorological icing: Period during which the meteorological conditions for ice 
accretion are favorable (active ice formation) 

• Instrumental icing: Period during which the ice remains at a structure and/or an 
instrument  

Based on the yearly frequency of occurrence of the two parameters, a rough estimate of 
the annual production loss can be made. 

A similar approach is proposed in (Beckford, Lindahl, & Ribeiro, 2015). The frequency 
of occurrence of ice on cup anemometers, ultrasonic anemometers and wind vanes 
have been analyzed for more than 60 met masts throughout Norway, Sweden and 
Finland. It is concluded that, for Sweden, there exist a linear relationship between the 
sensor elevation and the number of days with anemometer icing. The relationship was 
less clear in Norway and Finland. In combination with results from analyzing data 
from 18 operational wind farms in Sweden, a clear, but non-linear, relationship 
between the loss due to icing and the sensor/hub height elevation is found. 

Kjeller Vindteknikk has developed the IceLoss model, Chapter 4, in which data from a 
NWP model is used in combination with an ice accretion model. As input to the model 
either pre-construction on-site measurements or parameters derived from operational 
data can be used. The result is site specific long-term ice loss estimations. A comparison 
with operational data is found in Chapter 5. The IceLoss model is only considering the 
average turbine elevation in the wind farm. It is assumed that less icing on turbines on 
low elevation sites are compensated by more icing on turbines at high elevation sites. 
One of the objectives in this project is to identify limitations in the existing methods and 
suggest and implement improvements in the IceLoss model. Based on operational data, 
the icing losses in WF1 and WF3 are showing clear positive height dependence. Thus, to 
get a more physical sound distribution of the ice load for large and more complex wind 
farms the individual turbine elevation should be considered. The development of the 
IceLoss model is described in Chapter 4 and results are presented in Chapter 5. 

There are also examples of artificial neural networks in combination with mesoscale 
model data (Söderberg & Baltscheffsky, 2014), being used in estimating icing losses. 
The available methods can be used to estimate both long- and short-term icing losses. 

Within the project “Large scale, cost effective wind energy development in icing 
environments” 2 several methods are developed by different participants. Leading 

                                                             
2 The Swedish Energy Agency, D.nr.: 2009-001838, Project nr. 31464-2. Title: Large scale, cost effective 
wind energy development in icing environments 
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Edge Atmospheric have used surface observations, satellite images and NWP data to 
calculate icing rates and ice loads. The Swedish Meteorological and Hydrological 
Institute, SMHI, has within the project developed a method that is similar to the KVT 
IceLoss model, but based on other sources of NWP data. 

VTT Technical Research Centre of Finland has developed a model where NWP data is 
used as input to an icing model that can be used to create icing climatologies. The model 
also includes a module that can simulate the ice accretion on the individual blades. The 
aerodynamic properties of the iced blades can then be studied with CFD analysis. The 
performance of a wind turbine with different ice loads / ice conditions on the blades can 
then be studied using other modules (Turkia, Huttunen, & Wallenius, 2013). 

The simple methods, not involving NWP and ice accretion models are attractive due to 
its simplicity. However, they cannot describe condensation and precipitation processes 
and how icing is influenced by the regional topography. This is, at least to some degree, 
captured by the NWP models. Hence, the local effects are better described by the more 
advanced methods. 

3.3 DESCRIPTION OF METHODOLOGIES FOR ESTIMATION OF SHORT-TERM ICING LOSSES 
OF OPERATIONAL WIND FARMS 

Short-term estimations of the turbine ice load in a wind farm, icing forecasts, are made 
with NWP models. Typical forecast lead times are 24-48 hours. The icing forecasts are 
normally tuned with operational data from the wind farm. Real-time analysis of 
operational data, including detection of ice on the turbines, can also be used to improve 
the daily forecasts used in operational planning and energy trading. This is described 
in Chapter 6. 

A brief overview of icing forecasts is found in Section 3.3.1. Additional information can 
be found in (Cattin, 2012). 

3.3.1 Icing forecasts 

Useful icing forecasts, capable of capturing variations and changes during the forecast 
period, are made using NWP models. The NWP models provide basic weather forecast 
data which is used as input to an ice accretion model in order to simulate ice loads. The 
end result is an energy forecast for the next couple of days adjusted for losses due to 
atmospheric icing.  

The methodology is more or less identical to how NWP-based icing climatologies are 
made (Chapter 3.2.1) with the difference that icing climatologies use re-analysis data as 
input to the NWP model while (near) real time weather observations are, after post 
processing, used as input to the icing forecasts. 

Kjeller Vindteknikk is using the Weather Research & Forecasting (WRF) model as input 
to the IceLoss model (Chapter 4) to produce icing forecasts. An evaluation of the 
performance of the IceLoss model used for forecasts is described in Chapter 6. Chapter 
6 also includes results from development of the IceLoss model to include real-time 
operational data, aiming at improving the forecasts. 
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4 Description of the IceLoss model and 
developments made in this project 

This section gives a description of our setup of the WRF model (Chapter 4.1) and the 
calculations of icing (Chapter 4.2) which has been used in the analysis in this project. 
Chapter 4.3 gives a description of how production losses have been estimated and 
Chapter 4.4 describes how the forecasts have been generated. Finally, Chapter 4.5 
contains information about the developments made to the IceLoss model in this project. 

4.1 MESO-SCALE MODEL DATA 

The Weather Research and Forecast (WRF) model is a state-of-the-art meso-scale 
numerical weather prediction system, aiming at both operational forecasting and 
atmospheric research needs. A description of the modelling system can be found at the 
home page http://www.wrfmodel.org/. The model version used in this work is v3.2.1 
described in Skamarock et al. (2008). Details about the modelling structure, numerical 
routines and physical packages available can be found in for example Klemp, 
Skamarock, & Dudhia, 2000 and Michalakes, o.a., 2001. The development of the WRF-
model is supported by a strong scientific and administrative community in U.S.A. The 
number of users is large and it is growing rapidly. In addition the code is accessible for 
the public.  

The geographical input data is from National Oceanic and Atmospheric Administration 
(NOAA). The data includes topography, surface data, albedo and vegetation. These 
parameters have high influence for the wind speed in the layers close to the ground. 
Surface roughness and landuse have been updated from Lantmäteriets GSD database 
in Sweden and from the N50 series from Kartverket in Norway. 

The model setup used for this analysis is shown in Figure 4-1.  

 
Figure 4-1 Model setup for the simulations used. The simulations has been carried out with a horizontal 
resolution of 4 km x 4 km for the inner domain shown. 

 

http://www.wrfmodel.org/
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The area covered by 4 km x 4 km resolution is given as the inner domain in Figure 4-1. 
The outer domain has a resolution of 16 km x 16 km.  The meteorological boundary 
data used for this model setup originates from Final Global Data Assimilation System 
(FNL) available from the National Centres for Environmental Protection (NCEP) with 
6 hours interval. 

For the forecast simulations we have used the same model setup as used for the 
hindcast runs, shown in Figure 4-1. The boundary data used for the forecasting is from 
the GFS (Global Forecast System), available every six hours from NCEP (National 
Centers for Environmental Prediction). 

Both simulations are setup with 32 layers in the vertical with four layers in the lower 
200 m. We have used the Thompson microphysics scheme (Thompson, Rasmussen, & 
Manning, 2004) and the Yonsei University Scheme (Hong, Noh, & Dudhia, 2006) for 
boundary layer mixing. 

4.2 ICE LOAD CALCULATIONS 

According to the standard ISO 12494 icing has been calculated from 

 

VAw
dt

dM
⋅⋅⋅= 321 ααα  (1) 

 

Here dM/dt is the icing rate on a standard cylindrical icing collector (defined by ISO 
12494 as a cylinder of 1 m length and 30 mm diameter), w is the liquid water content 
(LWC), and A is the collision area of the exposed object. V is the wind speed and α1, α2 
and α3 are the collision efficiency, sticking efficiency and accretion efficiency, 
respectively.  

Periods of active meteorological icing is identified from the model data when the icing 
rate (dM/dt) exceeds 10 g/hour. The number of hours where active icing is identified is 
reported as “icing hours”. 10 g of ice on the standard cylindrical icing collector is 
equivalent to a 0.5 mm layer of ice on the cylinder.  

Accumulated over time  equation (1) gives M as the mass of ice on a standard 
cylindrical icing collector. Icing is calculated at a specific height equivalent to the 
elevation of the turbine hub. The ice will often be left over some time after the period 
with active icing, until it disappears through shedding processes including melting or 
sublimation. The time periods when ice is present on the cylinder, are defined as 
periods with instrumental icing. Wind measurements are typically influenced by icing 
during these periods. In these periods there will typically be ice on the blades of the 
wind turbines resulting in a reduced power production. We have defined the periods 
with instrumental icing as the periods when the ice mass, M, exceeds 10 g/m. 

There are several sources of uncertainty in the model data. The cloud processes are 
simplified and calculated by using parameterizations. Uncertainties therefore exist in 
the total amounts of cloud water available in the air masses, and in the distribution of 
cloud water vs. cloud ice in the air masses.  The model setup is using the Thompson 
Microphysical Scheme which is recommended for liquid water content calculations. 
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Uncertainties are also related to the vertical distribution of the moist air and choice of 
parameterization scheme for the boundary layer mixing processes.  

