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Summary 
The main purposes of this study are to report on the state-of-the-art 
long-term datasets available for use in the long-term correction of wind 
measurements, as well as on the long-term correction methods most 
commonly used at the present; to present guidelines on how to reduce the 
uncertainty in the long-term correction of wind measurements; to give 
recommendations on the expected intervals of the uncertainty associated with 
different contributing factors, and finally, to highlight issues in need of further 
investigation. 

A description of the main properties of different long-term datasets is given in 
Chapter 2. These are categorized into long-term weather observations, 
reanalysis global datasets, and reanalysis mesoscale datasets. The ability of  
these long-term datasets to describe the local wind climate in terrain with low 
complexity is discussed in Chapter 3. The results indicate that the reanalysis 
global dataset MERRA, as well as the reanalysis mesoscale datasets WRF FNL 
and WRF ERA-Interim, are, among the selected datasets, the most suitable to 
the use in the long-term correction of wind measurements performed in 
terrain with low complexity. The results also suggest that the increase of the 
spatial resolution of a long-term dataset to finer than about 0.5 x 0.5 degrees 
in latitude and longitude (~55 km x 30 km in Scandinavia) does not 
necessarily result in the increase of the hourly correlation coefficient of its 
relationship to site wind measurements. Note that the above conclusions are 
based on our best judgement of the obtained results, and not on the 
comparison with a known answer. The analysis of the monthly correlation 
coefficients shows only small differences between the selected reference 
datasets. A discussion is conducted on the need of a more appropriate 
measure of the long-term data's representativeness, i.e., of how well a 
long-term data series from a given position represents the long-term wind 
variations at another position. Neither the hourly nor the monthly correlation 
coefficients represent an ideal measure of the long-term data's 
representativeness. 

In addition to the uncertainty arising from the long-term correction process, 
the uncertainty related to the inter-annual variability of the wind speed is also 
relevant. This issue is discussed in Chapter 4. The results show that the 
inter-annual variability of the wind speed is rather site specific, and should 
therefore be evaluated specifically for the site in consideration. Values ranging 
between 3 and 7 % are found in the analyzed region (Norway, Denmark, 
Sweden, Finland and the Baltic countries), based on reanalysis data.  

Since the future long-term wind conditions are unknown, it is assumed that 
the past may be used as a predictor of the future wind conditions. A given 
time period of the past is chosen (reference period), and the wind conditions 
observed in this period are considered representative of the future wind 
conditions. The variations observed in the past wind climate are discussed in 
Chapter 5, based on wind speed data from the reanalysis dataset 20CRv2. In 
an earlier study by Wern and Bärring (2009), an average negative long-term 
trend (-4%) was found in the wind speed in Sweden for the period 1951 to 
2008. The authors emphasized though that this trend was not statistically 
significant. The results presented here confirm that there is no statistically 
significant trend in the wind speed during that period in Sweden. However, 
the wind speed over central and northern Norway shows a positive long-term 
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trend (2-3 %) in the period 1951-2008 that is statistically significant. The 
analysis of the past wind climate has also led to the conclusion that the period 
1989 to 1995 was characterized by unusual high annual mean wind speeds 
associated with a large positive peak in the North Atlantic Oscillation (NAO) 
index. The decrease in the mean wind speed seen between 1990 and 2005  
represents a return to the longer-term mean, after the unusually large 
maximum in 1990. 

Chapter 6 discusses the assumption of the past being used as a predictor of 
the future wind conditions. The performed analysis shows that the prediction 
error associated with this assumption is about 1.5 - 2 %, but may vary up to 
6 % in a worst-case scenario. Random and consecutive sampling of the years 
forming the reference period has been tested. Consecutive sampling resulted 
in a slightly smaller prediction error as compared to random sampling. This 
result suggests the existence of a weak underlying pattern (non-randomness) 
in the annual mean wind speed from one year to the next. Another relevant 
issue is the optimal length of the reference period that minimizes the 
prediction error. That is, how long should the long-term reference period be? 
The results show a significant decrease of the mean prediction error with the 
increase of the reference period length from 1 to about 12-15 years, 
remaining in average rather constant (1.5 %) for longer reference periods. 
The standard deviation from the mean value shows however a slight increase 
for lengths larger than 20 years. Based on these results, the choice of a 
reference period length of about 15 to 20 years is recommendable. The choice 
of a 15 to 20-year long reference period from the near past period 1993-2012 
gives multiple alternatives: the 17-year period 1996-2012 as an example of a 
more conservative choice; and the 20-year period 1993-2012 as a less 
conservative choice. 

A categorization of the most commonly used long-term correction methods, 
into regression and non-regression methods, is presented in Chapter 7. A 
description of the main properties of these methods is given. Furthermore, 
the self-prediction ability of these methods is analyzed. The results show an 
average prediction error of about 1.5 to 2 %, and a normal variation up to 4 
%, independently on the method applied, provided that the hourly correlation 
between reference and measured data is larger than 75-80 %. The 
performance of the methods has not been analyzed for cases with lower 
correlation coefficients. 

Based on the results summarized above, guidelines have been defined in 
Chapter 9 on the evaluation of the uncertainty associated with the long-term 
correction of wind measurements, and of the uncertainty associated with the 
inter-annual variability of the wind speed. Expected uncertainty intervals are 
presented for the different sources contributing to the total uncertainty. The 
assumption of using the past as a predictor of the future wind climate is seen 
to contribute significantly to the total uncertainty in the long-term corrected 
wind speed. The increase of the measurement period from 1 year (with a 
coverage of the quality controlled data larger than 85 %) to 2 years, is shown 
to reduce the uncertainty in the long-term corrected wind speed from 2.1-4.5 
% to about 1.8-3.6 %. The largest reduction is seen when increasing the 
measurement period length from some months to one complete year.  

Finally, several issues in need of further investigation are highlighted in 
Chapter 10. 
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Sammanfattning 
Huvudmålen med denna studie är att presentera olika långtidsdataserier som 
kan användas vid normalårskorrigering av vindmätningar, med speciell fokus 
på de senast utvecklade serierna; beskriva de vanligaste 
normalårskorrigeringsmetoderna; presentera riktlinjer för hur osäkerheten i 
normalårskorrigering kan reduceras; ge rekommendationer om osäkerhetens 
förväntade intervall för olika bidragande faktorer och, slutligen, att definiera 
frågor som är i behov av framtida forskning och utvecklingsarbete. 

En beskrivning av huvudegenskaperna hos olika långtidsdataserier ges i 
kapitel 2. Dessa serier är grupperade enligt tre kategorier: 
långtidsväderobservationer, globala reanalysdataserier och mesoskaliga 
reanalysdataserier. De olika långtidsdataseriernas förmåga att beskriva det 
lokala vindklimatet i terräng med låg komplexitet diskuteras därefter i kapitel 
3. Resultaten visar att, av de analyserade serierna, är den globala 
reanalysdataserien MERRA och de mesoskaliga dataserierna WRF FNL och 
WRF ERA-Interim, de som lämpar sig bäst för normalårskorrigering av 
vindmätningar utförda i terräng med låg komplexitet. Resultaten indikerar 
även att ökningen av en dataseries rumsupplösning till mer än cirka 0.5 x 0.5 
grader i latitud och longitud (~55 km x 30 km i Skandinavien) inte 
nödvändigtvis resulterar i en ökning av korrelationskoefficienten med 
vindmätningar utförda i terräng med låg komplexitet. Notera att dessa 
slutsatser baserar sig på vår bästa bedömning av de erhållna resultaten, och 
inte på en jämförelse mot ett känt svar. Analysen av korrelationskoefficienten 
baserad på månadsmedelvärdena av serierna visar endast små skillnader 
mellan de analyserade dataserierna. Behovet av ett mer korrekt mått på 
långtidsdatats representativitet, det vill säga hur bra långtidsdata från en 
given position representerar vindens långtidsvariationer i en annan position, 
har diskuterats. Varken korrelationskoefficienten beräknad med timmesdata 
eller med månadsdata är ett idealt mått på långtidsdatas representativitet. 

Förutom att ta hänsyn till osäkerheten som resulterar från 
normalårskorrigeringsprocessen är det även relevant att ta hänsyn till 
osäkerheten relaterad till vindens årliga variabilitet. Denna fråga är 
analyserad i kapitel 4. Resultaten antyder att den årliga variationen av 
vindhastigheten är platsspecifik och bör därför estimeras individuellt för det 
aktuella området. Vindens årliga variabilitet beräknad baserad på 
reanalysdata varierar mellan 3 och 7 % i det analyserade området (Norge, 
Danmark, Sverige, Finland och Baltikum). 

Eftersom de framtida långtidsvindförhållandena är okända antas det att det 
förgångna kan användas för att förutsäga det framtida vindklimatet. En viss 
tidsperiod från det förgångna väljs (referensperiod) och vindförhållandena 
observerade under denna period anses vara representativa för de framtida 
vindförhållandena. Det förgångna vindklimatet analyseras i kapitel 5 utifrån 
vindhastighetsdata från den globala reanalysdataserien 20CRv2. I en tidigare 
studie utförd av Wern och Bärring (2009) har en negativ trend (-4 %) 
estimerats för vindhastigheten i Sverige under perioden 1951-2008. Wern och 
Bärring betonade dock att denna trend inte anses vara statistiskt signifikant. 
Resultaten som presenteras i denna rapport bekräftar att det inte finns någon 
statistiskt signifikant trend i vindhastigheten under denna period i Sverige. 
Resultaten visar däremot en positiv trend (2-3 %) som är statistiskt 
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signifikant i vindhastigheten under 1951-2008 för centrala och norra Norge. 
Analysen av det förgångna vindklimatet har även lett till slutsatsen att den 
årliga medelvinden var ovanlig hög under perioden 1989 till 1995, associerad 
med en hög topp i NAO indexet (NordAtlantiska Oscillationen). Minskningen i 
den genomsnittliga vindhastigheten sett mellan 1990 och 2005 representerar 
en återgång till vindens långtidsmedelvärde, efter det ovanligt stora 
maximum det haft år 1990. 

I kapitel 6 presenteras en diskussion kring antagandet att det förflutna kan 
användas för att prediktera det framtida vindklimatet. Den genomförda 
analysen visar att prediktionsfelet som resulterar från detta antagande är 
cirka 1.5 - 2 %, men kan variera upp till ett maximum av 6 %. Slumpmässigt 
och konsekutivt urval av de åren som bygger referensperioden har testats. 
Konsekutivt urval resulterade i ett något mindre prediktionsfel jämfört med 
slumpmässigt urval. Detta resultat tyder på förekomsten av ett svagt 
underliggande mönster (icke-slumpmässighet) i den årliga medelvinden från 
år till år. En ytterligare relevant fråga är den optimala längden av 
referensperioden som minimerar prediktionsfelet. Det vill säga, hur lång ska 
referensperioden vara? Resultaten visar en signifikant minskning av det 
genomsnittliga prediktionsfelet när referensperiodens längd ökas från 1 till 
cirka 12-15 år och ett relativt konstant prediktionsfel (1.5%) för längre 
referensperioder. Standardavvikelsen från medelvärdet visar dock en svag 
ökning för perioder längre än 20 år. Baserad på dessa resultat, vi 
rekommenderar valet av en referensperiod som är 15 till 20 år lång. Valet av 
en 15 till 20 år lång referensperiod från den senaste 20-årsperioden 
(1993-2012) ger olika alternativ: den 17 år långa perioden 1996-2012 som 
ett exempel på ett mer konservativt val; och den 20 år långa perioden 1993-
2012 som ett mindre konservativt val. 

En kategorisering av de vanligaste normalårskorrigeringsmetoderna i 
regressions- och icke-regressionsmetoder presenteras i kapitel 7. 
Huvudegenskaperna hos dessa metoder beskrivs och deras 
självprediktionsförmåga analyseras. Resultaten visar ett genomsnittligt 
prediktionsfel på cirka 1.5 till 2 % och en normal variation upp till 4 %, 
oberoende av den använda metoden. Detta förutsatt att en 
korrelationskoefficient (R) mellan referens och uppmätt timmesdata är högre 
än 75-80 %. 

Utifrån de ovannämnda resultaten presenteras riktlinjer i kapitel 9 rörande 
estimering av osäkerheten associerad med normalårskorrigering och  
osäkerheten associerad med vindens årliga variabilitet. Förväntade intervall 
för de olika bidragande osäkerhetskällorna definieras. Antagandet att det 
förgångna kan användas för att prediktera det framtida vindklimatet är en 
starkt bidragande orsak till den totala osäkerheten i den normalårskorrigerade 
vindhastigheten. Ökningen av mätperiodens längd från 1 år (där täckningen 
av det kvalitetskontrollerade datat är högre än 85 %) till 2 år minskar den 
totala osäkerheten i den normalårskorrigerade vindhastigheten från 2.1-4.5 
% till cirka 1.8-3.6 %. Den största minskningen av osäkerheten sker vid 
ökandet av mätperiodens längd från några månader till ett helt år. 