In the simulations the topography is represented by a grid, and does not reflect the real 
height of the mountain peaks. This means that the mountain tops in the model often are 
lower than in the real world. This discrepancy can lead to an underestimation of the 
icing amounts particularly for coarse model grids. The discrepancy in height is 
corrected for by lifting the air in the model to the correct terrain height. This lifting will 
contribute to lower the pressure and temperature in the air, and will lead to 
condensation in the cases when the air will reach the water vapor saturation pressure. 
The lifting is performed according to the vertical profile of temperature and moisture 
locally in the model. 

4.2.1 Removal of ice 

Ice melting is calculated by evaluating the energy balance model, given by 

 

Q = Qh + Qe + Qn, (2) 

 

where Qh and Qe are the sensible and latent heat fluxes. Qn is the net radiation term. 
There are also other terms in the total energy balance model, however they are 
assumed to be of negligible size in this context. A detailed description of the melting 
terms is given in (Harstveit, 2009). 

When Q becomes positive, melting will start. Often during melting episodes, the ice 
does not melt gradually away such as described by the energy balance model. When 
the melting is initialized the ice will fall off more quickly by shedding, particularly 
from a rotating blade. This ice shedding is a stochastic process which makes it difficult 
to estimate the time when all ice is removed. In this work no ice shedding is assumed in 
relation to melting of the ice. The melting process is found to happen quite quickly in 
the model. A shedding factor would further speed up the process. This implies that the 
ice load can be overestimated at some periods during melting. The melting process 
does however happen quite fast, so only shorter periods of time will be affected. 

Sublimation is a process for ice removal that is found to be important, in particular for 
dry inland sites where the temperature can stay below freezing for several months 
continuously during the winter. At such sites the accumulated ice will not melt. 
Sublimation is defined as the transfer of ice from solid state directly to water vapor. 
This will happen in situations with dry and cold air. The sublimation rate increases 
with wind speed when the ventilation of the iced object is high. This can allow for 
faster ice removal of a rotating turbine blade compared to a fixed object. The 
sublimation rate is calculated by evaluating the energy balance between outgoing long 
wave radiation and latent heat release from the sublimation process. Sublimation has 
been included in the icing calculations. During the process of sublimation we have 
observed (from web cam images) that the ice becomes brittle and that small pieces of 
ice continuously fall off the cylinder. This shedding is included by multiplying the 
sublimation rate with a factor of 2.5. 
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4.3 PRODUCTION LOSS ESTIMATE 

To estimate the production loss we assume that the energy production will continue 
with ice on the rotor blades. Ice on the blades will disrupt the aerodynamic structure of 
the blades which leads to a lower energy yield. The energy production follows the 
principle of a two parameter power curve as shown in Figure 4-2. The two parameter 
power curve was developed from the operational production data from several 
Swedish wind farms in the project “Large scale, cost effective wind energy 
development in icing environments” 3. Not all turbines continue to operate with ice on 
the blades.  If the turbines are stopped during icing, that must be considered in the loss 
estimation. The importance of considering the operational strategy is further discussed 
in chapter 5.3.1.  

 

Figure 4-2 Two-parameter power curve P(V,M), function of ice load and wind speed. 

4.4 FORECASTING OF POWER PRODUCTION AND ICING 

The modelled data for each wind farm have been statistically tuned toward observed 
nacelle wind speeds. We have calculated a set of transfer coefficients to relate the wind 
speed given by the WRF model to the nacelle anemometer for each of the turbines. 

Tuning coefficients for each of the wind farms have been generated and used for the 
forecasting of the energy production for individual turbines in each wind farm. The 
transfer coefficients are given as sector vise values for 12 direction sectors. In this way 
we are able to include wake effects in the wind farm in the WRF model data. By using 

                                                             
3 The Swedish Energy Agency, D.nr.: 2009-001838, Project nr. 31464-2. Title: Large scale, cost effective 
wind energy development in icing environments 
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individual power curves for each turbine we are able to give a power forecast for each 
turbine for clean blades. 

The icing rate (eq. 1) has been calculated for each forecast simulation. The IceLoss 
model requires, however, also ice load as an input. The forecasted ice load from the 
previous forecast run has thus been used as an initial condition, using the time step 
corresponding to the initial time step of the new forecast run. The production loss due 
to icing has been estimated in the forecast using the two parameter power curve 
described in Chapter 4.3. Developments of the methodology to use operational data to 
estimated the initial ice load in the wind farm is presented in Chapter 4.5. 

4.5 DEVELOPMENTS OF THE ICELOSS MODEL IN THIS PROJECT 

4.5.1 Height dependent calculations – IceLoss_elev 

The original IceLoss model is using the average turbine elevation in the calculations. It 
is assumed that less icing on turbines on low elevation locations are compensated by 
more icing on turbines at high elevation locations. The results in Chapter 5 show that 
this is a good assumption. However, for wind farms with a wide range of turbine 
elevations and when the distribution of turbine elevation is not symmetric around the 
mean it is expected that the assumption is less valid. A calculation that considers the 
individual turbine elevation is a first step towards the possibility to make more detailed 
evaluations of the distribution of ice within the windfarm. But, as presented in Chapter 
5.4.1, there are several factors that affect the icing within the wind farm that is still not 
considered in the IceLoss calculations.  

The development of IceLoss to consider the individual turbine elevations is quite 
straight-forward. The calculation of the atmospheric parameters relevant for icing, as 
described in Section 4.2 is made to the individual turbine elevation and hub height, 
instead of using the average turbine elevation with the average hub height. Hence, the 
physics in the model is not changed or developed.  

4.5.2 Initial ice loads in forecasts 

One major challenge in the forecasting of energy from a wind farm during the cold 
season is how to estimate losses due to ice. The ice load on the turbines in combination 
with wind speed is used in the two-parameter power curve, Figure 4-2, to get the 
production when there is ice on the blades. The initial ice load is based on the last 
forecast, Section 4.4. An improvement to this would be to use the actual ice-situation in 
the wind farm as initial ice load. This requires access to SCADA data in (near) real-
time. It should in general not be too difficult to arrange a technical platform, such as an 
ftp-server, where data could be shared between the wind farm owner and the forecast 
provider. 

The implementation should be rather straight forward, instead of looking for ice in the 
last forecast, the SCADA data is analyzed as described in section 5.1.1. Based on this, 
the turbines affected by ice can be identified. Using the produced power and the wind 
speed during the icing periods, the ice load can be estimated from the two-parameter 
power curve in Figure 4-2. First one must have a criterion for when the wind farm is 
said to be affected by icing. One suggestion is “Icing is said to affect the wind farm if at 
least 50 % of the 10-minute time steps during six hours before the forecast start time is 
flagged as ice for at least 50 % of the turbines”.  
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The ice load should then be set to 0 if no ice is detected in the wind farm, and the initial 
ice load in cases of ice in the wind farm should be adjusted based on the observations. 
The results of initial tests have not provided significant improvements in the forecasts. 
It seems to be rather difficult to determine the correct ice load based on the 
observations and. Since this is not in the core scope of the project, it is not developed 
further. Instead this is proposed for future work.  



 QUANTIFICATION OF ICING LOSSES IN WIND FARMS 
 

25 

 

 

 

5 Post-construction estimation of icing losses 

This chapter describes the methodology and the results when estimating the 
production loss due to icing based on measurements and modeled data. 

5.1 METHODOLOGY 

5.1.1 Operational data  

Median power curves have been calculated using the median power values for wind 
speed bins at every 0.5 m/s (Figure 5-1). Prior to calculating the median power curves, 
the following data are filtered out: 

• Data with an alarm code, along with the time step after the alarm occurred. 
• Data for periods with curtailed power output. 
• Data that may be affected by icing, WRF temperature < 3 ºC 4. 
• Occasions when the nacelle wind speed is more than two meters above cut-in and 

the power production is less than 5 kW.  

In addition, for each turbine, threshold power curves based on the 10-percentile power 
value in each wind speed bin are defined (Figure 5-1). When the power from the 
turbine is below the threshold power curve, the period is flagged to be affected by icing 
given that the operational codes also indicate normal operation and that the 
temperature from WRF is below 3 ºC. Only indications that are lasting more than 3 
consecutive time steps are considered to be icing events.  

Power curves for one year periods are calculated to avoid seasonal bias. It is also wise 
to not use too long periods since changes can be made to the turbines during the time 
of operation. The power curves are used to detect ice during their respective year. Tests 
have been made to make a second set of power curves after ice filtering. Now occasions 
with temperature below 3 ºC are included if they are not flagged to be affected by icing. 
This will include more winter data in the derivation of the median power curves. 
However, it is found that there only is a small difference compared to the original set of 
median power curves for the wind farms included in this project. The median power 
curves based on the filter settings above are used throughout the report if not stated 
otherwise. 

 

                                                             
4 The temperature used to define periods not affected by icing is from the KVT Meso dataset. The 
modeled temperature is used instead of temperatures measured by the turbine because we have no 
knowledge about the location of the temperature sensor; the heat from the nacelle can create a bias. 
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Figure 5-1: Observed wind speed versus power for one WF1 turbine for a 12-month period. Grey, red and blue 
points indicate all, valid and curtailed data, respectively. The amount of curtailed data is very small and 
disappear among the grey points. Black and gray line indicates median and 10th percentile power curve based 
on filtered (valid) data and with a velocity bin resolution of 0.5 m/s. 

 

The operational production loss due to icing is calculated as the aggregated difference 
between the actual production during periods flagged as icing periods and the 
expected production for the turbine with respect to the yearly production. 

The expected production is calculated using the methods PEP-PC1 and PEP-PC2. They 
are described in short below, more information can be found in (Lindvall, Hansson, & 
Undheim, 2016). The other PEP-methods described in (Lindvall, Hansson, & Undheim, 
2016) all require one or more turbines not affected by ice available as reference. This is 
rarely the case during icing conditions. 