Slutligen, presenteras i kapitel 10 frågor i behov av framtida forskning och 
utvecklingsarbete.  
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1 Introduction 

The description of the temporal variability of the wind conditions is essential 
when assessing the wind conditions at sites potentially suitable to wind power 
development. Wind measurements are typically performed during a relatively 
short time period (~1-3 years), that is commonly not representative of the 
long-term wind conditions at the site. Long-term correction of the wind 
measurements is therefore needed in order to estimate the expected 
long-term wind climate that best represents the site.  
 
Figure 1-1 illustrates the main steps involved in the long-term correction of 
wind measurements. The bulleted items indicate relevant factors that should 
be taken into account in the assessment of the uncertainty in the estimated 
long-term wind climate.   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1-1. Schematic illustration of the process involved in the long-term correction of 
wind measurements. The bulleted items indicate parameters of high relevance for the 
estimate of the uncertainty in the resultant long-term corrected wind climate.   

 
 

1. Short-term site measurements 
 

 Accuracy of the measurements 
 Measurements' 
representativeness of the 
long-term site wind climate 

2. Long-term reference data 
 

 Characteristics of the data 
 Data's representativeness of the 
long-term site wind climate 

3. Long-term correction methodology 
 

 Self-prediction ability 

4. Past as predictor of the future 
 

 Assumption accuracy 
 Length of the past period 

5. Estimate of the long-term wind 
climate at the measurement site     
and corresponding uncertainty 
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The two main elements given as input to the long-term correction process are 
the wind measurements performed at the site under a given time period 
(short-term period), and the long-term data from a representative location. 
How well the short-term data represent the wind farm's long-term wind 
climate is mainly determined by the quality of the measurements and by the 
measurement period length (box 1 in Figure 1-1). This is often about 1 year, 
in order to capture the seasonal variations of the meteorological conditions. 
However, the longer-term variability of the wind conditions is not captured. It 
is therefore necessary to find a long-term time series that is believed to 
represent appropriately the long-term wind climate at the measurement site. 
The long-term data's representativeness is an important factor that should be 
evaluated, as well as the characteristics of the data (box 2 in Figure 1-1). By 
representativeness it is meant how well the chosen long-term data represent 
the long-term variations of the wind conditions at the measurement site. The 
long-term data shall be representative, i.e, shall describe in an appropriate 
way the long-term variations of the wind conditions at the measurement site. 
Furthermore, the long-term data shall describe real changes in the local 
climatic conditions, and shall not be affected by artificial changes caused by 
modifications in the measurement system or in the methodology used in the 
generation of the data. For this reason, the analysis of the spatial and 
temporal characteristics of the long-term data is essential. 
 
When the short-term and the long-term data series have been established, a 
long-term correction methodology is applied with the main purpose of 
obtaining an adequate description of the long-term wind climate at the 
measurement site. The accuracy of the used long-term correction method is 
dictated by its self-prediction ability, i.e., its ability to predict a known answer 
(box 3). 
 
The future wind climate is however unknown. It is therefore assumed that the 
past is as a predictor of the future wind climate, i.e., the statistical properties 
of the future wind climate are assumed to be the same as for the past wind 
climate. The accuracy of this assumption is however of major importance for 
the accuracy of the estimated long-term site wind conditions and shall 
therefore be evaluated Moreover, one has to define how long is the future 
period for which the energy production should be calculated, and how long 
back in time should one look at in order to predict the wind conditions in the 
future period of interest (box 4 in Figure 1-1). 
 
Adopting the investor's perspective, the length of future period of interest is 
equal to the length of the amortization period. The investor needs to know 
how much energy a wind farm is expected to produce during the period the 
debt has to be paid off (amortization period). This is typically 10 to 20 years. 
In cases when no debts have to be paid, the future period of interest is the 
lifetime of the wind farm, when the profits will be collected. This is typically 
20 years. For these reasons, the energy production of a wind farm is often 
estimated for a long-term period of 10 to 20 years. The question that follows 
is, how long back in the past the long-term reference data shall extend in 
order to accurately predict the wind conditions in the future 10 to 20 years. 
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The main goals of this investigation study are to provide a description of the 
state-of-the-art long-term datasets and correction methods that may be used 
in the long-term correction of wind measurements; to obtain fundamental 
results that aid the definition of guidelines on how to more accurately 
long-term correct wind measurements, and on how to assess the uncertainty 
in the estimated result; and finally, to highlight relevant issues in need of 
further investigation. 
 
This report is structured as follows. Chapter 2 gives a description of the main 
properties of different long-term datasets. The ability of these datasets to 
describe the local wind climate in terrain with low complexity is discussed in 
Chapter 3. Besides the contribution of the uncertainty arising from the long-
term correction process, the uncertainty related to the inter-annual variability 
of the wind speed should also be considered. This issue is discussed in 
Chapter 4. The variations observed in the past wind climate are discussed in 
Chapter 5, and the uncertainty in the assumption of the past being a predictor 
of the future wind conditions, as well as in the choice of the reference period 
length, is investigated in Chapter 6. Chapter 7 begins with a description of 
different long-term correction models typically used in industry at the present. 
This is followed by an analysis on the accuracy of these models, and on the 
influence of the measurement period length. 
 
A summary of the main conclusions obtained in this investigation study is 
presented in Chapter 8. Based on these conclusions, guidelines on the 
assessment of the uncertainty resultant from the long-term correction process 
are defined in Chapter 9. Several issues have been identified during the 
development of this project considered of relevance for further investigation. 
These are highlighted in Chapter 10.  
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2 Description of different long-term 
reference datasets 

There are several types of long-term reference datasets. These may be wind 
measurements from weather stations or from satellites, reanalysis global 
datasets or reanalysis mesoscale datasets. This chapter distinguishes between 
these different types of long-term reference datasets, and gives a description 
of the most relevant ones.  

2.1 Long-term weather observations 
 

In-situ observations from climate monitoring stations operated by national 
weather institutions constitute a valuable source of measurements of several 
atmospheric parameters such as temperature, barometric pressure, humidity, 
wind speed, wind direction, and precipitation. These data are mainly used in 
climate monitoring, weather forecasting, severe weather warnings and for 
research purposes. They may however also be used as reference data for use 
in wind resource assessment if the datasets cover a sufficient long time 
period.  

2.1.1 NCEP ADP Global Surface Observations 
 

The NCEP ADP dataset includes observations from land surface stations and 
from marine platforms that are collected by the National Centers for 
Environmental Prediction (NCEP) using the coordinated global system of 
telecommunications known as GTS. The collected GTS reports are decoded by 
NCEP using Automated Data Processing (ADP) and stored in files with a 
synoptic time stamp. The term "synoptic surface observations" refers to 
observations made near the surface simultaneously on different weather 
stations located all over the globe. 

The NCEP ADP observations from land surface stations include SYNOP and 
METAR weather reports, as well as AWOS and ASOS report types. The SYNOP 
reporting code is generally used to report observations made at manned and 
automated weather stations, while the METAR format is typically used in 
weather reports made at airports and military bases. SYNOP reports are 
typically generated every six hours, while METAR reports are normally sent 
once an hour. The reporting frequency may however differ between stations. 
Weather reports generated by airport weather stations located in the United 
States are generally designated by AWOS (Automated Weather Observing 
System) and ASOS (Automated Surface Observing System) reports. The main 
difference between these systems is related to which institutions are 
responsible for the operation and control of the units.  
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The offshore weather observations included in the NCEP ADP dataset are 
recorded on moving and fixed ships, on moving and fixed MArine Reporting 
Stations (MARS), and on moored and drifting buoys. 

NCEP ADP surface observations are publicly available for the period 
1999-10-01 to the present, through the Research Data Archive's webpage 
(RDA, 2012) in dataset number ds461.0. SYNOP and METAR data are also 
available through the software package WindPRO (Thøgersen et al., 2010a) 

Figure 2-1 illustrates the spatial distribution of the surface weather stations 
reporting data over GTS on a particular day in 1993.  

 

 

Figure 2-1. Surface stations reporting over GTS on a particular day in 1993 (Shea, 
1995). 

 
It should be emphasized that the spatial distribution of the surface weather 
stations has varied considerably with time, leading to spatial and temporal 
gaps in the surface station coverage. As illustrated in Figure 2-1 the tropics 
and the southern hemisphere have considerably fewer stations than Europe 
and North America. Furthermore, there are other known limitations associated 
with these observations related to spatial and temporal inhomogeneities. 
Changes in for example the location of the stations, in the surroundings, 
instruments used, observing times, recording methodology, and in the 
averaging techniques may result in the introduction of systematic errors in 
the observations that are often complicated to account for. 
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2.1.2 Satellite observations of the ocean surface 
 

QuikSCAT and Seawinds data 
 

QuikSCAT is the name of a satellite launched on 1999 carrying onboard a 
microwave scatterometer named SeaWinds. As the name suggests, the main 
mission of this scatterometer was to measure the wind near the ocean 
surface. The QuikSCAT satellite was operational until the end of 2009. At the 
end of 2002, a nearly identical SeaWinds scatterometer was launched 
onboard the satellite ADEOS-II which though failed about 1 year later. Data 
from the SeaWinds scatterometer onboard QuikSCAT is typically known as 
QuikSCAT data, or as QuikSCAT/SeaWinds data; data from the Seawinds 
scatterometer onboard ADEOS-II is typically known as SeaWinds data.  

Both these scatterometers are radars that emit microwaves pulses with a 
frequency near 14 GHz down to the Earth's surface where they are scattered 
back to the instrument. The power of the backscattered pulses depend on the 
ocean surface roughness which is strongly related to the near-surface wind 
speed and direction (wind stress). Consequently, the wind speed and direction 
at 10 meters above the ocean surface may be derived from the measured 
scattered power. Wind speed vectors are only derived for locations at a 
distance larger than 30 km of land/ice boundaries. Furthermore, it might be 
difficult to distinguish between changes in the surface roughness caused by 
wind stress and those caused by rain. Therefore, the reliability of the derived 
surface wind tends to be lower when rain is present. Erroneous cross track 
vectors and/or unrealistic high speeds may occur. In order to allow the 
filtering of rain contaminated data, a rain flag is available in the data files.  

QuikSCAT and Seawinds data are produced by the research company Remote 
Sensing Systems (RSS) and sponsored by the NASA Ocean Vector Winds 
Science Team. QuikSCAT and Seawinds data are available at RSS's webpage 
(RSS, 2012) for the periods 1999.07.19 - 2009.11.19 and 2003.04.10 - 
2003.10.24, respectively. The data is mapped to a 0.25 x 0.25 degrees grid 
and is provided twice daily according to the timing of the ascending and 
descending satellite swath coverage. Note, however, that these datasets do 
not extend to the present since their generation has been concluded.  

 

Blended Sea Winds dataset 
 

Blended Sea Winds is the designation of a dataset that contains blending 
observations of the ocean surface wind speed, and of the surface wind 
stresses, measured onboard multiple satellites (up to 6 satellites) equipped 
with scatterometers. The blending of observations from multiple satellites 
allows a larger spatial and temporal coverage of the measurements as 
compared to the individual satellite datasets. The wind speed at 10 m above 
the ocean surface is retrieved on a global 0.25 x 0.25 degrees grid and with 
6-hours temporal resolution. The blended speeds are then decomposed into 
the zonal and meridional wind speed components (hereafter designated as the 
U and V components of the wind speed) using the NCEP Reanalysis 2 wind 
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direction value at the corresponding gridpoints. A description of the NCEP 
Reanalysis 2 dataset may be found in Section 2.2.2. 

Blended Sea Winds data are available for the period 1987.07.09 to the 
present, and may be acquired through the webpage of the National Climatic 
Data Center (NCDC) of the National Oceanic and Atmospheric Administration 
(NOAA) agency (NCDC, 2012a). 

2.2 Reanalysis global datasets 
 

Atmospheric reanalysis consists on the use of a constant data assimilation 
system to ingest worldwide observational data spanning a large time period 
back in time. The observational data have a rather wide range of sources, 
such as surface weather stations, weather balloons, airport reports, 
commercial aircrafts, and satellite measurements. Normally, these data 
correspond to different observation times and different spatial resolutions. 
When ingested by a data assimilation system, the observational data are used 
as input to a Numerical Weather Prediction model (often referred to as a 
General Circulation Model (GCM) when applied to the whole Earth) in order to 
create a description of the state of the atmosphere on an uniform horizontal 
grid and at uniformly spaced time instants. This process is illustrated in Figure 
2-2.  

 

 

 

Figure 2-2. Schematic illustration of the process involved in the creation of a reanalysis 
global dataset (Courtesy of Cristoph Schär, Institute for Atmospheric and Climate 
Science, ETH Zürich, (Schär, 2012)).  

 
Since reanalysis datasets are produced using a modern and unchangeable 
analysis system in the assimilation of long measurement time series, their use 
in the study of trends and low frequency variability of different atmospheric 
parameters, such as the atmospheric temperature, has become a matter of 
great interest. However, there are several aspects related to the intrinsic 
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accuracy of the reanalysis datasets that makes the use of reanalysis datasets 
questionable. Problems arise mainly due to biases in the observational data 
used as input to the assimilation system. These biases are often related to 
changes in the measuring instruments, in the temporal resolution of the 
measurements, and even in the surrounding environment to the instruments. 
These biases introduce artificial trends and low-frequency variations in the 
reanalysis datasets, making the identification of real climatic changes difficult 
to pursue. However, the typical long temporal extension of reanalysis 
datasets turns their use appropriate as reference data in the long-term 
correction of wind measurements, especially in regions where long-term in 
situ wind measurements are either not available or not reliable. 

The main properties of different reanalysis global datasets considered relevant 
for wind resource assessment are presented in the next sections. The analysis 
of the properties of these data are presented in Chapter 3.1. 

2.2.1 NCEP/NCAR Reanalysis 1  
 

The NCEP/NCAR Reanalysis 1 dataset, also designated as R1 or NNRP, has 
been the most commonly used reanalysis dataset during the last decades. 
This reanalysis project was developed in cooperation by the National Center 
for Atmospheric Research (NCAR) and the National Centers for Environmental 
Prediction (NCEP), in the U.S. The initial main purpose of this project was to 
produce a 40-year record of global analyses of atmospheric fields for the 
period 1957-96. The production of this reanalysis dataset has however 
extended back to 1948 and continues forward to the present. A large variety 
of weather observations, ground, sea, air and satellite-based, are used as 
input to the generation of this dataset. 

Due to its large temporal coverage, the NCEP/NCAR R1 dataset has been 
extensively used for wind resource purposes during the last decade. The 
reanalysis of the U and V components of the wind speed are available on a 
2.5 x 2.5 degrees global grid at different sigma and pressure levels. Sigma 
levels refer to a coordinate system where the vertical level is given in sigma 
units. The sigma coordinate of a given vertical level is given by the ratio 
between the pressure at that level divided by the surface pressure. In this 
way, the 0.995 sigma level corresponds to a vertical level with a pressure of 
99.5% of the surface pressure. This corresponds to an altitude of 
approximately 42.2 m above the ground, assuming standard atmosphere 
conditions. The analysis of the U and V components at a level of 10 m above 
the ground are also retrieved. Note however that these parameters are 
forecast products, not reanalysis products. 

The NCEP/NCAR R1 reanalysis dataset is available at 6 hour intervals and may 
be downloaded from the NOAA/OAR/ESRL PSD webpage (PSD, 2012), or from 
the Research Data Archive's webpage (RDA, 2012) in dataset number 
ds090.0. The compiled wind speed and direction at the 0.995 sigma level and 
at the 10 m surface level are also available through the WindPRO software. 
More information of the NCEP/NCAR R1 dataset may be found in Kalnay et al. 
(1996). 



ELFORSK 
 

9 
 

2.2.2 NCEP/DOE Reanalysis 2  
 

The NCEP/DOE Reanalysis 2 dataset is an improved version of the NCEP 
Reanalysis 1 dataset that includes the addition of more observations, the 
correction of errors and updated parametrizations. The spatial and temporal 
resolutions of this dataset are the same as for NCEP/NCAR R1, but the dataset 
extends back only to 1979 instead of 1948 as NCEP/NCAR R1 does. The 
NCEP/NCAR R2 reanalysis dataset is kept current and may be downloaded 
from the Research Data Archive's webpage (RDA, 2012) in dataset number 
ds091.0. Kanamitsu et al. (2002) gives a detailed description of the 
NCEP/DOE Reanalysis 2 dataset. 

2.2.3 NCEP/CFSR and NCEP/CFSv2 
 

In 2010, NCEP delivered a new reanalysis dataset named Climate Forecast 
System Reanalysis (CFSR). The general atmospheric circulation model used in 
the assimilation process associated with the generation of this dataset 
includes improvements as compared to the model used in the generation of 
the NCEP/NCAR R1 and NCEP/DOE R2 datasets. For instance, a description of 
the atmosphere-ocean coupling, as well as an interactive sea-ice model, are 
included. Furthermore, the assimilation of satellite measurements of surface 
radiances is performed for the entire period. Hourly time series of several 
different parameters are available on global grids with different spatial 
resolutions: 0.3, 0.5, 1.0 and 2.5 degree resolution. However, the U and V 
components of the wind speed are available, as a reanalysis product at the 
0.995 sigma level, only on a global grid with 0.5 x 0.5 degree resolution and 
6-hours time resolution. The U and V variables at 10 m height above ground 
are available at a higher spatial resolution (0.3 x 0.3 degree resolution), and 
higher temporal resolution (1 hour), but only as a forecast product, not as a 
reanalysis product reanalysis. 

The NCEP/CFSR dataset covered initially the 31-year period of 1979 to 2009 
but has then been extended to March 2011, when its termination occurred. 
However, in March 2011, NCEP upgraded their forecast system to the same 
assimilation system used to create NCEP/CFSR. This system is designated as 
the Climate Forecast System Version 2 (CFSv2) and retrieves analysis and 
forecast products since April 2011 up to the present. As long as no changes 
occur in this model, the NCEP/CFSv2 analysis products may be considered as 
an extension of the NCEP/CFSR reanalysis products. Note, however, that 
NCEP does not intend to keep the CFSv2 system constant in time. CFSv2 is 
intended to be used as an operational forecast system. Consequently, 
upgrades of the system may occur in the future. The termination of the 
NCEP/CFSR/CFSv2 reanalysis dataset will then occur. The spatial and 
temporal resolutions of the U and V components of the wind speed at the 
0.995 sigma level, continue being 0.5 x 0.5 degree and 6 hours in the CFSv2 
dataset.  

The CFSR and CFSv2 6-hourly products may be downloaded from the 
Research Data Archive's webpage (RDA, 2012) in dataset numbers ds093.0 
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and ds094.0, respectively. More information on these datasets may be found 
in Saha et al. (2010). 

2.2.4 NOAA-CIRES Twentieth Century Global Reanalysis Version II 
(20CRv2). 

 

The Physical Sciences Division of the Earth System Research Laboratory from 
NOAA and the CIRES/Climate Diagnostics Center of the University of Colorado 
developed the Twentieth Century Reanalysis Project (20CR) with the main 
objective of producing a global reanalysis dataset spanning about 140 years, 
from November 1869 to the end of 2010, to place current atmospheric 
circulation patterns into a historical perspective. This reanalysis dataset differs 
from other reanalyses in the fact that only surface observations of synoptic 
pressure are assimilated into the global atmospheric model used to produce 
the reanalysis data. As boundary conditions for the atmosphere are used 
monthly sea surface temperature and sea ice distributions.  The reanalysis of 
the U and V components of the wind speed are available with 6-hours 
temporal resolution on a global grid with 2 x 2 degrees resolution, for the 
time period between 01.11.1869 and 31.12.2010. The data are available at 
different pressure levels, at the 0.995 sigma level and at the tropopause. 

The NOAA-CIRES Twentieth Century Reanalysis Version II data may be 
downloaded for instances from the Research Data Archive's webpage (RDA, 
2012) in dataset number ds131.1. The version I of the NOAA-CIRES 
Twentieth Century Reanalysis data is identical to version II but includes only 
the years 1908 to 1958. Version I data is archived in RDA's dataset ds131.0. 
The NOAA-CIRES Twentieth Century Reanalysis Version II dataset is hereafter 
designated as the 20CRv2 dataset. Further information on this dataset may 
be found in Compo et al. (2011). 

2.2.5 MERRA 
 

The Modern Era Retrospective-analysis for Research and Applications (MERRA) 
is a reanalysis dataset produced by the Global Modeling and Assimilation 
Office (GMAO) of the NASA Goddard Space Flight Center. The data 
assimilation system used is the GEOS-5 system (Goddard Earth Observing 
System Version 5), which incorporates a new set of physics packages for the 
atmospheric general circulation model. Furthermore, GEOS-5 incorporates a 
joint analysis with NCEP, benefiting in this way from the developments 
achieved at NCEP, particularly regarding the assimilation of radiances. MERRA 
assimilates observations from a broad spectra of instruments including 
ground- and sea-based instruments, as well as instruments onboard balloons, 
aircrafts and satellites. 

The MERRA reanalysis of the U and V components of the wind speed are 
produced on a global grid with an horizontal resolution of 1/3 degrees 
longitude by 1/2 degrees latitude, at different pressure levels and at the 50 m 
level above the ground. These data consist of continuous sequences of data 
averaged over a time interval of 1 hour and time stamped with the central 
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time of the interval. MERRA data spans 1979 to the present. The data is 
available through the Modeling and Assimilation Data and Information 
Services Center's (MDISC) webpage (MDISC, 2012) More information on the 
MERRA data may be found in Lucchesi (2008). 

2.2.6  ERA-Interim and ERA-40 
 

ERA-Interim is a reanalysis dataset produced by the European Centre for 
Medium-Range Weather Forecasts (ECMWF) that extends backwards to 1979 
and continues forward in time. ERA-Interim provides a transition (interim) 
between the previous reanalysis dataset ERA-40, with data for the period 
1957-2002, and the next generation reanalysis in preparation at ECMWF. 
ERA-Interim has a finer spatial resolution (0.75 x 0.75 degrees) as compared 
to ERA-40 (1.125 x 1.125 degrees), uses an enhanced data assimilation 
system (4D-Var instead of 3D-Var1), and takes advantage of improved model 
physics. Furthermore, ERA-Interim benefits from an improved quality control 
of observational data, more extensive use of radiance data, as well as 
improved bias correction of satellite data. ERA-Interim reanalysis data has a 
temporal resolution of 6 hours and is publicly available through ECMWF's 
webpage (ECMWF, 2012). More information on the ERA-Interim dataset may 
be found in Berrisford et al. (2009) and Dee et al. (2011). The ERA-40 
dataset is described in Uppala et al. (2005). 

2.2.7 JRA-25 and JRA-55 
 

The Japanese 25-year Reanalysis (JRA-25) is the first long-term reanalysis 
project developed in Asia. It was conducted as a joint research project by the 
Japan Meteorological Agency (JMA) and the Central Research Institute of 
Electric Power Industry (CRIEPI). JRA-25 was generated using the latest 
numerical assimilation and forecast system developed at JMA and covers the 
period from 1979 to 2004. In similarity to the previously described reanalysis 
datasets, JRA-25 assimilates observations from a broad spectra of 
instruments including ground- and sea-based instruments, as well as 
instruments onboard balloons, aircrafts and satellites. A large part of the 
observational data used in the production of JRA-25 is ERA-40 observational 
data supplied by ECMWF. JRA-25 data is available with a spatial resolution of 
1.25 degrees in latitude and longitude and with 6 hours temporal resolution. 
JRA-25 data may be downloaded from the website JRA (2012). A description 
of this dataset is found in Onogi et al. (2007). 

JRA-55 is a reanalysis dataset planned to be released in mid-2013 that will 
cover the period 1958-2012. JRA-55 will be generated using an improved data 
assimilation system (4D-Var instead of 3D-Var) and will include many 
improvements as compared to JRA-25, such as increased model resolution, 
improved bias correction methods for satellite data, and updated dynamical 

                                          
1 Information on the differences between 3D and 4D variational data assimilation may 
be found in Schär (2012). 
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and physical processes. More information on the JRA-55 dataset may be 
found in Ebita et al. (2011). 

2.2.8 Summary of the main properties of different reanalysis global 
datasets. 

 

The main properties of the different reanalysis global datasets described 
above are summarized in Table 1 below. The datasets are ordered according 
to their release year. R1 constitutes the so called 1st generation reanalysis; 
The followers R2, ERA-40 and JRA-25 constitute the 2nd generation reanalysis; 
the recently developed reanalysis datasets ERA-Interim, MERRA, CFSR/CFSv2, 
20CR and JRA-55 in development, benefit from several improvements as 
compared to the 2nd generation reanalysis, constituting the 3rd generation 
reanalysis. 
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Release 
year 

Reanalysis Institution 

Horizontal 
resolution 

lat x lon (deg) 

Vertical level of 
interest 

Temporal 
resolution 

Data 
assimilation 

scheme 

Temporal 
coverage 

1995 R1 NCEP/NCAR 2.5 x 2.5 0.995 sigma level 6 h 3D-Var 1948 - on 

2002 R2 NCEP/NCAR 2.5 x 2.5 0.995 sigma level 6 h 3D-Var 1979 - 2010 

2005 ERA-40 ECMWF 1.125 x 1.125 10 m a.g.l. 6 h 3D-var 9/1957 - 8/2002 

2006 JRA-25 JMA & CRIEPI 1.25 x 1.25 10 m a.g.l. 6 h 3D-Var 1979 - 2004 

2008 ERA-Interim ECMWF 0.75 x 0.75 10 m a.g.l. 6 h 4D-var 1979 - on 

2009 MERRA NASA 1/2 x 2/3 50 m a.g.l. 1 h 
3D-Var with 
incremental 

update 
1979 - on 

2009 CFSR NCEP 0.5 x 0.5 0.995 sigma level 1 h 3D-Var 1979 - 3/2011 

2010 20CRv2 NOAA-CIRES 2.0 x 2.0 0.995 sigma level 6 h 
Ensemble 

Kalmar Filter 
11/1869 - 
12/2010 

2011 CFSv2 NCEP 0.5 x 0.5 0.995 sigma level 6 h 3D-Var 4/2011 - on 

expected 
2013 

JRA-55 JMA --- --- --- 4D-var 1958-2012 

 

Table 1. Main properties of different reanalysis global datasets ordered according to their release year. The background gray color with 
increasing darkness marks the 1st, 2nd, and 3rd generation reanalyses. The 0.995 sigma level corresponds to an altitude of about 42 m 
a.g.l. 1 degree latitude is equivalent to approximately 111.4 km for the latitudes of the Scandinavia, and 1 degree longitude to 55.8 km.
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2.3 Reanalysis mesoscale datasets 
 

Since the reanalysis global datasets have typically rather coarse temporal and 
spatial resolutions, there is the need for datasets with finer spatial and 
temporal resolutions that may represent the local wind climate with higher 
accuracy. Mesoscale numerical models may be used to downscale reanalysis 
global data to a horizontal grid with finer resolution (typically 1 km x 1 km to 
10 km x 10 km) and with hourly temporal resolution. The resultant long-term 
time series are here designated as reanalysis mesoscale datasets, but are also 
known as virtual time series or virtual met masts.  