Description of PEP-PC1 

The basis for this method is to define specific power curves for each WTG based on the 
nacelle wind measurements and the actual production for the periods when the WTG is 
in full performance. To estimate PEP for occasions when turbines are not running in 
full performance the measured nacelle wind speeds are applied to the derived power 
curves. 

Since the PEP-PC1 method relies on the wind speed measured at the nacelle it is 
important that the quality of the data can be assured, and that no unknown major 
revisions have been made to the nacelle transfer functions during the period 
investigated.  

In theory the derivation of specific power curves could be based on Wind Iris 
measurements instead of nacelle anemometer measurements. This would be highly 
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impractical since the Wind Iris would need to measure at many turbines for long 
periods of time in order to get a sufficient amount of data in order to derive the power 
curves. The lidar would also need to be installed at the turbine(s) during the period 
when losses are estimated. This is not realistic in a commercial project. 

Description of PEP-PC2 

In this method modeled WRF wind data and the actual production data for WTGs 
running in full performance is used to derive specific power curves for each WTG. 
Considering that the modeled wind speed is not influenced by wake effects, the specific 
power curves are derived with respect to the wind direction to account for wake 
effects.  

For periods when a WTG is identified not to be running in full performance the PEP is 
calculated by applying the modeled WRF wind speed and wind direction to the 
derived specific power curves of that WTG. 

5.1.2 Modeled data (IceLoss) 

The IceLoss model is presented in Chapter 4. Operational wind farm data is used as 
input to the IceLoss model. Wind speed and wind direction data is used to scale the 
model data. To account for differences in wake effects between different turbines, a set 
of transfer coefficients relating the wind speeds given by the numerical model WRF to 
the nacelle anemometer for each of the turbines are calculated. The transfer coefficients 
are given as sector-wise values for 12 direction sectors. The transfer coefficients are the 
slope and offset from a linear fit to the relation between observed and modeled wind 
speeds. 

The power curves from the same period as the transfer coefficients are calculated, 
Section 5.1.1. The power curves are not calculated sector-wise. It is seen that the 
difference between sector wise power curves and the power curves containing all data 
is small, see (Lindvall, Hansson, & Undheim, 2016) In the calculation of the power 
curves, the nacelle wind speeds have been adjusted for varying density according to 
(IEC 61400-12-1, 2005).  

There will be differences in the transfer coefficients due to the year-to-year variability 
of the wind. A sensitivity test is therefore performed using data from WF1. Transfer 
coefficients for all periods to the left in Table 5.1 are calculated. The IceLoss model is 
then run eight times, applying the different transfer coefficient – power curve pairs on 
WRF data from the period 2000 – 2014. The result is eight different calculations of hub 
height wind speed. The eight wind speeds differs rather much depending on whether 
the transfer coefficients are based on data from before or after the revision of the NTF 
(nacelle transfer function) mentioned in Section 2.1.2. However, the difference in 
estimated relative production loss due to ice is very small regardless if transfer 
coefficients and power curves from before or after the revision are used. Thus, the 
IceLoss calculation is robust with respect to erroneous nacelle anemometer 
measurements, as long as the used transfer coefficients and power curve are based on 
the same data set. This robustness is also indicating that the derivation of transfer 
coefficients and median power curves based on Wind Iris measurements instead of 
nacelle anemometer measurements would be of little benefit. The Wind Iris would also 
need to measure at many turbines for long periods of time in order to get a sufficient 
amount of data. This is not realistic in a commercial project. 
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For a fair comparison between the operational and modeled data it is important to 
carry out the same filtering for both datasets. Therefore, periods with invalid or 
missing operational data are also removed from the WRF dataset. In addition, all the 
periods when the operational power data has an alarm or curtailed power is filtered 
out from the WRF data. The power loss due to icing from the WRF model is the 
aggregated difference between the full production based on the modeled wind speeds 
and the modeled ice-reduced production described in Chapter 4 during the periods 
when no alarm or curtailment are identified as described above. 

5.2 RESULTS WF1 

For each of the 17 turbines, power curves representative over one year periods, as 
defined to the left in Table 5.1, have been calculated from the nacelle anemometer and 
power data. The calculated power curves from the individual turbines within a period 
are found to be similar. The NTF, describing how the wind measured by the 
anemometer on the nacelle is adjusted to represent the undisturbed wind speed ahead 
of the rotor, was revised during spring 2010. The calculated power curves before and 
after the revision differs. The revision is the reason for the partly overlapping periods 
in the beginning. To have a large enough data set to calculate the power curve from, 
one year periods are used. The same holds for the end of the period. We have tried to 
avoid splitting a winter season on different years, hence the periods break in the 
summer.  

Table 5.1. Periods when power curves are calculated are to the left. Periods when the power curves are used 
to identify icing are to the right. 

 
PC calculation period PC used on period 
2009-03-01 - 2010-02-28 2009-03-01 - 2009-06-30 
2009-05-01 - 2010-04-30 2009-07-01 - 2010-04-30 
2010-05-01 - 2011-04-30 2010-05-01 - 2010-06-30 
2010-07-01 - 2011-06-30 2010-07-01 - 2011-06-30 
2011-07-01 - 2012-06-30 2011-07-01 - 2012-06-30 
2012-07-01 - 2013-06-30 2012-07-01 - 2013-06-30 
2013-07-01 - 2014-06-30 2013-07-01 - 2014-06-30 
2013-10-01 - 2014-09-30 2014-07-01 - 2014-09-30 
 

5.2.1 Icing losses, period of operation 

Following the methodology described in Chapter 5.1, operational icing losses and 
IceLoss data have been estimated for the period July 2009 to June 2014. We have 
divided the period into winter years. A winter year is defined as the time period 
between July 1st and June 30th in order to avoid splitting up the winter season into two 
consecutive years. 

Figure 5-2 shows the calculated annual icing loss values for the operational data and 
from IceLoss. The relative values are given with respect to the expected energy 
production. The figures above the bars in Figure 5-2 are indexes that provide 
information about the production each year with respect to the average of all years 
(index 100). The index is based on the full dataset of PEP-PC2. As described in Section 
5.1, periods with operational alarm data have also been filtered out from the WRF data 
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to make a fairer comparison between the measurements and the model. The period 
2011-07-01 – 2012-06-30 is used to derive the power curves and transfer coefficients for 
the IceLoss model. As mentioned, the difference between individual years is small and 
either of the periods could have been chosen, producing similar results. Results both 
from the original IceLoss and IceLoss_elev (described in Chapter 4.5.1) are shown in 
Figure 5-2. The difference between the two versions of the model is small. This is a 
good indication of that the assumption used in the original model setup, less icing on 
turbines on low elevation locations are compensated by more icing on turbines at high 
elevation locations, is valid and working. Larger differences between the model 
versions are expected for wind farms where the range in turbine elevation is larger and 
where the distribution of the turbine elevations is not symmetric around the mean. The 
version with individual calculations will also provide a possibility to investigate the 
distribution of icing within the wind farm.  

It must be noted that the nacelle anemometers, used in PEP-PC1, are scaled to represent 
the upstream wind velocity. These scaling parameters will be valid when the turbine is 
in operation and producing power according to its power curve. Ice on the rotor will 
change the friction that the wind experiences. The rotational speed of the rotor might 
also be affected and this can cause the measured wind to be incorrectly scaled. Thus, 
PEP-PC1 might be less suitable for the estimation of icing events. PEP-PC2 might 
therefore provide a better estimation. According to (Lindvall, Hansson, & Undheim, 
2016) the bias is less for PEP-PC2 compared to PEP-PC1 while the mean absolute error 
is less for PEP-PC1 compared toPEP-PC2. Looking at averages over long periods of 
time, a low bias is preferred.  

The estimated total ice loss values both for the period 2009 to 2014 and for the average 
of all periods show good agreement between the operational and modeled data. 
However, the relative differences can be considered large for some years. It is for 
example close to 50 percent during the winter year 2011-2012, Figure 5-2. The IceLoss 
estimations are in general showing the highest losses. The IceLoss model indicates that 
for WF1 the five winter seasons covered by operational data experienced larger losses 
due to icing than normal. The normal values are based on model results from the 
period 2000-2014. Given that the operation strategy to icing will remain unchanged 
during the lifetime of the wind farm we have reason to believe that a smaller loss due 
to icing than experienced is expected. 
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Figure 5-2 The estimated energy loss due to icing for WF1, based on operational and modeled data. The figures 
above the bars are an index that provide information about the production each year with respect to the 
average of all years (index 100). The index is based on the full dataset of PEP-PC2. 

 

On turbine level we see, as expected, that higher turbine elevation gives a higher loss 
due to icing. The individual turbine loss versus height, based on operational data, is 
found in Figure 5-3 and we see clear positive linear trends for all years and the slopes 
of the linear trends are similar for all years. The losses are derived using PEP-PC1. The 
scatter is rather large for some of the years. The scatter reflects the uncertainty in the 
detection of icing in the operational data. Another possible factor contributing to the 
scatter is sheltering effects within the wind farm. Sheltering effects are studied for WF3 
in Chapter 5.3. 