There is a large number of different reanalysis mesoscale datasets available in 
the market. Note however that none of them are publicly available. For this 
reason, only the two mesoscale datasets produced at Kjeller Vindteknikk have 
been used in the present study. These datasets are therefore briefly described 
below. 

2.3.1 WRF FNL 
 

WRF FNL is the name of a long-term dataset produced by Kjeller Vindteknikk 
using the mesoscale model WRF driven by FNL data.  

The Weather Research and Forecast (WRF) model is a state-of-the-art 
mesoscale numerical weather prediction system, aiming at both operational 
forecasting and atmospheric research needs. The model version used to 
produce the WRF FNL dataset is version v3.2.1 described in Skamarock et al. 
(2008). Details on the modeling structure, numerical routines and physical 
packages available can be found in Klemp et al. (2000) and Michalakes et al. 
(2001). The development of the WRF model is supported by a strong scientific 
and administrative community in U.S.A. The number of users is large and is 
growing rapidly. The code is publicly accessible through the WRF's webpage 
(WRF, 2012). 

The solving of the model equations requires the definition of the boundary  
conditions of the area of interest, as well as of the initial conditions. FiNaL 
operational global analysis data (FNL) produced by NCEP is used in the 
definition of the boundary and of the initial conditions. NCEP FNL data is 
available as global data with 1 degree resolution and 6 hours temporal 
resolution and is an analysis product from the Global Data Assimilation 
System (GDAS). It should be noted that NCEP FNL is an analysis product, not 
reanalysis, since GDAS is not kept constant in time.  
 
WRF FNL data is available for the time period 2000 to the present with a 
temporal resolution of 1 hour and a horizontal resolution of 4 km x 4 km.  
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2.3.2 WRF ERA-Interim 
 

WRF ERA-Interim is another long-term dataset produced at Kjeller 
Vindteknikk. The main difference between WRF ERA-Interim and WRF FNL is 
the data used in the definition of the boundary and initial conditions. 
ERA-Interim reanalysis data is used in this case instead of NCEP FNL analysis 
data. WRF ERA-Interim data is available for the period 1992 to the present 
with 1 hour temporal resolution and 6 km x 6 km horizontal resolution.  
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3 Using reanalysis data to describe 
the local wind climate in terrain 
with low complexity  

This chapter presents an analysis of the ability of reanalysis data to describe 
the local wind climate in terrain with low complexity. First, a discussion is 
presented on the temporal and spatial characteristics of reanalysis global data 
over the geographical region located between 54 and 72 degrees North and 4 
and 32 degrees East. This region covers Norway, Sweden, Denmark, Finland 
and the Baltic states, and is hereafter designated by focus region. Secondly, 
the correlation coefficients of the relationships between reanalysis data and 
local wind measurements, from 42 different sites located in terrain with low 
complexity, are analyzed. Finally, a discussion is presented concerning the 
difficulties on defining the long-term data's representativeness, i.e., on 
defining how well long-term data from a reference site represents the long-
term wind climate at the measurement site. 

3.1 Analysis of the temporal and spatial characteristics of 
reanalysis data 

 

Reanalysis data constitute a relevant tool in the investigation of past climate 
variability (Trenberth, 2010). However, the assimilating atmospheric models 
used in the generation of reanalysis data are prone to biases which may be 
corrected through the use of abundant and unbiased observations. Difficult 
challenges arise though when the spatial and temporal coverage of the 
observations are poor, and when the observations are themselves biased due 
to changes in the instrumentation or in the recording system. This may result 
in the introduction of artificial trends and low-frequency variations, i.e. 
inconsistencies, in the reanalysis data that are mixed with true climatic 
changes.  

The use of reanalysis data as representative of the local long-term wind 
climate, and in the consequent estimate of the long-term energy production 
of wind farms, is a common practice. Either publicly available reanalysis 
global datasets, or commercial mesoscale reanalysis datasets with finer 
spatial and temporal resolutions, may be used. The consistency of the data is 
however an important issue that should be taken into account when choosing 
the most appropriate long-term dataset. This issue is addressed in Sections 
3.1.1 and 3.1.2, below. 

Long-term weather observations from climate monitoring stations may also be 
used in the long-term correction of wind measurements. These are however 
rather sparse and often affected by inhomogeneities As emphasized in  
Section 2.1.1, there are known limitations in the measurements from surface 
weather stations that may induce systematic errors in the data, requiring a 
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careful cleaning of erroneous data. Data from the NCEP ADP dataset is not 
included in the analysis below. However, the analysis methods presented 
below may also be used in the analysis of these and other long-term data. 

The QuickSCAT and Seawinds datasets described in Section 2.1.2 are also not 
investigated in this report since these datasets have terminated in 2009 and 
2003, respectively, and are therefore not relevant for use in the long-term 
correction of ongoing measurements. Results on the analysis of QuickSCAT 
data may be found in e.g. Hasager et al. (2006) and Harstveit et al. (2012). 
Note, that the Blended Sea Winds dataset is kept current and may therefore 
be of interest for the long-term correction of offshore wind measurements. 
Nevertheless, since the geographical focus area of this study is mainly 
onshore, the analysis of Blended Sea Winds data is not included in this report. 

3.1.1 Linear rate of change maps 
 

In order to analyze and compare the temporal and spatial characteristics of 
different reanalysis datasets, the linear rate of change of the wind speed for 
the period 1979 to 2004 was calculated for each grid point of the reanalyses 
R1, JRA-25, ERA-Interim, MERRA and CFSR/CFSv2. The choice of these 
reanalysis datasets is based on the fact that all of them are kept current and 
are therefore relevant to wind resource analysis. The choice of the period 
1979-2004 is justified by the fact that the JRA-25 dataset has data only until 
2004, and all of them have data from 1979. Since the reanalysis mesoscale 
datasets WRF FNL and WRF ERA-Interim begin only on 2000 and 1992, 
respectively, they are not included in this analysis. 

The methodology used in the calculation of the linear rate of change is 
illustrated in Figure 3-1 based on data for a specific grid point. The monthly 
average of the wind speed at 42 m a.g.l. from the R1 grid point 60.0◦ N 17.5◦ 

E is shown in blue for the period 1979 to 2004. The monthly averages are 
normalized to the mean wind speed of the entire period. The black line shows 
the 12-months moving average of the monthly mean wind speed. The linear 
function that best fits, according to the least squares principle, to the 
12-months moving averaged data is shown in red. 

The linear rate of change of a given wind speed series during a given time 
period is here defined as the slope of the linear function that best fits the 
12-months moving average of the monthly mean wind speed during that 
period. This parameter is commonly used in climatology to measure long-term 
trends in different meteorological variables, such as temperature (e.g. 
Simmons, 2004). 
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Figure 3-1. The blue line shows the monthly mean wind speed for the period 1979 to 
2004 of the R1 grid point 60.0◦ N 17.5◦ E , normalized to the mean wind speed for the 
entire period. The 12-months moving average of the monthly mean wind speed is 
shown in black. The red line shows the linear function that best fits to the black curve.  

 
Using the methodology described above, the linear rate of change of the wind 
speed corresponding to each grid point of the R1, JRA-25, ERA-Interim, 
MERRA and CFSR/CFSv2 datasets, and located within the chosen focus area, 
was calculated. The results are presented in the form of rate of change maps 
in Figure 3-2. The top panels show the rate of change maps of the surface 
wind speed, while the bottom panels show the rate of change maps for the 
wind speed at the 850 hPa pressure level retrieved from the different 
reanalysis datasets. The wind speed at the pressure level of 850 hPa may be 
considered a good approximation of the geostrophic wind, i.e., the wind 
driven by the balance between the Coriolis force and the pressure gradient 
force. 
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Figure 3-2. Rate of change maps for the surface (top row) and geostrophic (bottom row) reanalysis wind speed time series from the R1, 
JRA-25, CFSR/CFSv2, MERRA and ERA-Interim datasets, for the period 1979-2004.
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The following conclusions may be drawn from the results presented in Figure 
3-2: 

• The linear rate of change of the R1 and JRA-25 surface wind speed 
data in the period 1979-2004 shows rather large differences between 
the grid cells in parts of the analyzed region. These differences appear 
much smoother in the finer resolution datasets, particularly in ERA-
Interim and MERRA. 

The coarse spatial resolution of the R1 and the JRA-25 datasets 
(2.5x2.5 and 1.25x1.25 degrees, respectively, see Table 1) may 
explain the observed large differences in the linear rate of change of 
neighbor grid points at the surface level. Due to the large dimensions 
of a grid cell, the atmospheric conditions at the boundaries of a given 
grid cell may differ significantly at the surface level, and probably less 
significantly at the 850 hPa level. Consequently, larger differences in 
the temporal characteristics of the data for different grid points may be 
expected mainly at the surface level for the low resolution datasets. 

• The linear rate of change of the geostrophic wind (bottom panels) is 
more homogeneous throughout the analyzed area and varies less 
between the models. These results are associated with the larger 
spatial scale of the wind speed patterns at the 850 hPa level as 
compared to that at the surface level. 

• The rate of change maps of ERA-Interim, MERRA and CFSR/CFSv2 are 
rather similar to each other. At the surface level, CFSR/CFSv2 wind 
speed data show more extreme values as compared to ERA-Interim 
and MERRA. Note, however, that the answer on how the linear rate of 
change map should look like is not known. Therefore one can't say that 
a given reanalysis gives a more correct result than the other. It is 
though important to be aware that different reanalyses have different 
spatial and temporal characteristics. This has an impact in the 
long-term corrected wind conditions. In a case study presented by 
Liléo and Petrik (2011) a difference of 14 to 18 % in the estimated 
long-term energy at a given position was obtained, using reanalysis 
data from closely located grid points, associated with different linear 
rates of change. 

 

Based on the conclusions presented above, we recommend the use of 
reanalysis wind speed data with fine spatial resolution in the long-term 
correction of wind measurements. Moreover, the finer resolution reanalysis 
datasets ERA-Interim, MERRA and CFSR/CFSv2  belong to the 3rd generation 
reanalysis (Table 1) which favors from advances in the assimilation 
techniques, as well as in the used global atmospheric model, as compared to 
the previous generation reanalyses. For these reasons, the reanalysis 
datasets R1 and JRA-25 are discarded at this point, and are therefore not 
included in the remaining study. An investigation study on the use of the R1 
dataset in the long-term correction of wind measurements may though be 
found in Liléo and Petrik (2011). 
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3.1.2 Decomposition into high and low-frequency components  
 

A further analysis of the specific wind speed long-term time series intended to 
be used in the long-term correction of wind measurements is recommendable 
in order to detect possible structural changes in the data. 

BFAST (Breaks For Additive Seasonal and Trend) is a technique used to detect 
changes in the structure of time series by decomposing the series into three 
different components: a periodic high-frequency component designated as 
seasonal component, a low-frequency component designated as trend, and a 
noise component (remainder). BFAST has been developed by Verbesselt et al. 
(2009) to detect trend and seasonal changes in the land cover using satellite 
image time series. Their approach may however be applied to a broad spectra 
of other fields including the analysis of long-term wind data. The main 
difference between BFAST and standard time series decomposition methods 
(e.g. Fourier decomposition) is that BFAST integrates the iterative 
decomposition of time series into trend, seasonal and noise components with 
methods for detecting and characterizing changes (breakpoints) within the 
time series. BFAST is integrated as a package in the R system for statistical 
computing. The package can be downloaded from the Comprehensive R 
Archive Network (CRAN) through the webpage CRAN (2012). 

Figure 3-3 shows the decomposition of the reanalysis wind speed data 
(normalized 12-months moving average) from the R1 grid point 60◦N 17.5◦E 
into seasonal, trend and remainder components (same grid point as shown in 
Figure 3-1). Note that "seasonal" designates in this context the high-
frequency component of the data which may have a periodicity of a couples of 
years, and is not necessarily related to  the variation of the wind in the 
different seasons of the year. 

The top panel shows the annual averages of the wind speed data from the 
0.995 sigma level for the period 1948 - 2011. The second and third panels 
show the decomposition of the data into the high and low-frequency 
components (seasonal and trend components). The bottom panel shows the 
remainder, i.e., the difference between the data and the sum of the seasonal 
and the trend components. The solid bars on the right hand side of the panels 
show the same data range, to facilitate comparisons.  
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Figure 3-3. Example of the application of BFAST in the analysis of a wind speed time 
series. The top panel shows the normalized 12-months moving average of the wind 
speed data from the R1 reanalysis grid point 60◦N 17.5◦E for the period 1948 - 2011. 
The second and third panels show the decomposition of the data into the seasonal and 
trend components, respectively. The bottom panel shows the remainder, i.e., the 
difference between the data and the sum of the seasonal and  trend components. 

 
Clear changes in the trend component may be identified between 1979 and 
1989, and around 1999. Later on in Chapter 5, results are presented that 
indicate unusual low annual mean wind speeds in the period 1976-1981, and 
unusual high mean wind speeds in the period 1989-1995, which may justify, 
at least partly, the observed changes in the trend component shown in Figure 
3-3.  
 
The decomposition of the data into high and low-frequency components is a 
relevant analysis technique that aids the further study of the temporal 
characteristics of the data, and the choice of the reference period to be used 
in the long-term correction of measurements. This last issue is further 
discussed in Chapter 6.  
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3.2 Strength of the relationship to local wind 
measurements 

 
Data from the reanalysis global datasets ERA-Interim, MERRA and 
CFSR/CFSv2 and from the reanalysis mesoscale datasets WRF FNL and WRF 
ERA-Interim are used in this section to analyze the strength of the 
relationship between reanalysis data and wind measurements. The reanalysis 
global datasets R1 and JRA-25 are not included in this analysis due to the 
reasons presented in Section 3.1.1. 

3.2.1 Description of the database used 
 
A database composed by data recorded at 24 met masts placed in sites 
potentially suitable for wind power development, and at 18 masts belonging 
to meteorological stations, has been used in this study. These masts are 
located in Norway, Denmark and Sweden, in terrain with rather low 
complexity. The precise location of the masts is not presented in this report 
for confidentiality reasons. Data from the meteorological stations were 
retrieved through NCDC's Land-based Data webpage (NCDC, 2012b) for the 
period 2002 to 2009. Wind speed and direction data from each of the masts 
included in the database have been inspected manually. Erroneous data and 
data influenced by the formation of ice on the sensors have been removed. 
The measurements are from 10, 50, 80 and 100 m height, and the 
measurement period varies between 1 and 8 years.  

3.2.2 Results 
 
The strength of the relationship between the wind speed data measured at 
each of the masts included in our database, and the wind speed data from the 
nearest located reanalysis grid point, has been measured by means of the 
Pearson correlation coefficient, R, calculated based on concurrent data at the 
highest possible temporal resolution (6 hours for ERA-Interim and 
CFSR/CFSv2 data and 1 hour for MERRA data), i.e., no averaging is involved. 
The term concurrent data is used in this report to designate data with 
identical time stamps. 

The definition of the Pearson correlation coefficient has been adopted in this 
report as the measure of the strength of the relationship between two 
variables2. If nothing else is specified, the definition of the Pearson correlation 
coefficient is used whenever the term correlation coefficient is mentioned.  

Surface and geostrophic wind speed data from ERA-Interim, MERRA and 
CFSR/CFSv2, as well as surface wind data from WRF FNL and WRF 
ERA-Interim have been included in this analysis. The median value of the 
correlation coefficients obtained for the considered sites, and for a given 
                                          
2 The Pearson correlation coefficient is the most commonly used definition of the 
correlation coefficient. It measures the strength of the relationship between two 
variables, being sensitive only to a linear relationship between the variables (Wikipedia 
Correlation, 2012). 
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reanalysis dataset, is plotted with a blue bar in Figure 3-4 below. Each bar 
corresponds to a reanalysis dataset. The median values are also explicitly 
displayed in the figure. The lower and the upper whiskers mark the minimum 
and the maximum values of the obtained correlation coefficients, respectively. 
The lower and the upper edges of the white boxes mark the first and the third 
quartiles, respectively. Note that the quartiles divide the samples into four 
equally sized parts, and that the second quartile is the same as the median 
(shown with the blue bars and the displayed values). Within each white box is 
located half of the samples. Larger boxes represent a larger dispersion of the 
results. 

Such a box-and-whisker plot showing the minimum, the three quartiles and 
the maximum of the results is considered to adequately represent the 
distribution of the results, since the correlation coefficient has most likely a 
non-normal distribution (Gorsuch and Lehmann, 2010). 

 

 

 
 
Figure 3-4.  Box-and-whisker plot of the correlation coefficient (R) of the relationship 
between wind speed measurements from 42 different sites and wind speed data from 
the nearest located reanalysis grid point. Data from the surface level (10, 42, 50 and 
100 m a.g.l.) and from the geostrophic level (850 hPa pressure level) from different 
reanalyses are used. The blue bars and the displayed values show the median of the 
results. The lower and the upper whiskers mark the minimum and the maximum 
values, respectively. The lower and the upper edges of the boxes mark the first and 
the third quartiles, respectively. The median is the same as the second quartile. 
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The results presented in the figure above suggest the following conclusions: 
 

• The relationship between measured wind speed data and reanalysis 
geostrophic wind speed data (850 hPa level) is weaker than the 
relationship with reanalysis wind speed data from the surface level. 
This result was expected since the weather patterns in the atmosphere 
are shifted in time with height, and because the strength of the 
relationship (i.e. the correlation coefficient) is related to  simultaneity 
(i.e. simultaneous occurrence in time). 

 
• The relationship between measured and MERRA wind speed data is, for 

the majority of the analyzed cases, stronger than the relationship with 
the remaining reanalysis datasets. The larger correlation coefficients 
obtained for MERRA as compared to WRF FNL and WRF ERA-Interim 
suggests that a finer spatial resolution of the long-term reference data 
may not necessarily result in a larger correlation coefficient. The 
correlation coefficient calculated based on hourly values is first and 
foremost a measure of how well the short-term fluctuations in the 
reference and in the measured wind speed data agree in phase. The 
correlation coefficient does not measure, for example, how well the 
mean wind speed level of the reference data agrees with that of the 
measured wind. Modeled datasets with fine spatial resolution such as 
WRF FNL and WRF ERA-Interim may capture some properties of the 
local wind climate, such as the mean wind speed level, more 
accurately than datasets with coarser spatial resolution (e.g. MERRA). 
This property is of high relevance for wind resource mapping for 
example, but not as relevant in the long-term correction of wind 
measurements. 
 

• Similar analysis should be conducted for sites located in complex 
terrain and looking at other parameters such as the wind direction and 
the frequency distribution. 
 

3.2.3 Is the correlation coefficient an appropriate measure of 
representativeness? 
 

The correlation coefficient calculated based on hourly data has been used 
above to investigate how well different reanalysis datasets represent the local 
wind climate at measurement sites. However, as discussed above, a large 
hourly correlation coefficient is strongly associated with simultaneity, i.e., with 
the phase consistency of the short-term fluctuations in the reference and in 
the measured wind speeds. But does a good representativeness by the 
reference data require simultaneity? By representativeness is meant how well 
long-term data from a reference site represents the long-term wind variations 
at the measurement site.    
 
Suppose that a met mast is located at the position A and that a weather front 
hits A at a given instant and moves further towards position B located some 
kilometers away. A met mast located at B will experience similar weather as 
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in A, but with some time delay, that is, not simultaneously. The correlation 
coefficient of the relationship between concurrent wind speed data from A and 
B will be low. However, the long-term data from the position A represent well 
the long-term variations in the wind speed at B. This example illustrates that 
representativeness does not require simultaneity. A case of good 
representativeness may result on a low correlation coefficient. 
 
Is the correlation coefficient calculated based on monthly averages of the 
measured and the reference wind speeds a more appropriate measure of the 
reference data's representativeness? The challenge when using monthly 
correlation coefficients is that seasonality (i.e., the seasonal variation of the 
wind conditions) may result being a dominant factor. Ideally, the seasonality 
should be removed in order to allow a better measure of the 
representativeness at other time scales than the seasonal. 
 
The analysis described in Section 3.2.2 was now repeated using the monthly 
correlation coefficient instead of the hourly correlation coefficient. Hourly 
correlation coefficient is here used to designate the correlation coefficient of 
the relationship between the measured wind speed and the concurrent 
reanalysis wind speed. By monthly correlation coefficient is meant the 
correlation coefficient of the relationship between the monthly averages of the 
measured wind speed and the reference (reanalysis) wind speed. Only months 
with a coverage of the measured data larger than 85% have been considered. 
The results obtained are shown in Figure 3-5 using the same format as in 
Figure 3-4. 
 
The comparison between the results presented in Figures 3-4 and 3-5 shows 
the following: 
 
• The monthly correlation levels are higher than the hourly correlation levels 

for all the analyzed reanalysis datasets. Particularly the reanalysis data 
from the 850 hPa level show a rather large relative increase when using 
the monthly instead of the hourly correlation coefficient. This result was 
expected since the monthly correlation coefficient smooth out short-term 
variations.  
 

• The analyzed reanalysis datasets give very similar correlation coefficients 
when calculated on a monthly basis, suggesting that the factors that 
differentiate the different reanalyses are less significant in this case as 
compared to on a hourly basis. 

 
• Both the hourly and the monthly correlation coefficients present limitations 

on their ability to measure the reference data's representativeness. 
Further work should be conducted to define a more appropriate measure 
of representativeness. 

 
• The ability of reanalysis data to represent the wind direction distribution 

as well as the frequency distribution of the wind speed at a given location 
has not been investigated in this study. This is however a relevant issue 
that should be a matter of further investigation.  
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Figure 3-5. Box-and-whisker plot of the correlation coefficient (R) of the relationship 
between the monthly averages of the measured wind speed from 42 different sites and 
of the wind speed data from the nearest located reanalysis grid point. Only the months 
with a data coverage of the site measurements larger than 85% have been 
considered. The lower and the upper whiskers mark the minimum and the maximum 
values, respectively. The lower and the upper edges of the white boxes mark the first 
and the third quartiles, respectively. The median is the same as the second quartile, 
and is shown with the blue bars and with the displayed values. 
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4 Inter-annual variability of the wind 
speed 

Reanalysis data have been used in this chapter to investigate the inter-annual 
variability of the wind speed, i.e., how much the annual mean wind speed 
varies from year to year. The standard deviation of the annual mean wind 
speed is here used as a measure of the inter-annual variability of the wind 
speed in a given time period. Figure 4-1 shows the results obtained based on 
surface wind speed data from the MERRA reanalysis dataset for the period 
1979 to 2011. The values are given as a percentage of the mean wind speed 
in the considered period. 

 

 

Figure 4-1. Standard deviation of the annual mean wind speed based on data 
from the MERRA reanalysis dataset (50 m a.g.l.) for the period 1979-2011. The values 
are given as percentage of the mean wind speed in the period 1979-2011. 

 

The figure above shows that the inter-annual variability of the wind speed is  
rather site-specific, varying between 3 and 7 % in the focus area. A variability 
between 3 and 5 % was obtained over Sweden, southern Finland, Denmark 
and the Baltic countries, while southwestern Norway shows a rather large 
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variability (up to 7 %), and northern Norway and Finland rather low (down to 
about 2.5 %).  

A similar analysis was conducted based on MERRA and WRF ERA-Interim data 
for the 20-year period 1992-2011. The results are presented in Figure 4-2. 
Note that the WRF ERA-Interim dataset available at the moment covers only  
part of the focus area. 

The inter-annual variability of the MERRA mean wind speed in the periods 
1979-2011 and 1992-2011 has very similar amplitudes. It is not possible to 
do such a comparison based on WRF ERA-Interim data, since this dataset 
covers only the period 1992-2011. However, it is interesting to compare the 
MERRA and the WRF ERA-Interim wind variability for the period 1992-2011 
(Figure 4-2). A slightly larger wind variability is observed in the WRF 
ERA-Interim data as compared to MERRA data, particularly over Sweden. This 
result may be coupled to the finer spatial resolution of the WRF ERA-Interim 
data allowing for a more accurate description of the local wind variability. 

In a publication by EWEA (2009), the inter-annual variability of the wind 
speed was investigated based on long-term datasets of about 30 years in 
duration. The authors concluded that although the variability of the wind 
speed is site specific, it tends to be similar across Europe, and can reasonably 
be assumed to be about 6 %. It is however our opinion that the inter-annual 
variability of the wind speed should be estimated specifically for the site in 
consideration, instead of assuming a general value. 

The knowledge on the inter-annual variability of the wind speed is important 
for the following reasons: 

• The inter-annual variability of the wind speed is an important source of 
uncertainty in the estimate of the energy production of a wind farm. A 
variation of the annual mean wind speed of 3 to 7 % corresponds to a 
variation of the annual energy production of a wind farm of about 8 to 
18 % (assuming a factor of 2.5 between change in energy and change 
in wind speed; this factor does however vary from case to case). It is 
therefore important to be aware that the annual energy production of a 
wind farm may deviate from the expected value by about 8 to 18 % 
(depending on the location of the wind farm), just due to the intrinsic 
variability of the wind. The awareness of this fact is important for the 
investors, as well as for the electric utilities that handle the energy 
production. 