In Figure 5-4 icing loss results from individual turbines based on the original IceLoss 
model is shown. The height dependence is less clear, this is not a complete surprise 
since models are simpler and smoother than the real world and therefore cannot 
capture all variations. The height dependence that is present in the model data is due to 
scaling of the model wind speed against the wind speed measured by the nacelle 
anemometers. The wind speed is linearly related to the calculated ice load and the fact 
that the wind speed is higher at higher elevations is causing the height dependence in 
the model. There is however one year when the icing losses seem to decrease with 
increasing elevation. The cause of this can be the scaling coefficients relating the model 
wind speed and the measured wind speed at the turbines (see the top in section 5.1.2). 
The coefficients depend on the data availability during the year, and lack of data and 
erroneous values that has managed to slip through the filters can be responsible for this 
behavior.  
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The results from IceLoss_elev, described in Chapter 4, are shown in Figure 5-5. All 
years are now showing positive height dependence, making it more physical sound, 
although the slopes are less than those found in operational data. 

 

 
Figure 5-3. The dots represent the yearly loss from individual turbines in WF1, based on PEP-PC1. A linear fit to 
the losses vs. height each year is included to highlight the trends.  
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Figure 5-4. The dots represent the yearly loss from individual turbines in WF1, based on the IceLoss model run 
with median power curves and wind transfer coefficients based on operational data. The mean wind farm 
elevation and hub height is used in the calculations. A linear fit to the losses vs. height each year is included to 
highlight the trends. 
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Figure 5-5. The dots represent the yearly loss from individual turbines in WF1, based on the IceLoss model run 
with median power curves and wind transfer coefficients based on operational data. Individual turbine 
elevation and hub height is used in the calculations. A linear fit to the losses vs. height each year is included to 
highlight the trends. 

5.2.2 Time series comparison 

From the previous section it is clear that the IceLoss model is doing a good job 
estimating icing losses when looking at averages over several years. It is also 
interesting to compare time series of modelled ice load and the presence of ice in the 
SCADA data. Three examples are found in Figure 5-6, Figure 5-7 and Figure 5-8. It is 
seen that occasions when the model predicts large ice loads corresponds well with ice 
detected in the SCADA data. Figure 5-8 show periods when the model has no or only 
small ice loads while the majority of the turbines are classified as affected by ice based 
on the SCADA data. The data flagged as affected by ice in March 2013 for one turbine 
are shown with the median power curve and the threshold power curve used for 
detection of ice in Figure 5-9. It is seen that the majority of the data flagged as affected 
by ice is just below the threshold power curve. This means that the production loss is 
relatively small. It also indicates that the icing situations are weak and perhaps not 
always captured by the IceLoss model. There is of course also an uncertainty in the 
detection of icing in the SCADA contributing to the result. 

500 510 520 530 540 550
0

2

4

6

8

10

12

Hub height [m ASL]

Lo
ss

 d
ue

 to
 ic

e 
[%

]

IceLosselev

 

 

2009-07-01 - 2010-06-30
2010-07-01 - 2011-06-30
2011-07-01 - 2012-06-30
2012-07-01 - 2013-06-30
2013-07-01 - 2014-06-30



 QUANTIFICATION OF ICING LOSSES IN WIND FARMS 
 

34 

 

 

 

 
Figure 5-6. The blue line is showing the modelled ice load during part of January 2012. The lines are 
representing the turbines in WF1, separated vertically for readability. The red is indicating when ice is 
detected in the SCADA data. 

 
Figure 5-7. As Figure 5-6 but for a period in November-December 2012. 
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Figure 5-8. As Figure 5-6 but for a period in March 2013. 

 

 
Figure 5-9. Median power curve (P50), threshold power curve used for detection of ice (P10) and data flagged 
as iced during March 2013 for one turbine. 
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For each of the turbines, median power curves representative for one year periods, as 
defined to the left in Table 5.2, have been calculated from the nacelle anemometer and 
power data. See section 5.1 for more information about the methodology. A 
comparison of the power curves from the different turbines in each period show only 
small variations. 
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Table 5.2. Periods when power curves are calculated for WF2 are to the left. Periods when the power curves 
are used to identify icing are to the right. 

 
PC calculation period PC used on period 
2012-06-01 - 2013-03-31 2012-06-01 - 2013-03-31 
2013-04-01 - 2014-03-31 2013-04-01 - 2013-05-31 
2013-06-01 - 2014-05-31 2013-06-01 - 2014-05-31 
 

Power curves and wind transfer coefficients from the period 2013-06-01 – 2014-05-31 
are used in the PEP methods and in IceLoss. The yearly losses (winter years) are found 
in Figure 5-10. The relative values are given with respect to the expected energy 
production. The figures above the bars are an index that provides information about 
the production each year with respect to the average of all years (index 100). The index 
is based on the full dataset of PEP-PC2. The agreement between IceLoss and the PEP-
methods is poor, the reason for this is investigated in section 5.3.1. Results both from 
the original IceLoss and IceLoss_elev are also shown. The difference between the two 
IceLoss configurations is small, indicating that the assumption used in the original 
model setup, less icing on turbines on low elevation locations are compensated by more 
icing on turbines at high elevation locations, is valid and working. See also Chapter 4 
and Chapter 5.2.1. The IceLoss model indicates that for WF2 the two winter seasons 
covered by operational data experienced smaller losses due to icing than normal. The 
normal values are based on model results from the period 2000-2014. Given that the 
operation strategy with respect to icing will remain unchanged during the lifetime of 
the wind farm we have reason to believe that a larger loss due to icing than 
experienced is expected.  
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Figure 5-10. The estimated energy loss due to icing for WF2, based on operational and modeled data. The 
figures above the bars are an index that provide information about the production each year with respect to 
the average of all years (index 100). The index is based on the full dataset of PEP-PC2. 

5.3.1 Analysis of turbine behavior 

The agreement between the IceLoss model and the losses due to ice based on 
operational data is poor, Figure 5-10. The causes for the bad agreement between 
IceLoss and the operational data for WF2 can be related to 

1. Model uncertainties and model errors 

Numerical modeling is always associated with uncertainties; it is not possible to exactly 
describe the complex turbine-atmosphere system. There are also assumptions made in 
the IceLoss calculations that might not be valid for all wind farms. 

2. Errors in the ice detection filter routine 

Ice on the turbines is detected with a threshold power curve, the ambient temperature 
and information of the turbine state, see section 5.1.1. As mentioned in section 2.1.5, the 
information about the turbine state code is limited for WF2. It is therefore possible that 
state codes identified as valid when the turbine is in full performance has been 
erroneously defined. There is also an uncertainty in the threshold power curve that fall 
into this category. The turbine regulation strategy can also be responsible for errors in 
the ice detection filter routine, read more below. 

3. Turbine regulation strategy 

If the turbine is shut down or regulated during icing occasions in a way that is not 
considered in the IceLoss model, the loss will be underestimated by the model. The 
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observed losses due to icing from WF2 correspond well with modeled losses when it is 
assumed that the turbines are shut down when the modeled ice load is above 50 g/m. It 
is however not likely that the turbines actually are shut down/regulated during all such 
occasions since the regulation strategy can make data erroneously flagged as iced. This 
is most likely the case for WF2 since the filter routines also detects ice during the 
summer if the temperature constraint in the filter settings is disregarded. As described 
in section 5.1.1 ice is identified as occasions when the turbine is in a state identified as 
full performance, but with production less than the threshold power curve and with 
the requirement that the temperature is below 3ºC. Note that occasions with weak 
wind, below turbine cut-in, are disregarded in the detection of ice. One way to make 
the filters better could be to include more SCADA parameters as constraints. But if no 
details about how the turbine itself is detecting ice are known, it would still be difficult 
to actually know if it is ice or some other atmospheric/ambient conditions that is 
causing the turbine to regulate itself in a way that makes the power fall below the 
threshold power curve. High quality ice load measurements made with state-of-the-art 
instruments in the wind farm would be valuable in the investigation of the regulation 
strategy. The development of improved filters using ice load measurements is 
proposed for future work. It has been suggested by VTT Technical Research Centre of 
Finland Ltd that a lidar can be used to detect occasions with icing (Karlsson, Peltola, 
Antikainen, & Vignaroli, 2015). This is done by analyzing patterns in the backscatter 
signal from the lidar. This could be one way of increasing the knowledge about the 
specific turbine behavior during icing occasions. The VTT results are based on a ground 
mounted lidar. But the methodology might be applicable, with some modifications, 
also for nacelle mounted lidars. However, since the possibilities to validate the results 
based on only lidar and SCADA-data is limited it has not been investigated further. A 
validation would require ice measurements and preferably also information about the 
cloud base / type and real-time images from the site. 

It seems quite clear that the turbines in WF2 are not operated as normal with ice on the 
blades. The top panel of Figure 5-11 shows the rotor RPM vs. wind speed during 
periods with full performance and during periods when ice is detected. The figure is 
based on data from one turbine but is representative for all turbines in WF2. The icing 
periods are split up in two categories: when the turbine state is X and when the turbine 
state is everything but X. Full performance state code for WF2 is not a single number, 
but a range (remember that we require a full performance state to detect ice).  X is 
considered to be the normal state of the turbines. It is the dominating state making up 
the bulk of the data during icing events. X is also the most common code looking only 
at full performance episodes. The top panel in Figure 5-11 shows that the RPM seems to 
be curtailed to around 5 RMP for a large range of wind speeds. This is also confirmed 
by the histogram in the bottom panel of Figure 5-11 showing the distribution of the 
RPM during periods with full performance and during the two icing categories. The 5 
rpm class is over-represented in the icing periods. It is not completely clear that it is 
icing that is causing the curtailment, but since it is not present during full performance 
events, and dominating in the X-ice periods it is likely that the turbine is detecting 
some anomaly during icing events and regulates itself. The difference in regulation 
strategy between the turbines in WF2 and WF1 can be seen in Figure 5-12. For WF2 the 
power curve during a winter period with a high frequency of iced data, considering 
only state X episodes but no other filters, is rather narrow. When ice is detected, the 
power is close to 0. Hence, the production is either close to the median power curve or 
0. For WF1, where we know that the turbines are operated with ice on the blades, the 
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power curve during the winter is wider. For WF1 we use only data without any alarm 
code. No other filters are applied on the data. 