• Locations with an expected large wind variability may require longer 
measurement periods in order to allow a better description of the local 
wind climate, not only in terms of the wind speed but also in terms of 
wind direction, stability, wind shear and turbulence. 

• As a further study it would be interesting to analyze the inter-annual 
variability of the wind direction, stability, wind shear and turbulence. 
No publications have been found on these issues. 
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Figure 4-2. Standard deviation of the annual mean wind speed based on data from the MERRA and the WRF ERA-Interim reanalysis 
datasets for the period 1992-2011. The values are given as percentage of the mean wind speed in the analyzed period. 
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5 The past wind climate according to 
20CRv2 data 

Only data from ongoing reanalysis projects have been used in the previous 
chapters, since these are the most relevant ones for the long-term correction 
of wind measurements. Although the production of the 20CRv2 reanalysis 
dataset has terminated in 2010, this dataset spans back to 1869, and may 
therefore, due to its length, be a relevant tool for the analysis of the past 
wind climate. As described in Section 2.2.4, the 20CRv2 dataset differs from 
other reanalyses in the fact that only surface observations of synoptic 
pressure were assimilated. The boundary conditions of the atmosphere were 
defined using monthly sea surface temperature and sea ice distributions. The 
resultant reanalysis products are available in a 2 x 2 degrees global grid and 
with 6-hours temporal resolution.  

In a review article by Compo et al. (2011) results are presented concerning 
the value of the 20CRv2 dataset for model validations and diagnostic studies. 
The authors are enthusiastic with the results obtained. Inter-comparisons with 
independent radiosonde data indicate that the 20CRv2 dataset is in general of 
high quality. The authors state that the quality in the extratropical northern 
hemisphere throughout the century is similar to that of current 3-day 
operational NWP (Numerical Weather Prediction) forecasts.  

5.1 Statistically significant long-term trends in the wind 
speed 

 

In 2009, the Swedish Institute of Meteorology (SMHI) published a report 
concerning the changes in the wind climate in Sweden occurred during the 
period 1901-2008 (Wern and Bärring, 2009). The authors used pressure 
measurements to calculate the geostrophic wind in 11 different triangles 
covering the Swedish territory (Figure 5-1). A detailed quality control of the 
data was conducted by the authors in order to eliminate erroneous 
observations, particularly for the period after 1951, when digitalized data are 
available. 
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Figure 5-1. Definition of the triangles used in the calculation of the geostrophic wind 
performed by Wern and Bärring (2009). Pressure measurements from the stations 
marked with blue dots were used. The red dots mark the locations of alternative 
stations used when data from the main stations are missing (from Wern and Bärring, 
2009). 

 
Based on the geostrophic wind speed calculated for each of the triangles 
shown in the figure above, Wern and Bärring (2009) estimated the linear rate 
of change of the geostrophic wind speed in the period 1951 to 2008. The 
results obtained by the authors are presented in Table 2 below. Aiming to 
compare these results with the equivalent values based on the 20CRv2 
dataset, wind speed data from the 0.995 sigma level of the 20CRv2 dataset 
have been used to estimate the linear rate of change of the wind speed in the 
period 1951 to 2008, for each of the triangles shown in the figure above. The 
results obtained are also included in Table 2 below. 
 
 
 
 
 



ELFORSK 
 

33 
 

Linear rate of change of the wind speed during the period 
1951-2008 (%) 

Triangle 
Results obtained by Wern 

and Bärring (2009) based on 
geostrophic wind speed.  

Results based on surface 
wind speed data from the 

20CRv2 dataset 

1 -3 1.7 

2 4 -0.8 

3 -1 1.0 

4 -2 0.6 

5 -2 2.5 

6 -3 0.4 

7 -10 0.3 

8 -10 -0.9 

9 -6 1.1 

10 -8 -0.9 

11 -2 -1.2 

Mean 
value 

-4 0.3 

Table 2. Comparison between the linear rate of change of the geostrophic wind speed 
obtained by Wern and Bärring (2009) for the period 1951-2008, and the linear rate of 
change of the 20CRv2 wind speed at the 0.995 sigma level during the same period. 

 
There is a general disagreement of the results both in sign and magnitude. 
The results obtained using the 20CRv2 dataset do not confirm the decreasing 
trend concluded by Wern and Bärring (2009) for the wind speed in Sweden 
during the period 1951-2008. Although a great work has been conducted by 
Wern and Bärring (2009) to eliminate erroneous data from the used database, 
surface pressure observations may be affected by systematic errors that may 
still prevail. On the other hand, the 20CRv2 assimilation system includes an 
improved methodology for bias correction of pressure observations that may 
be more efficient on removing systematic errors in the assimilated data. 
 
Furthermore, as noted by Wern and Bärring (2009), results from trend 
analysis should not be used to draw conclusions on the long-term variation of 
the wind climate if the estimated trends are not statistically significant. A 
statistically significant trend means that the probability of that trend will occur 
given no linear long-term variation in the data series, is lower than 5% 
(Wikipedia, Statistical significance, 2012). Wern and Bärring analyzed the 
significance of the estimated trends and concluded that only for 4 of the 11 
triangles the obtained trends are statistically significant.  
 

The left panel in Figure 5-2 shows the linear rate of change map of the 
20CRv2 wind speed for the period 1951 to 2008. This map is the basis of the 
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results presented in Table 2 above. The statistical significance (p-level) of the 
rate of change values shown in this map has been estimated and is presented 
in the right panel of Figure 5-2. A value is significant if the corresponding 
p-level is lower than 0.05. 

The results show that the significance of the estimated linear rate of change 
values is rather weak for most of the grid points located in the Swedish 
territory (p larger than 0.05). It may therefore be concluded that neither the 
results presented by Wern and Bärring (2009) nor the results based on 
20CRv2 data indicate a statistically significant long-term trend in the wind 
speed over Sweden during the period 1951-2008. 

However, the slightly increasing long-term trend observed in the 20CRv2 wind 
speed data over the coastal and inland regions of central and northern 
Norway, appears to be statistically significant, since the corresponding linear 
rate of change values are associated to rather low p-values (the smaller the 
p-level, the more significant the trend). 
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Figure 5-2. Left panel: rate of change map of the wind speed based on 20CRv2 reanalysis data for the period 1951-2008. Right panel: 
Statistical significance (p-level) of the estimated linear rate of change values shown in the left panel. A value is significant if the 
corresponding p-level is lower than 0.05. 
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5.2 Relation between the wind variations and the North 
Atlantic Oscillation  

 

The North Atlantic Oscillation (NAO) index is defined as the air pressure 
difference between the Icelandic low pressure system and the Azores high 
pressure system, and may be seen as a measure of the relative strength of 
these pressure systems (Førland et al., 2009). A large difference in the 
pressure of these systems corresponds to a high NAO index, and is typically 
associated with mild, wet and windy winters in the North Atlantic region.  

Figure 5-3 shows the annual wind index averaged over the focus region, and 
calculated based on the wind speed data from the 20CRv2 dataset. The 
annual wind index is here defined as the ratio between the annual mean wind 
speed, and the wind speed averaged over the period 1920 to 2010. A year 
with a wind index larger/smaller than 100 % corresponds to a high/low wind 
year, i.e, a year with mean wind speed larger/smaller than normal. In the 
same figure is shown the 5-year moving average of the annual wind index in 
red, and the 5-year moving average of the NAO index for the winter months 
(December, January, February and March) in dark blue. 
 

 
 

Figure 5-3. The blue bars show the annual wind index averaged over the entire region 
considered in this study and based on wind speed data from the 20CRv2 reanalysis. 
The index relates the annual mean wind speed with the wind speed averaged over the 
period 1920 - 2010. The red curve shows the 5-year moving average of the annual 
wind index, and the blue curve the 5-year moving average of the NAO index for the 
winter months (December, January, February and March). 
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Wind speed data prior to 1920 is not considered in this analysis since the 
visual inspection of the data showed somewhat suspicious data prior to 1920 
for some of the 20CRv2 grid points.  

The variations in the wind and NAO indexes are seen to follow each other 
rather well. A similar result was earlier obtained by Albers (2004) when 
comparing the NAO index with a wind energy production index for a specific 
location in Germany. 

Since the amplitude of the variations of these indexes have different 
magnitudes, and in order to facilitate the comparison, the variations have 
been normalized with respect to the standard deviation of the indexes. The 
results are presented in Figure 5-4 below. 

 

 
 

Figure 5-4. The normalized deviation of the annual wind index (5-year moving 
average) is shown in red. The blue line shows the normalized deviation of the 5-year 
moving average of the NAO winter index.  

 
The following conclusions may be drawn from Figure 5-3 and Figure 5-4: 
 

• There is a clear relationship between the variations in the wind index 
calculated based on 20CRv2 data, and in the NAO winter index, 
particularly during the period 1935 to 2010. Note that the NAO index 
has no defined periodicity, being impossible to predict how it will vary 
in the future.  
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• The period 1989 to 1995 was characterized by unusual high annual 
mean wind speeds associated with a large positive peak in the NAO 
index. 
 

• The decrease in the mean wind speed seen between 1990 and 2005  
represents a return to the longer-term mean, after the unusual large 
maximum in 1990. This result is in accordance with the conclusions by 
Thomas et al (2009) obtained based on different windiness indexes for 
northern Europe. 
 

• The period 1976 - 1981 had unusual low annual mean wind speeds 
associated with a dip in the NAO index. The period 1922 - 1928 was 
also a low wind speed period, however not consistent with a dip in the 
NAO index. 

 
In the next chapter, the influence of the choice of the reference period in the 
estimate of the long-term corrected wind speed is investigated, benefiting 
from the results presented in this chapter. 
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6 Choice of the reference period  

The main purpose of long-term correction of wind measurements is to 
estimate the future long-term wind conditions at a given site potentially 
suitable to wind power development. However, since it is not possible to 
predict how the wind will vary in the next decades, the past is normally used 
as a predictor of the future wind climate. In other words, it is assumed that 
the wind conditions will vary in the next decades in a similar way as they did 
in the past. But how certain is this assumption? It is important to evaluate the 
uncertainty associated with this assumption and to account for it in the total 
uncertainty of long-term corrected wind. 
 
Another important issue is the choice of the past period that is assumed to be 
representative of the future wind variations. This period is hereafter 
designated as the reference period. The uncertainty in the estimated long-
term corrected wind should also account for the uncertainty inferred by the 
choice of the reference period. 
 
In this chapter, wind speed data from the 20CRv2 reanalysis surface level for 
the period 1951 to 2010 is used to estimate the uncertainty associated with 
the assumption that the future wind climate will vary in a similar way as in 
the past. Furthermore, this data is also used to analyze how the uncertainty in 
the long-term corrected wind depends on the choice of the reference period. 

6.1 Accuracy in the assumption of the past being a 
predictor of the future wind conditions 

 

As concluded in Section 5.2, the period 1989 to 1995 was characterized by 
unusual high annual mean wind speeds, followed by years with lower mean 
wind speeds. Looking at Figure 6-1 below, one may guess that the mean wind 
speed in the period 1996-2010 is fairly lower than the mean wind speed in the 
precedent period with the same length (15 years). The comparison between 
the mean wind speeds in these two periods is of interest, since it gives an 
estimate of the error in using the past to predict the future in a worst-case 
scenario. How large is the prediction error in this case? 
  
In order to answer to this question, the mean wind speeds of the reference 
period (1981-1995) and of the future period (1996-2010) were calculated 
based on wind speed data from each grid point of the 20CRv2 dataset located 
in the focus region. The percentage difference between the reference and the 
future mean wind speeds is here defined as the prediction error. The 
prediction error was calculated based on wind speed data from each grid 
point. The results are shown in Figure 6-2 below. 
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Figure 6-1. The reference period is defined as the 15-year period 1981-1995, and the 
future period as the 15-year period 1996-2010. The goal is to compare how well the 
reference period predicts the mean wind speed of the future period. 
 

 
 
Figure 6-2. Percentage difference between the mean wind speed of the 15-year period 
1981-1995, and of the following 15-year period 1996-2010. Based on 20CRv2 
reanalysis wind speed data for the 0.995 sigma level 

Reference
period 
 

Future 
period 
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Figure 6-2 shows that using the 15-year period 1981-1995 to predict the 
mean wind speed of the following 15-year period results in an overestimation 
of the wind speed of about 2 to 6 %. The 15-year period 1981-1995 is 
therefore not a good predictor of the following 15-year period. The main 
reason is the unusual high mean wind speeds observed in 1989-1995, and the 
subsequent decrease to normal values. 
 
Is the prediction error lower if the reference period is chosen from within the 
interval 1951-1988 preceding the high wind period 1989-1995?  
 
In order to answer to this question the reference period was set as a 15-year 
moving window defined within the period 1951 - 1988, as illustrated in the 
figure below.  
 

 
 

Figure 6-3. Illustration of the method used to estimate the error in the prediction of 
the mean wind speed for the future period, if the reference period is set as a 15-year 
moving window defined within 1951 - 1988. 

 
There are 25 different 15-year broad windows in the period 1951 - 1988. The 
mean wind speed of each of these windows (reference periods) was calculated 
and then compared to the mean wind speed of the future period. The 
prediction error for each case is, as previously, defined as the percentage 
difference between the mean wind speeds of the reference period and of the 
future period. The absolute prediction error averaged over all the 25 different 
cases is presented in Figure 6-4 below. 

Reference
period 
15 y 

Future 
period 
15 y 
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Figure 6-4. Average of the absolute prediction error obtained using different periods of 
15 consecutive years chosen among 1951 - 1988 to predict the mean wind speed of 
the period 1996-2010. The results are based on 20CRv2 wind speed data at the 0.995 
sigma level. 

 
The error in the prediction of the mean wind speed for the period 1996 - 2010 
is in this case about 1 to 2 % for the majority of the focus area. This is much 
lower than the prediction error (2 to 6 %) obtained using the precedent 
15-year period (1981 - 1995) as reference period (Figure 6-2). This analysis 
illustrates that not always the near past is the best predictor of the near 
future. For the case analyzed above, choosing a reference period from the far 
past resulted in a lower prediction error.  
 
The accuracy in the assumption of using the past as a predictor of the future 
wind climate is further discussed in Section 6.3.  

6.2 Random and consecutive sampling 
 
Random sampling of the years composing the reference period was also 
tested against consecutive sampling. The results presented in Figure 6-4  
correspond to consecutive sampling, i.e., the reference period is composed by 
15 consecutive years. How would the result differ if the years composing the 
reference period are chosen randomly instead for consecutively from within 
the period 1951 - 1988? Figure 6-5 shows the difference between the 
absolute mean prediction error obtained using random sampling and that 
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obtained using consecutive sampling. 25 different reference periods were 
used in both cases.  
  

 

Figure 6-5. Difference between the absolute mean prediction errors obtained using 
random sampling and using consecutive sampling. A positive/negative value 
corresponds to a larger prediction error using random/consecutive sampling.  

 
The results show that random sampling results in slightly larger prediction 
errors than consecutive sampling for a major part of the focus region. The 
difference is however rather small, less than 0.5 %. Different tests have been 
performed varying the number of reference periods from 25 and up to 100000 
in order to test the sensitivity of the results to different random choices. The 
results obtained are very similar to those shown in the figure above. 
 
One may therefore conclude that random and consecutive sampling lead to 
very similar results, with consecutive sampling leading to a slightly smaller 
prediction error. This conclusion may be related to the existence of a weak 
underlying pattern (non-randomness) in the annual mean wind speed from 
one year to the next.  Results presented earlier by Thomas et al. (2009) 
pointed to a random distribution of the annual mean wind speeds based on 
different windiness indices from northwestern Europe. However, the period 
analyzed by Thomas et al. (2009) is not the same as the period analyzed in 
this study. Nevertheless, one may conclude that if there is an underlying 
pattern in the annual mean wind speed, than it is rather weak. 
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6.3 Dependence of the prediction error on the reference 
period length 

 

The following analysis concerns the evaluation of the error in the predicted 
future mean wind speed as a function of the length of the chosen reference 
period. The method used in this analysis is illustrated in Figure 6-6 and is 
described below. 

 

Figure 6-6. Illustration of the method used to estimate the influence of the reference 
period length in the error of the estimated mean wind speed for the future period. 

 
• The length of the future period is set to 20 years (typical lifetime of a 

wind farm) and the period moves within the interval 1952 to 2010. 
 

• The reference period is always chosen as adjacent (precedent) to the 
reference period and is composed by consecutive years. 
 

• The length of the reference period is allowed to vary between 1 and 30 
years. Note that the reference period length could vary up to 40 years, 
but since the number of possible periods longer than 30 years is rather 
low, a maximum period length of 30 years is defined. 
 

• The percentage difference between the mean wind speeds of the 
reference and future periods is calculated for each case, and is 
designated as the prediction error. 

Reference period 
Varying length: 1 to 30 years 
Moving period 

Future period 
Const. length: 20y 
Moving period 
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• The average and the standard deviation of the absolute value of the  

prediction error, calculated over all the cases corresponding to a given 
reference period length, are then computed. 

 
The process described above was repeated using wind speed data from each 
of the 20CRv2 grid points located in the focus area. The results obtained for 3 
of these grid points are shown in Figure 6-7. The blue line shows the mean of 
the absolute prediction error, and the dashed red lines show one standard 
error above and below the mean value. The standard error is defined as the 
standard deviation divided by the square root of the number of cases for each 
reference period length. 
 
It may be seen that the variation of the absolute prediction error with the 
reference period length looks quite differently for different grid points. It may 
decrease with increasing period length, but it may also achieve a minimum for 
a length between 5 to 20 years and then increase for larger reference periods. 
 
The optimal length of the reference period, defined as the length giving the 
lowest prediction error, was identified for each grid point, and is plotted in 
Figure 6-8. The diversity of the results is fairly large. It seems not to exist an 
unique optimal length valid for all the grid points. It is however relevant to 
draw conclusions on the amplitude of the prediction error associated with 
different reference period lengths. In order to do this, the relationship 
between the absolute prediction error and the reference period length 
obtained for each grid point (Figure 6-7) was averaged over all the grid 
points. The resultant mean curve is plotted in Figure 6-9. The dashed lines 
show 1 standard deviation below and above the mean curve. 
 



ELFORSK 
 

46 
 

    
 
 
 
 
 
      
 
 
 
     Figure 6-7. Variation of the mean absolute prediction  
     error as a function of the reference period length based on 
     wind speed data for the period 1951 - 2010 from  
     three different 20CRv2 grid points. The red dashed  
     lines show one standard error above and below the  
     mean value.
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Figure 6-8. Optimal length of the reference period giving the lowest error in the 
prediction of the future mean wind speed. 

 
 

 

Figure 6-9. Mean absolute prediction error averaged over all the 20CRv2 grid points 
located within the focus area. The dashed lines show one standard deviation below and 
above the mean value. 
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The results show that the mean absolute prediction error decreases 
significantly with the increase of the reference period length from 1 to 12-15 
years. For longer reference periods the mean prediction error is about 1.5 %, 
and is seen to normally vary between 0.8 and 2.3 %.  
 
Figure 6-9 suggests that a reference period of 15 to 20 years may be the 
most adequate. Longer reference periods are associated with a slightly larger 
standard deviation.  
 
Note also that as discussed in Section 6.1, the near past may not be a more 
accurate predictor of the future as compared to the far past. For this reason, 
the reference period does not have to be chosen from the near past. 
However, the choice of a 15 to 20-year long reference period from the near 
past period 1993-2012 gives multiple alternatives: the 17-year period 
1996-2012 as a more conservative choice; and for example the 20-year 
period 1993-2012 as a less conservative choice.  
 

 
 
Figure 6-10.  Choice of a 15 to 20-year long reference period from the near past 
period 1993-2012.  
 
Nevertheless, as shown in the previous Figure 6-4 and in Figure 6-9, using 
the past as a predictor of the future mean wind speed, is associated with a 
typical prediction error of about 1.5 to 2 %, provided that a reference period 
length of 15-20 years is chosen. However, the results presented in Figure 6-2 
show that the prediction error may in a worst-case scenario vary up to 6 %.  

Choice of a 15 to 20 
year-long reference 
period from the period 
1993-2012 
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7 Long-term correction methods 

Different methodologies have been developed to long-term correct wind 
measurements. A common property of all of them is their main purpose: to 
describe the long-term wind climate at a specific site, based on short-term 
measurements performed at the site (hereafter called short-term site 
measurements), and long-term data available from a representative location 
(hereafter called long-term reference data). The main differences between the 
different methodologies consist on how the comparison between site and 
reference data is performed, and on how the sought long-term wind climate 
at the site is calculated. 

Table 3 presents commonly used long-term correction methods (LTC 
methods) grouped according to the methodology used in the comparison of 
the site and reference data. 

 

Category Method's name Developer 

Regression LTC methods   

Least squares regression Regression MCP EMD, WindPRO 

 Least Squares method GL-GH, WindFarmer 

Principal component regression PCA method GL-GH, WindFarmer 

Quantile regression U&N method KVT, internal use 

Non-regression LTC methods   

Linear scaling methods Weibull Scale MCP EMD, WindPRO 

 Wind Index MCP EMD, WindPRO 

 T&N method KVT, internal use 

 KH method KVT, internal use 

Probabilistic LTC methods Matrix Method MCP EMD, WindPRO 

 Table 3. Categorization of commonly used long-term correction methods. 

 

The different LTC methods may be grouped into two main categories: 
regression LTC methods and non-regression LTC methods. Section 7.1 
presents a description of the main properties of the different LTC methods 
included in Table 3. An analysis of the performance of the different methods is 
presented in Section 7.2. 
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7.1 Description of different LTC methods 

7.1.1 Regression LTC methods 
 

Regression analysis is a statistical technique commonly used to find the 
relationship between two variables. In the context of long-term correction of 
wind measurements, regression analysis is used to find the relationship 
between the wind climate at the reference position and the wind climate at 
the measurement site. Regression analysis may be performed based on 
different techniques. Some of these are for example the least squares, the 
principal component and the quantile regression techniques. Four different 
LTC methods developed based on one of these regression techniques have 
been analyzed. These are the Regression MCP method, the Least Squares 
method, the PCA method and the U&N method.  

Least squares regression methods 
 

Regression MCP 
 

Regression MCP is the name of a regression LTC method developed by EMD 
International A/S and implemented in the WindPRO software package. The 
Regression MCP method applies a regression model to the relationship 
between the short-term site wind speed and the concurrent reference wind 
speed, as well as to the relationship between the short-term wind veer and 
the concurrent reference wind speed. The parameter wind veer is defined as 
the change in wind direction between the site and the reference positions. A 
special characteristic of the Regression MCP method is the inclusion of a 
model for the distribution of the wind speed and wind veer residuals. 

Let us suppose that y represents the site wind speed or direction 
measurements and x the reference concurrent wind data. After performing a 
regression analysis to x and y, a regression function is obtained describing the 
relationship between these parameters. This function is here denominated as 
f(x). y' = f(x) is the fitted value, whereas the difference between the fitted 
and the original values (y'-y) is designated as the residual, ε. In another 
words, ε is the bias (error) of the fitting process for the specific pair (x,y).  

For each pair (xi, yi) of the concurrent time series, a residual εj corresponding 
to the pair (xj, yj) is randomly chosen, and then added to yi. The regression 
model initially applied to (xi, yi) is then reapplied to the set of values (xi, 
yi+εj), and a new fitted function is obtained. Residual resampling consists on 
repeating this process a statistically significant number of times. This 
technique allows the use of the information regarding the scatter of the 
regression analysis in the estimation of statistical properties of the dataset. 

WindPRO allows the user to choose if the function ε(x) is modeled as a 1st or 
2nd order polynomial. Furthermore, the user may also choose between 
different orders of polynomial functions to be applied in the regression 
analysis of the wind speed and wind veer. The default alternatives presented 
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in WindPRO are a linear (1st order polynomial) regression model for the wind 
speed, and a constant (0th order polynomial) model for the wind veer. A 1st 
order Gaussian model is recommended to be used as the residual model of 
the wind speed, and no residual resampling is recommended to be applied to 
the wind direction. These default alternatives have been used when applying 
the Regression MCP model in the performance analysis presented in Section 
3.2. 

The user is also given the opportunity to choose whether the transfer function 
that will be applied to the long-term reference data should be found for 
different moving sectors of a given width and 1 degree step (e.g. 360 
overlapping sectors being each of them 30 deg broad), or for a user-defined 
number of non-overlapping sectors with uniform width (e.g. 12 
non-overlapping sectors 30 deg broad). The default alternative is the first 
one. This alternative has been chosen in the comparison study presented in 
Section 3.2. 

The long-term time series at the site position is then finally estimated by 
applying the transfer functions to the long-term reference data. 

More information on this method may be found in Thøgersen et al. (2010b) 
and Thøgersen and Sørensen (2007). 

 

Linear Squares method 
 

The software package WindFarmer developed by GL Garrad Hassan includes a 
LTC method named the Least Squares method. This method is based on the 
standard linear regression technique and consists on the calculation of the 
linear function that best fits the relationship between the short-term wind 
speed at the site position (y) and the concurrent wind speed at the reference 
position (x). The linear fit is calculated by minimizing the sum of the squared 
distances between each measured value, yi, and the corresponding fitted 
value yi'. The regression analysis is performed sectorwise using an 
user-inferred number of direction bins. 

WindFarmer allows the user to choose whether to force the fit to pass through 
the origin or not. The user is also given the opportunity to adjust the settings 
for cut off wind speeds used in the regression analysis. In this way, data at 
low wind speeds may be excluded from the regression analysis.  

The linear function resultant from the regression analysis is then applied to 
the long-term reference wind speed in order to calculate the long-term site 
wind speed. This may be done sectorwise (default option) or the user may 
choose to apply a fixed correction factor for all the direction bins. The 
long-term wind direction at the site is assumed by default to be the same as 
the long-term wind direction at the reference position. However, the user may 
choose to apply sectorwise shifts or a constant shift to the reference wind 
direction. 