From this we can conclude that the assumption used in IceLoss, that the turbines 
continue to produce but with ice on the blades, is not valid for WF2.  

The loss due to icing for WF2 is larger than expected for this part of Sweden. The 
control strategy is questionable. For wind farms in operation it is recommended to 
evaluate the turbine control strategies at regular intervals. It is also recommended that 
turbine control strategies during icing are discussed with the turbine manufacturer 
before any purchase to avoid unnecessary losses. 

 

 
Figure 5-11. Top panel: Rotor RPM vs. wind speed for periods with full performance and during periods 
identified as affected by icing. The results are for one turbine. Read more about State X in the text. Bottom 
panel: The distribution of rotor RPM during full performance periods and during periods identified as affected 
by icing. 
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Figure 5-12. Examples of two different regulation strategies during the winter. Left: The WF2 turbines are shut 
down / regulated during icing events. The PC is close to the median power curve (narrow , red dots) during 
periods with normal operation while it is 0 during the regulation periods. All occasions with state X (read more 
in the text) during the period indicated in the figure title are shown in the plot. Right: The WF1 turbines are 
not regulated during icing events, instead they are operated with ice on the blades, making the PC broader. All 
occasions without any alarm is included in the plot, no other filters are applied on the data. 

5.4 RESULTS WF3 

Power curves used for ice detection are calculated for the periods in Table 5.3. For two 
of the turbines, the calculated power curves were unsuitable for ice detection. One 
possible cause for the failure to calculate a good looking power curve might be that the 
operating state from the turbine is set to “normal” even if it is not. However, no further 
analysis has been made to pin point the exact reasons for this. Instead an average of the 
other power curves for the same type of turbine has been used in the ice detection 
process for the two turbines.  This approach will be good if the two turbines perform 
similar to the other turbines of the same type. If not, the ice detection might not capture 
ice affected data or might flag too many observations as affected by ice. In this case it is 
seen that using the average power curve from the other turbines are causing an 
overestimation in the number of icing events detected. Since it is only two turbines out 
of 40, the overall result will not be significantly affected. In situations with less turbines 
it could however have a significant effect, and then the recommendation is to not use 
the turbines. 

Table 5.3. Periods when power curves are calculated for WF3 are to the left. Periods when the power curves 
are used to identify icing are to the right. 

 
PC calculation period PC used on period 
2010-12-01 - 2011-12-31 2010-12-01 - 2011-06-30 
2011-07-01 - 2012-06-30 2011-07-01 - 2012-06-30 
2012-07-01 - 2013-06-30 2012-07-01 - 2013-06-30 
2013-07-01 - 2014-03-18 2013-07-01 - 2014-03-18 
  

The power curve and wind transfer coefficients for the winter period 2013-10-01 – 2014-
03-18 are used in the PEP methods and in IceLoss. The yearly losses (winter years) are 
found in Figure 5-13. The index is based on the full dataset of PEP-PC2. There is good 
agreement between IceLoss and the PEP-methods. Results both from the original 
IceLoss and IceLoss_elev are shown. The IceLoss model indicates that for WF3 the four 
winter seasons covered by operational data experienced larger losses due to icing than 
normal. The normal values are based on model results from the period 2000-2014. 
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Given that the operation strategy to icing will remain unchanged during the lifetime of 
the wind farm we have reason to believe that a smaller loss due to icing than 
experienced is expected. 

 
Figure 5-13. The estimated energy loss due to icing for WF3, based on operational and modelled data. The 
figures above the bars are an index that provide information about the production each year with respect to 
the average of all years (index 100). The index is based on the full dataset of PEP-PC2. 

 

On turbine level we see, as expected, that higher turbine elevation gives a higher loss 
due to icing. The individual turbine loss versus height, based on operational data, is 
found in Figure 5-14 and we see clear positive linear trends for all years. The losses are 
derived using PEP-PC1. The slope of the fit to the individual turbine icing losses is not 
consistent between the individual years in Figure 5-14. The scatter is larger for the last 
two winters, showing similar slope. While the first two winters is having a rather 
different slope compared to the last years. Different climatic conditions and wind 
distributions during the different years could be responsible for this behavior. Possible 
sheltering effects, depending on the wind direction, will thus be different for different 
years. Sheltering is when turbines upstream in a wind farm will experience more icing 
than turbines downstream. More about sheltering effects in WF3 is found in Chapter 
5.4.1.  

In Figure 5-15 icing loss results from individual turbines based on the original IceLoss 
model, using the wind farm average elevation, is shown. The height dependence of the 
losses due to icing is negative for all the studied years. IceLoss_elev is making the slope 
more negative during one of the years, decreasing it for one year and making it positive 
for two years, Figure 5-16. The reason for the negative slopes is a combination of the 
uncertainty in deriving the wind transfer coefficients and the uncertainty in the WRF 
model. IceLoss_elev has also been run with estimated wind at the turbines from a pre-
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construction wind simulation made by the wind farm owner. The result is shown in 
Figure 5-17. Three of the years are showing similar, positive slopes, while one is still 
negative. The WAsP winds are of course associated with uncertainty, but they are 
consistent in the way that they, in this case, always are higher at higher elevation 
positions. Thus, using theoretical winds is showing that IceLoss_elev gives more 
physical sound descriptions of the distribution of icing within the wind farm. But there 
is still one period with a negative slope, 2010-12-01 – 2011-06-30. During the cold part of 
this period we see in the model data that there are occasions with drier air on higher 
model levels (used in calculations of ice loads for the turbines at high elevation 
positions) compared to the lower levels (used in calculations of ice loads for the 
turbines at low elevation positions). Through sublimation, this will reduce modeled ice 
load on the higher levels more than on the lower levels. Lower ice loads will lead to 
lower losses and this explains the negative slope. Factors contributing to the impact on 
the results are the length of the studied period and the frequency and duration of the 
icing events in combination with the moisture distribution in the model during the 
studied period. Low level moisture is a difficult parameter to forecast and further 
investigations should be made in this area in order to evaluate the performance of the 
IceLoss_elev model setup.  

 

 
Figure 5-14. The dots represent the yearly loss from individual turbines, based on PEP-PC1. A linear fit to the 
losses vs. height each year is included to highlight the trends. 
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Figure 5-15. The dots represent the yearly loss from individual turbines, based on the IceLoss model run with 
median power curves and wind transfer coefficients based on operational data. The mean wind farm elevation 
is used in the calculations. A linear fit to the losses vs. height each year is included to highlight the trends. 
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Figure 5-16. The dots represent the yearly loss from individual turbines, based on the IceLoss model run with 
median power curves and wind transfer coefficients based on operational data. Individual turbine elevation is 
used in the calculations. A linear fit to the losses vs. height each year is included to highlight the trends. 
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Figure 5-17. The dots represent the yearly loss from individual turbines, based on the IceLoss model run with 
wind at the turbine locations from the WAsP model. Individual turbine elevation is used in the calculations. A 
linear fit to the losses vs. height each year is included to highlight the trends. 

5.4.1 Investigation of sheltering effects in WF3 

Sheltering is when turbines upstream in a wind farm experience more icing than 
turbines downstream. Several effects are probably involved in the sheltering process. 

1. Vertical mixing induced by the rotor 

In-cloud icing is creating the most severe icing. When part of the rotor is below the 
cloud base, it will cause vertical mixing of drier air from below the cloud base into the 
cloud. This will reduce the super-saturation in the cloud and due to this the efficiency 
of the icing experienced by the turbines downstream in the wind farm.  

2. Ice accretion on the rotor 

The super-cooled water droplets are freezing on the turbine blades, reducing the 
amount of droplets for the turbines downstream. 

3. Passage of air across the rotor 

The drop in pressure across the rotor, can induce ice particles that is mixed into the 
wake. The formation of the ice particles will in itself reduce the amount of super-cooled 
water in the air. But the ice particles will also, via the Bergeron-Findeisen effect, 
(Bergeron, 1935) grow on the expense of the super-cooled droplets. In addition there 
will be numerous collisions between the ice particles and the super-cooled droplets in 
the highly turbulent wake, further reducing the amount of super cooled liquid water in 
the air. 
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4. Wind Wake related effects 

The reduction of the wind speed in the wakes will make the icing less effective 
downstream since the ice rate is linearly dependent on the wind speed. An effect that 
will work in the opposite direction when it comes to losses is the ordinary wind wakes. 
The relative wake losses will be higher for low wind speeds and this will act to increase 
the wake losses further downstream in the park.  

Now it is investigated if sheltering effects can be seen in WF3.  

During the operational period that is used for the analysis, 2010-12-01 – 2014-03-18, 
icing is found to be most frequent in the 30º wide sectors centered at 30º and 180º. There 
are distribution differences between the individual winter years, Figure 5-18 , but the 
two sectors are always among the top when icing is detected and are used to visualize 
the sheltering effects.  

 
Figure 5-18. Frequency of observations flagged as affected by icing in different sectors for different winter 
years. The complete period is also included in the figure. 

 

Figure 5-19 is showing the icing loss for the four analyzed winter years with respect to 
turbine position for the case when the wind is coming from the 30º sector. It is clear that 
the turbines in the northeast are experiencing more ice than the ones in southwest. 
There is still a certain degree of height dependence in the icing losses, this can be seen 
in Figure 5-20 that is showing the icing loss with respect to turbine elevation, but it is 
not as obvious as when all sectors are considered, Figure 5-14. 

The findings for the 180º sector are shown in Figure 5-21 and Figure 5-22. The results 
from the two sectors show that sheltering effects are present and significant at WF3. 
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The implications of this is that for wind farms where icing is mainly identified to occur 
for certain wind directions, certain key turbines could be selected to be retrofitted with 
de-icing equipment to increase the profitability of the wind farm. For wind farms not 
yet built, the selection of turbines that should be equipped with de-icing equipment 
will be based on the icing distribution from a numerical model, adding an extra degree 
of uncertainty. 

One question that this immediately leads to is if the icing is transferred to the 
downwind turbines when the upwind turbines are equipped with de-icing capabilities? 
We propose that this question is investigated in a future research project. 

 
Figure 5-19. The icing loss when the wind is coming from the 30º wide sector, with center at 30º, with respect 
to turbine position. This is indicated by the arrow in the middle of the figure. Red colors indicate high losses, 
blue low losses.  
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Figure 5-20. The icing loss when the wind is coming from the 30º wide sector, with center at 30º, with respect 
to turbine elevation. 
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Figure 5-21. The icing loss when the wind is coming from the 30º wide sector, with center at 180º, with respect 
to turbine position. This is indicated by the arrow in the middle of the figure. Red colors indicate high losses, 
blue low losses. 
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Figure 5-22. The icing loss when the wind is coming from the 30º wide sector, with center at 180º, with respect 
to turbine elevation. 

5.5 CONCLUDING COMMENTS ON CHAPTER 5 

In section 5.2 and section 5.4 it is seen that the IceLoss results are agreeing well with the 
losses estimated from operational data from WF1 and WF3. Hence, we are confident 
that the model is able to estimate the losses reasonably well. The IceLoss results for 
WF2 are underestimating the icing losses compared to what is observed. There are 
indications on that the observed losses might be caused by other ambient conditions 
than icing. But a deeper investigation of the data points in the direction of icing 
conditions to be an important factor despite the fact that severe icing conditions are 
rare in WF2. In the IceLoss calculations it is assumed that the turbines continue to 
operate with ice on the blades, this assumption is valid for WF1 and WF3, but not for 
WF2. It is worth noting that the turbines in WF1 and WF3 are from the same 
manufacturer, while the turbines in WF2 are from another manufacturer.  

The IceLoss model has been developed to consider the individual turbine elevation and 
hub height. Looking at park averages the difference between the original IceLoss and 
IceLoss_elev are small. This indicates that the assumption used in the original model 
setup, less icing on turbines on low elevation locations are compensated by more icing 
on turbines at high elevation locations, is valid and working. Read more in chapter 4 
and section 5.2.1.  
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6 Forecast validation 

Daily forecasts during the cold part of the year, October – April, for WF1 and WF3, the 
wind farms in the project located in areas with rather long winters, are validated. The 
validation results are presented with respect to forecast lead time.  Two different power 
forecasts are validated 

 
1. No ice is considered (Full) 
2. Ice is included in the forecast (Ice) 

 

The forecasts are scaled with transfer coefficients relating the forecast wind speed and 
the wind speed measured at the nacelle. Median power curves derived from the last 
winter season are used in combination with the scaled forecast wind speed to calculate 
the produced energy. In a real-time forecast situation, power curves are based on data 
before the forecast situation. However, the power curves for all years, according to 
Table 5.1 and Table 5.3, are similar justifying the approach used in this report. 

The park average wind speed and power forecasts are compared with hourly park 
averages. The park average wind speed and power forecasts are compared with park 
averages based on observations of nacelle wind speed and power. Data used in the 
validation are free from alarm or curtailment.  

Three validation measures are presented:  

 
1. The mean absolute error (MAE) 

 

𝑀𝑀𝑀𝑀𝑀𝑀 =  
1
𝑁𝑁
� |𝑓𝑓𝑖𝑖 − 𝑦𝑦𝑖𝑖|
𝑁𝑁

𝑖𝑖=1

 

Where N is the number of forecast /observation-pairs, fi is the prediction 
(forecast) and yi is the true value (measured production). 
 

2. The mean error, or bias (ME)  
 

𝑀𝑀𝑀𝑀 =  
1
𝑁𝑁
�𝑓𝑓𝑖𝑖 − 𝑦𝑦𝑖𝑖

𝑁𝑁

𝑖𝑖=1

 

 
Where N, fi , yi have the same meaning as in the mean absolute error. 
 

3. The correlation coefficient (r)  
 

𝑟𝑟(𝐴𝐴,𝐵𝐵) =  
1

𝑁𝑁 − 1
��

𝑓𝑓𝑖𝑖 − 𝜇𝜇𝑓𝑓
𝜎𝜎𝑓𝑓

�
𝑁𝑁

𝑖𝑖=1

�
𝑦𝑦𝑖𝑖 − 𝜇𝜇𝑦𝑦
𝜎𝜎𝑦𝑦

� 

 
Where N is the number of compared value pairs, and µf and σ f are the mean and 
standard deviation of the forecast f , respectively, and µy and σy are the mean and 
standard deviation of the measured production. 
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6.1 RESULTS WIND FARM 1 

Validations are made for the periods November - April 2012-2013, October - 
April 2013-2014, and October – December 2014.  

The results for the wind speed forecasts are seen in Figure 6-1. The results are similar 
for all three winters. As expected, MEA and ME are increasing with lead time and the 
correlation is decreasing. Variations between the winters are related to different lengths 
of validation periods. The fact that the forecast are not constantly being less good with 
respect to lead time, but vary a bit, is explained by different data availability  for 
different lead times. It is the operational data that is the cause of the difference in data 
availability. 

 

 
Figure 6-1. Left panel: Mean Absolute Error (MAE).  Middle panel: Mean Error (ME), or bias, (measurements –
 forecast). Right panel: Correlation coefficient. The park average forecasted wind speed is compared with the 
average of the measured nacelle wind speeds. The result is given with respect to forecast lead time. 

 

The power forecasts are normalized with the total capacity of the wind farm and the 
same validation measures as for the wind forecasts are presented. There is a significant 
improvement in the power forecasts when icing is included. The results are found in 
Figure 6-2, Figure 6-3 and Figure 6-4. The results differ between the winter seasons, this 
is expected since the amount, and severity, of icing events differ between the years. The 
last winter is for example based only on the period October – December. 
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Figure 6-2. Winter 2012-2013. Left panel: Mean Absolute Error (MAE).  Middle panel: Mean Error (ME), or bias, 
(measurements – forecast). Right panel: Correlation coefficient. The park average forecasted power is 
compared with the park average of the measured power. The blue curve does not include any power reduction 
due to ice, the red curve includes icing losses. 

 

 
Figure 6-3. As Figure 6-2 but for the winter 2013-2014. 

 

 
Figure 6-4. As Figure 6-2 but for the period October-December 2014. The difference between the Full and the 
Ice forecasts is small compared to the other years. Only three months of data is included and the number of 
icing events was small during the beginning of the winter.  
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6.2 RESULTS WIND FARM 3 

Validations are made for the periods December - April 2012-2013, October - 
March 2013-2014.  

The results for the wind speed forecasts are seen in Figure 6-5. The results are similar 
for both winters. As expected, MEA and ME are increasing with lead time and the 
correlation is decreasing. The sudden rise in correlation for longer forecast lead times 
during the winter 2012-2013 is explained by a high amount of invalid data for those 
lead times but with a few well performing forecasts left for the comparison. The 
variations between the winters are related to different lengths of validation periods.  

Results for the power forecasts are found in Figure 6-6 and Figure 6-7. Also for WF3 
there is a significant improvement in the power forecasts when icing is included. The 
results for the long lead times in 2012-2013 are affected by the invalid data mentioned 
above.  

 

 
Figure 6-5. Left panel: Mean Absolute Error (MAE).  Middle panel: Mean Error (ME), or bias, (measurements –
 forecast). Right panel: Correlation coefficient. The park average forecasted wind speed is compared with the 
average of the measured nacelle wind speeds. The result is given with respect to forecast lead time. 
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Figure 6-6. December-April 2012-2013. Left panel: Mean Absolute Error (MAE).  Middle panel: Mean Error 
(ME), or bias, (measurements – forecast). Right panel: Correlation coefficient. The park average forecasted 
power is compared with the park average of the measured power. The blue curve does not include any power 
reduction due to ice, the red curve includes icing losses. 

 
Figure 6-7. As Figure 6-6 but for the period October-March 2013-2014. 
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7 Nacelle transfer function during icing 
conditions 

Conventional wind turbines have a nacelle mounted anemometer to measure the wind 
speed. The wind speed is used in the turbine control system. However, the nacelle 
anemometer is located behind the rotor and is therefore experiencing significant 
disturbances due to the wind flow around the blades and the nacelle.  In order to 
correct for these effects so that the measured wind speed represents the undisturbed 
upstream conditions, a correction function called Nacelle Transfer Function (NTF) is 
applied by the turbine control system to the measured wind speed. Correcting for the 
wake effects is however a complicated task which is reflected on the accuracy of the 
NTF.  In addition, the NTF might not be valid for the wind flow conditions at the site. 
Having a nacelle mounted lidar system, in this case a Wind Iris (WI) that measures the 
wind speed ahead of the rotor gives the possibility of analyzing the nacelle transfer 
function. In (Turkyilmaz, Hansson, & Undheim, 2016) several evaluations of the NTF 
are presented.  

Here, we investigate possible different characteristics of the NTF (or perhaps more 
correct, the nacelle anemometer). Note that we don´t have access to the NTF actually 
used in the turbine control system, instead we derive linear NTFs based on concurrent 
data from the turbine and the WI. It is also worth noting that the WI itself might disturb 
the nacelle anemometer and make the NTF that is derived also to be invalid for the site. 
Therefore an investigation of the possible disturbance of the WI on the nacelle 
anemometer is made. 

Data from a Wind Iris (WI) lidar mounted on turbine 3 in WF1 has been compared with 
the nacelle anemometer from the same turbine. Information about the measurement 
campaign and filters applied on the data can be found in (Turkyilmaz, Hansson, & 
Undheim, 2016). Four measurement campaigns, on four different turbines, have been 
made in the project, but the one used here is the only one having significant amounts of 
icing. 

Data from the period 2015-01-10 – 2015-04-08 has been used. The WI measurement 
distance in front of the rotor that is used in the analysis corresponds to 2.2 rotor 
diameters (D), in this case 200 m. This is consistent with (IEC 61400-12-1, 2005) to avoid 
blockage effects on the wind flow caused by the rotor.  

7.1 POSSIBLE DISTURBANCE OF THE NACELLE ANEMOMETER CAUSED BY WI 

The nacelle wind speed measurements from the turbine that the WI is installed on are 
used as reference. Weekly wind speed ratios between the reference and the neighboring 
turbines are made for the last two months of the WI measurement campaign and for 
the two months immediately following the dismantling of the WI. Only periods when 
the turbines all are experiencing non-wake disturbed wind and are in full performance 
are used. The installation was made in late December. No ratio comparison is made 
around the installation. It is difficult to interpret the results when the differences in 
weekly data availability due to ice filtering are large. 

The data coverage and temporal distribution of observations will vary between the 
weeks. This will induce uncertainties related to different stability conditions, affecting 
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wind shear and wind veer, possibly affecting the nacelle anemometer. But by 
comparison to the effects of shear and veer on the production, the effect on the 
anemometer is however expected to be less. At least as long as the turbine can yaw into 
the wind in a normal way so that the anemometer is not experiencing non-normal wake 
effects.  

Only non-wake sectors are considered in the comparison and it is seen that the 
distribution of the wind direction observations differ slightly between the two month 
period before the dismantling and the two month period after the dismantling ( Figure 
7-1). Note that the scale is different in the two wind roses. It is also seen that there are 
more high wind observations in the period before the dismantling. These differences 
will also contribute to the uncertainty. 

  
Figure 7-1. Wind speed and direction distribution before (left) and after (right) the installation of the Wind Iris. 
Note that the scale differs between the two wind roses. 

 

The result, normalized with the maximum value for each turbine, is shown in Figure 
7-2. It is worth noting that the maximum values, used for normalization, all are from 
the period when the WI has been dismantled. The average of all ratios is also found in 
the figure. The variation in Figure 7-2 is considerable, but it seems like that the nacelle 
anemometer at the reference turbine is experiencing more wind after the dismantling. 
This indicates that the WI is influencing the nacelle anemometer. But considering the 
variability seen in Figure 7-2 it is difficult to put a number on the disturbance. The 
manufacturer of the WI, Avent, has been asked to comment on the possible disturbance 
of the nacelle anemometer. According to Avent, previous investigations have not 
shown substantial influence, provided that the WI is installed according to best 
practice. 

It is important that available recommendations and guidelines are used when a nacelle 
mounted lidar is installed to minimize the effect of the nacelle anemometer. 
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Figure 7-2. The ratio between the wind speed measured by the nacelle anemometer at the turbine where the 
WI is installed and four neighboring turbines as a function of week number. The ratios are normalized with the 
maximum values for each series. The black line is the average of all ratios. The red vertical line represents 
when the WI was dismantled.  

7.2 COMPARISON BETWEEN NTF DURING ICING AND NON-ICING CONDITIONS 

Figure 7-4 is a scatter plot with WI and nacelle anemometer data during periods when 
the turbine is in full performance. In the plot is also a linear relationship based on linear 
regression. The line y = x is included in the plot for reference. A corresponding plot for 
icing periods is found in Figure 7-5.  In an attempt to make the comparison fairer, only 
wind speeds between 4 m/s and 12 m/s is included in the plots and in the derivation of 
the linear fits. It is seen that the derived linear relationships deviates from the line y = x. 
There are several reasons for this. The most obvious is that the NTF is not correct or 
valid for the site. An invalid NTF can be due to different climatic conditions 
(turbulence, stability, etc.) compared to where it was derived. The fact that the terrain is 
not flat will also be of importance. The wind is following the ground and if the turbine 
position is higher than the ground at the measurement distance, the measured wind 
will be higher since it is measured higher above the ground. Read more about the effect 
of the topography in (Turkyilmaz, Hansson, & Undheim, 2016). The occasions with ice 
during the analyzed period are far less than the occasions without ice. Only the sectors 
between south and west are included in the comparison. These are the sectors where 
icing mainly occurs for WF1, Figure 7-3, and using only them will reduce the 
uncertainty in the comparison due to the effects of different terrain elevations at the 
measurement range for different directions. However, this will also limit the available 
data making the results more difficult to interpret. The occasions with ice used in 
Figure 7-5 seems to cover a wide range of ice loads, Figure 7-7. But as already 
mentioned, the data set is small and the uncertainty is high. 
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Figure 7-3. Wind rose based on turbine data during occasions with ice on the blades. 

 

The difference between the two linear relationships evaluated for different wind 
speeds, is found in Figure 7-6. It is seen that the wind speed during icing events is 
underestimated by the nacelle anemometer for wind speeds up to about 10 m/s. Above 
10 m/s it will overestimate the wind speed. This conclusion is based on a small data 
sample and the uncertainty is considered to be high. And since the results are not clear, 
the implications of both over and underestimation of the measured wind is discussed 
below.  

 
1. Given that the results for the interval 4-12 m/s is valid also for higher wind 

speeds, the true cut-out wind speed during icing events will be lower than 
expected, possible causing additional losses. The opposite, underestimation of 
the measured wind speed indicating a true wind speed that is higher than 
expected, would cause excessive loads on the turbines. Neither effect is 
desirable.  

2. Estimations of production losses during icing events based on the nacelle 
anemometer (e.g. PEP-PC1) will be dependent on the distribution of wind 
speed during the investigated period. 

 
WF1 is a low wind speed site and the cut-out problem will most likely be of minor 
importance. For high wind speed sites this could cause excessive losses (maintenance 
costs to be higher than expected if the wind is underestimated). The estimation of 
production losses due to icing is, based on the findings here, problematic when the 
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performance of the wind farm is analyzed. An over(under)estimation of the wind 
speed will cause the estimation of the full production to be too high(low) if methods 
(Lindvall, Hansson, & Undheim, 2016) containing the measured wind speed are used. 
This means that the loss also will be over(under)estimated. The magnitude of the 
over(under)estimation depends on the distribution of wind speeds on the site.  

There are many sources of uncertainty in this comparison 

 
• Different turbine properties during icing and non-icing periods  

o Rotor RPM 
o Pitch angles  

• Different wind speed and direction distribution in the two data sets. There will 
be differences even if we have used only sectors when icing is found to mainly 
occur. 

• Different stability regimes in the two data sets that will affect 
o Turbulence 
o Shear 
o Veer 

 
In a perfect world the findings here should be valid for the particular turbine type in 
WF1. It is not likely that the results are valid for other turbine types that are operated 
differently during icing events. 

More measurement campaigns during icing periods are needed to study the nacelle 
anemometer behavior further. Many of the above uncertainties and unknowns can be 
investigated with multiple, simultaneous, measurements of stability and wind speed 
from nacelle mounted lidars. This is proposed for future projects. 
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Figure 7-4. The relationship between wind speeds (FF) measured with the nacelle anemometer and wind 
speeds measured by WI during periods when the turbine is in full performance. All data points marked with 
blue plus signs are included in the regression used to derive the linear relationship indicated by the red line. 

 

 
Figure 7-5. The relationship between wind speeds (FF) measured with the nacelle anemometer and wind 
speeds measured by WI during periods when the turbine is affected by icing. All data points marked with blue 
plus signs are included in the regression used to derive the linear relationship indicated by the red line. 
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Figure 7-6. The difference between the linear relationships from Figure 7-4 and Figure 7-5 vs. wind speed is 
shown by the red line. The blue lines indicate an interval that contains at least 50% of the predictions of future 
predictions at x (wind speed). 

 
Figure 7-7. Data used in Figure 7-5 is covering a wide range of ice loads (higher ice load corresponds to lower 
production). The median power curve and the P10-power curve, used for ice detection, is also included in the 
plot. 
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8 Conclusions 

The main conclusions obtained in the present work are summarized below. 

Chapter 3 - Description of methodologies for estimation of icing losses in 
operational wind farms 

• The first challenge is to properly identify when there is ice on the turbine. A 
threshold power curve in combination with turbine status and a temperature 
criterion has been used in this report.  

• Icing climatologies can be used to estimate long term icing losses. Methods for 
deriving icing climatologies range between simple assumptions based on 
publicly available standard meteorological observations, and NWP models in 
combination with ice accretion models. Icing losses found in operational data 
can be used to adjust the icing climatology to a site specific value. 

• Daily short term forecasts of icing losses are probably exclusively produced by 
NWP models.  

Chapter 4 - Description of the IceLoss model and developments made in this 
project 

• The IceLoss model is originally developed by Kjeller Vindteknikk. It is an 
advanced model utilizing NWP data to calculate icing rates, ice loads and 
removal of ice on a standard cylindrical icing collector. 

• Losses due to icing on the turbines are calculated by assuming that the 
turbines continue to operate with ice on the rotor blades where the efficiency is 
reduced due to the degradation in aerodynamic properties of the blade. It is 
important to consider the operational strategy of the turbines on sites where 
they are not allowed to continue to operate with ice on the blades. 

• Forecasts are made by tuning the modeled wind speed with transfer 
coefficients relating nacelle wind speed and model wind speed. 

• The IceLoss model makes calculations for the average turbine elevation and 
the average hub height. In this project, IceLoss is further developed to make 
calculations for individual turbine elevations and hub heights. It is seen to give 
a more realistic picture of the icing distribution within the wind farm. 

• Short term ice reduced forecasts, valid for the next 48 hours, are produced with 
IceLoss. The ice reduced forecasts are performing significantly better than the 
non-reduced forecasts. The initial values of the ice load in the wind farm are 
taken from the last forecast. In this project, tests have been made in an attempt 
to use operational data to estimate an initial ice load value for the forecasts. It 
turned out that it was difficult to estimate the ice load in the wind farm and 
more research is needed in this area.  
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Chapter 5 - Post-construction estimation of icing losses 

• Median power curves and wind transfer coefficients based on yearly data is 
used in the estimation of icing losses from the wind farms. It is important to 
consider revisions in the NTF or turbine control system when deriving the 
median power curves. 

• Sensitivity tests indicate that the IceLoss model calculations made with 
transfer coefficients and median power curves are robust with respect to 
erroneous nacelle anemometer measurements. At least as long as the power 
curves and wind transfer coefficients are based on the same period and from 
the same data set. In that sense, the improvement of the estimated icing losses 
based on the IceLoss model used with wind measurements from a nacelle 
based lidar instead of the nacelle anemometer is limited.  

• PEP-PC1 and PEP-PC2 are deemed as suitable for estimating losses due to 
icing. The other PEP-methods described in (Lindvall, Hansson, & Undheim, 
2016) all require at least one turbine to be in full performance to be able to 
estimate the losses. This is rarely the case during icing occasions.  

• The observed icing losses in WF1 and WF3 agree well with estimates from the 
IceLoss model. The results for WF2 are not as good. The reason is most likely 
that the turbines are regulated during icing periods in a way that is not part of 
the assumptions used in the IceLoss model. It is important to consider the 
operational strategy when losses due to icing are estimated. 

• Results from the IceLoss model run with individual turbine elevations are 
showing a more physical sound distribution of icing in the wind farm when 
looking at losses for individual turbines. But it is seen in the model data that 
there are occasions with drier air on higher model levels (used in calculations 
of ice loads for the turbines at high elevation positions) compared to the lower 
levels (used in calculations of ice loads for the turbines at low elevation 
positions). Through sublimation, this will reduce modeled ice load on the 
higher levels more than on the lower levels. Low level moisture is a difficult 
parameter to forecast and further investigations should be made in this area in 
order to evaluate the performance of the IceLoss_elev model setup. 

• Sheltering effects (turbines upstream in a wind farm experience more icing 
than turbines downstream) are significant for some wind directions in WF3. 
Several effects are probably involved in the sheltering process, vertical mixing 
induced by the rotor, probably being one of the most important.  

• The main contributing factors likely to explain why the modeled production 
losses in some cases disagree with those estimated from operational data, 
when considering seasonal time-scales, are noted in the list below. The listed 
sources of disagreement depend on complex interactions on a wide range of 
scales that are not very well know at the moment and which are topics of the 
research community. 

o Detection of ice in the measured data. Several methods exist, in this 
report a 10-percentile threshold power curve is used to detect ice, see 
Section 5.1. It was the recommended method in (Davis, Byrkjedal, 
Hahmann, Clausen, & Žagar, 2015) and is used here with minor 
modifications. The temperature from WRF has been used in the ice 
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detection. The detection would probably be better if high quality 
temperature measurements from each nacelle were available. The 
ability to correctly detect occasions with ice on the blades is also 
depending on the turbine regulation strategy. 

o Model calculations of ice loads. There are many different sources of 
uncertainty in the modelling of ice loads. One of which is the variation 
in height of the cloud base that can give a large impact on the amount 
of icing. Another is the partitioning of cloud water into super-cooled 
droplet and ice crystal when temperatures are below freezing. Other 
factors contributing to the uncertainties are related to droplet size 
distributions, initial moisture contents and topographical sheltering 
effects not resolved by the model.  

o Model calculations of ice shedding. The ice load can be very sensitive 
to melting, sublimation or vibrations that can remove the ice from the 
blades. This may result in longer or shorter periods of meteorological 
icing than modelled.  

o Turbine sensitivity to iced blades. It is possible that the turbines are 
more/less sensitive to small amounts of ice than given in the model. 
The regulation strategies will play an important role here, as seen in 
WF2 (Chapter 5.3.1). In WF2 it seems like that the turbines sense small 
amounts of ice and starts a regulation program causing losses.  

o Characteristics of the nacelle anemometer. It is assumed that the 
nacelle anemometer is performing similar during icing and non-icing 
situations. This is not the case for the measurement campaign 
analyzed in Chapter 7.  
 

• To better understand how the turbine responds to different ice loads and 
improve the performance of the IceLoss model, high quality ice load 
measurements are proposed in future projects. 

• The results from WF2 show that the performance of the method for detecting 
ice on the wind turbines is dependent on turbine regulation strategy. If no 
details about how the turbine itself is detecting ice are available, ice load 
measurements could be valuable to improve the knowledge about the 
regulation strategy. This could in turn be used to improve the ice detection 
methods by including more SCADA parameters in the filters. The ice load 
measurements would be used to identify which SCADA parameters that are 
affected by icing events. This is proposed for future work. 

• Our conclusion is that no major improvement in the detection of ice or 
estimation of losses is expected from using a nacelle mounted lidar. 

o Ice detection is based on a threshold power curve, and a long 
measurement campaign is necessary to obtain it. Visually, the scatter 
in the lidar data used to derive the power curve is larger than in the 
nacelle anemometer data. This indicates that an expensive 
measurement campaign does not improve the detection of ice on the 
rotor by this method. 

o It is proposed by VTT in Finland (Karlsson, Peltola, Antikainen, & 
Vignaroli, 2015) that the risk of ice on the turbine blades could be 
detected looking at patterns in the backscatter signal from a ground 
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based lidar. This could perhaps also be made with a nacelle based 
lidar with some modifications in the methodology. However, this 
project did not have measurements of ice or real-time images needed 
to investigate the backscatter pattern during verified icing situations. 

o An estimation of losses based on lidar data has the same drawbacks as 
the ice detection: a long measurement campaign is needed to derive a 
median power curve for the turbine that the wind speed is applied on. 
The scatter is also a factor here and the fact that not all sectors will be 
possible to use due to wakes from other turbines will make it 
impractical to use. 

 

Chapter 6 - Forecast validation 

• When ice is considered in daily production forecasts, the quality is 
significantly improved. 

Chapter 7 - Nacelle transfer function during icing conditions 

• The installation of the Wind Iris is made according to best practice 
(Turkyilmaz, Hansson, & Undheim, 2016). Nevertheless the Wind Iris is found 
to cause a slight disturbance in the measurements made by the nacelle 
anemometer. 

• Considering that the amount of available data is limited, it is difficult to 
interpret the comparison between the nacelle anemometer behavior during 
icing and non-icing conditions. More measurement campaigns are needed. 

• There are many sources of uncertainty in this comparison. Among them are 

o Limited amount of icing periods. 

o Only based on one measurement campaign 

o Different turbine properties during icing and non-icing periods 

 Rotor RPM 

 Pitch angles 

o Different wind speed and direction distribution during icing and non-
icing periods. 

o Different stability regimes during icing and non-icing periods that 
potentially affect 

 Turbulence 

 Shear 

 Veer 
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QUANTIFICATION OF ICING  
LOSSES IN WIND FARMS 
Methods for estimating losses of operational wind farms developed in the Part 
1 report are compared with modelled icing losses. It is important to select an 
appropriate method when icing losses are estimated. Methods based on wind 
speed, measured or modelled, and measured power is appropriate for periods 
with icing. It is seen that the operational losses and modelled losses in general 
are in good agreement.

When icing losses are assessed in operational data and compared to model  
results, it is important to consider how the turbines are operated during periods 
with ice on the blades. There can be large discrepancies if the model results 
are not assuming the actual regulation strategy of the turbine. It is seen in the  
project that non-optimal regulating strategies can cause unnecessary large  
losses.

The use of a nacelle mounted lidar is not expected to improve in the detection 
of ice on the turbine or in the estimation of losses due to icing.

Another step forward in Swedish energy research
Energiforsk – Swedish Energy Research Centre – an industrially owned body dedicated to me-
eting the common energy challenges faced by industries, authorities and society. Our vision is 
to be hub of Swedish energy research and our mission is to make the world of energy smarter! 
We are actively meeting current energy challenges by developing new ways to store energy, 
helping to create a fossil free transportation system, establishing new market models for the 
heat and power sector, developing new materials and regulating the grid. www.energiforsk.se
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