A detailed description of this method may be found in the WindFarmer's 
theory manual (Garrad Hassan & Partners, 2011). 
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Principal component regression methods 
 

PCA method 

 

PCA stands for Principal Component Analysis and is a LTC method available 
through the software WindFarmer. This method is based on the principal 
component regression technique and seeks to find the direction (y*) along 
which a given variable presents the greatest variance. Let's suppose that the 
variable B is linearly correlated to the variable A, and that we plot B along the 
y-axis and A along the x-axis. The direction y* along which B has the greatest 
variance is called the principal component, and x* which is orthogonal to y* is 
the second principal component. The idea is that if the variables A and B are 
plotted in the coordinate system (x*,y*), then B does not longer depend on A, 
i.e., these variables become linearly uncorrelated. Figure 7-1 illustrates this 
technique. 

 
Figure 7-1. Illustration of the coordinate systems (x,y) and (x*,y*), where y* is the 
principal component, and x* the second principal component of the variable B. 

 
The PCA method consists on the calculation of the linear function that 
minimizes the distance d (shown in Figure 7-1) between the site wind speed y 
and the fitted wind speed y', measured along the direction y*. This is 
performed sectorwise using an user-inferred number of direction bins. 

WindFarmer allows the user to choose whether to force the fit to pass through 
the origin or not. As for the Linear Squares method, the resultant regression 
function may be applied sectorwise (default option) or a fixed correction 
factor may be chosen for all the direction bins. The long-term wind direction 
at the site is assumed by default to be the same as the long-term wind 
direction at the reference position. However, the user may choose to apply 
sectorwise shifts or a constant shift to the reference wind direction. 
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More information on this method may be found in the WindFarmer's theory 
manual (Garrad Hassan & Partners, 2011). 

 

Quantile regression methods 
 

U&N method 

 

The U&N method is a LTC method recently developed by Ove Undheim and 
Finn Nyhammer at Kjeller Vindteknikk. This method is used solely in-house at 
Kjeller Vindteknikk and is based on the quantile regression technique. This 
technique consists in applying regression analysis to the relationship between 
the quantile3 values of two datasets, instead of the dataset values 
themselves. By describing the relationship between the quantile values, the 
temporal dimension of the datasets is ignored. That is, the datasets are not 
ordered according to a time stamp, but according to the quantile order. This 
methodology ensures that the statistical properties (mean value, standard 
deviation and others) of the site wind speed and direction distributions are 
correctly described in the estimated site long-term wind speed and wind 
direction time series. The present version of the U&N method focuses on the 
description of the wind direction and wind speed. A relevant further 
development of this method would be to include the description of the 
atmospheric stability. 

A detailed description of this method is attached in Appendix. 

7.1.2 Non-regression LTC methods 
 

The second main category presented in Table 3 refers to non-regression LTC 
methods. This category includes LTC methods that do not include a 
description of the relationship between site wind measurements and 
concurrent reference wind data based on regression analysis. Two 
subcategories are presented: Linear scaling methods and Probabilistic LTC 
methods. The methods included in each of these subcategories are described 
below. 

 

 

 

 

                                          
3 Quantiles are points taken at regular intervals from the cumulatitive distribution 
function of a variable. For example, the 1st 4-quantile of a variable is the value such 
that the probability of the variable being less than this value is at most 1/4. For the 3rd 
4-quantile, the corresponding probability is 3/4. One can then say that the kth q-
quantile of a variable is the value such that the probability of the variable being less 
than this value is at most k/q (Wikipedia Quantile, 2012). 
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Linear scaling methods 
 

Weibull Scale MCP 
 

The Weibull Scale MCP method here described is implemented in WindPRO 
and consists in a simple empirical method that assumes a linear scaling 
between the measured site and the concurrent reference Weibull scale 
parameter (k), Weibull form parameter (A), occurrence frequency and mean 
wind speed. More specifically, the ratio between the measured site and the 
concurrent reference Weibull parameter A, Weibull parameter k, occurrence 
frequency  and mean wind speed are calculated for each of 12 equally broad 
direction bins. These ratios are here designated as sectorwise correction 
values. The sectorwise mean values of the parameters A and k, as well as the 
sectorwise occurrence frequency and mean wind speed of the long-term 
reference data are then multiplied by the corresponding sectorwise correction 
values. In this way, a sectorwise description of the long-term Weibull 
distribution for the site wind speed is obtained. Note that since this method 
only transforms the parameters A, k, occurrence frequency and the mean 
wind speed, no long-term site time series is calculated. A strong sectorwise 
correlation between the site measurements and the reference data is needed 
in order to ensure a good accuracy of this method. Furthermore, the method 
will fail to predict wind climates described by non-Weibull distributions. 

This method is further described in Thøgersen et al. (2010b) and Thøgersen 
and Sørensen (2007). 

 

Wind Index MCP 
 

A LTC method named Wind Index MCP is available in WindPRO. This method 
assumes that the ratio between the short-term4 and the long-term average 
power outputs at the site is equal to the corresponding ratio at the reference 
position. That is, if the average short-term power output at the reference 
position was X% of the long-term power output at that position, then the 
short-term average power output at the measurement site should also be x% 
of the corresponding long-term average power output. In this way, the 
expected long-term average power output at the site may be calculated from 
the measured short-term site power output and the known short and long-
term average power outputs at the reference location. A special property of 
this method is that the averaging is performed on a monthly basis. 

Since this method works with the power output instead of the wind speed, a 
power curve must be chosen to convert wind speed to power. The user is 
given the opportunity to choose between a real power curve specific to a 
given turbine model, and a generic power curve where the power is assumed 
to increase with the square of increasing wind speeds until the rated power is 
reached. For larger wind speeds the power output is kept constant and equal 

                                          
4 By site short-term data is meant the measured data; reference short-term data 
refers to the reference data with the same time stamps (concurrent) as the measured 
data. 
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to the rated power. Furthermore, the reference power output should be 
representative of the site power output. Consequently, the reference mean 
wind speed is scaled such that it equals the site mean wind speed at the 
height of interest. This value is user-inferred and is recommended to be 
defined as the expected site mean wind speed at hub height. 

More information on this method may be found in Thøgersen et al. (2010b) 
and Thøgersen and Sørensen (2007). 

 

T&N method 

 

The T&N method was developed by Tallhaug and Nygaard and published in 
1993 (Tallhaug and Nygaard, 1993). This method is a development of the 
method originally presented by Nygaard (1992) and is one of the LTC 
methods used at Kjeller Vindteknikk. For each direction bin of the reference 
short-term data, the mean and the standard deviation of the site and of the 
reference short-term wind speeds are calculated, as well as the correlation 
coefficient of their relationship. The long-term mean wind speed at the site for 
each direction bin of the long-term reference data may be estimated using the 
following formula 

 

ܜܔ_ܛܞ
ܑ ൌ ܜܛ_ܛܞ

ܑ ൅ ܑ܀ · ોܜܛ_ܛ
ܑ

ોܑܜܛ_ܚ · ሺܜܔ_ܚܞ
ܑ െ ܜܛ_ܚܞ

ܑሻ  Eq. 1 

 

where s stands for site, r for reference, st and lt for short and long-term 
respectively, ݒ for mean wind speed, ߪ for standard deviation and R for 
correlation coefficient. The superscript i designates the direction bin at the 
reference position. 

Since Eq. 1 gives the site long-term mean wind speed conditioned to the 
reference wind direction bin, it is now necessary to calculate the long-term 
wind speed conditioned to the site wind direction, that is, to calculate the site 
long-term mean wind speed for a given site wind direction bin j. The following 
equation is used 

 

ܜܔ_ܛܞ
ܒ ൌ ∑ ܜܔ_ܛܞ

ܑ · ܑܒܘ · ܑܘ

ܒܘ
૚૛
ܑୀ૚  ,   Eq. 2 

 
where pji is the probability of the direction bin j occurring at the site 
simultaneous with the direction bin i occurring at the reference, and is 
calculated based on the concurrent data. pi is the probability of the direction 
bin i occurring at the reference during the short-time period, and pj 
represents the probability of the direction bin j occurring at the site during the 
short-term period. 

Note that this method includes the correlation coefficient of the relationship 
between site and reference data (calculated based on concurrent data at the 
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finest possible time resolution, typically that of the reference data) explicitly 
in the estimation of the site long-term wind data (Eq. 1), but it does not use 
the regression function of this relationship. Since this method does not involve 
regression analysis (just correlation analysis) it is not classified as a 
Regression LTC method. The strength of the relationship between measured 
site data and concurrent reference data is however important for the accuracy 
of the method.  

 

KH method 
 

The KH method was presented by Knut Harstveit (2004) and is a LTC method 
used at Kjeller Vindteknikk. This method sorts the non-zero reference and the 
site concurrent wind speed data according to the respective wind direction 
data into 12 equally broad direction bins (boxes), and the zero wind speed 
values into a 13th box. In this way, the site data is sorted into 13 different 
boxed and the reference into another 13 different boxes. The average wind 
speed for each box is then calculated and weighted according to the 
occurrence frequency of that specific box. Next, the ratios between the 
reference and site weighted averages are calculated for each box. These 
ratios are hereafter designed as correction factors. Although the correction 
factors are calculated based on short-term data, they are assumed to be valid 
also in the long-term period. Based on this assumption, the weighted average 
of the reference long-term data for each box is then multiplied by the 
corresponding correction factor. In this way, the site long-term sectorwise 
mean wind speed is obtained. The KH method is less susceptible to the 
strength of the relationship between concurrent site and reference data, than 
the T&N method, since the correlation coefficient is not explicitly included in 
the calculations. Moreover, the KH method reduces the effects of the data 
dispersion when the correlation is poor since it uses the mean wind speed for 
each box. More information on this method may be found in Harstveit (2004). 

 

Matrix MCP method 
 

The Matrix MCP method here described is available through the software 
package WindPRO. This method calculates the wind speed-up and the wind 
veer as the differences between the site and the reference concurrent wind 
speed and wind direction, respectively, and then sorts the results according to 
the reference wind speed and wind direction. In this way, two matrixes are 
created, one for the wind speed-up and the other for the wind veer, where 
each entry corresponds to a user-inferred reference wind speed bin (default 
value is 1 m/s) and reference wind direction bin (default value is 30 degrees). 
These matrixes are the core elements of the Matrix MCP method. Figure 7-2 
illustrates an example of a wind speed-up matrix. 

Since some entries of the matrixes may be empty, a polynomial fit is applied 
to some statistical properties of the wind speed-up and wind veer in order to 
fill the gaps in the matrixes. The statistical properties chosen to be fitted are 
the mean value, the standard deviation and the correlation coefficient of the 
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matrixes values. Figure 7-3 shows the result after applying an adequate 
polynomial fit to the values of the matrix shown in Figure 7-2.  

 
Figure 7-2. Mean speed-up binned according to the reference wind speed and wind 
direction (from Thøgersen et al., 2010b). 

 

Figure 7-3. Result after applying a polynomial fit to the mean speed-up matrix (from 
Thøgersen et al., 2010b). 

 



ELFORSK 
 

58 
 

The next step consists on transforming the reference long-term wind speed 
and direction series into the corresponding site long-term time series, which 
are the main target of this process. In order to do this, the Matrix MCP model 
presents two alternatives: either to model the wind speed-up and the wind 
veer as a function of the reference wind speed and direction by using the 
measured samples in each matrix entry and the corresponding probability 
distribution, or to use the fitted polynomial functions together with a bivariate 
Gaussian distribution5 of the wind speed-up and wind veer occurrence 
frequency. The option set as default in WindPRO is the first one if the number 
of samples in the matrix entry of interest is at least 5. Otherwise, the second 
alternative is chosen.  

The long-term time series of the reference wind speed and wind direction are 
then transformed to the corresponding time series at the site position by 
applying either bootstrapping (if the first abovementioned alternative is 
chosen)  or Monte-Carlo simulation (if the second alternative is chosen 
instead)  to randomly create samples of wind speed and direction based on 
the long-term reference wind distribution. These randomly created samples 
are then converted to the corresponding site values by applying the wind 
speed-up and wind veer matrixes. The use of these probabilistic techniques in 
the calculation of the site long-term data justifies the categorization of the 
Matrix MCP method as a probabilistic LTC method. 

A detailed description of the Matrix MCP method may be found in Thøgersen 
et al. (2010b) and Thøgersen and Sørensen (2007). 

7.2 Uncertainty associated with the different LTC methods 
 

A set composed by 16 different masts have been selected from the database 
presented in Section 3.2.1, to analyze the performance of the different LTC 
methods. The selected masts fulfill the following criteria: 

• More than 24 months of data. 

• Data coverage larger than 85 %. 

• Hourly correlation coefficient (R) between site and reference data 
larger than 80 %. 

The main goal of this analysis is to estimate the error in the long-term 
corrected mean wind speed by testing the results from the different LTC 
methods against a known result, i.e., performing a self-prediction test. The 
procedure used is illustrated in Figure 7-4 and is described below. 

 

 

                                          
5 A bivariate Gaussian distribution is a generalization of the one-dimensional Gaussian 
distribution to higher dimensions. The plot of the bivariate Gaussian distribution is in 
this case a 3-dimensional plot where the x and y axes show the wind speed-up and the 
wind veer, and the z axis shows the frequency according to the Gaussian function of 
the simultaneous occurrence of a given wind speed-up and wind veer bin. 
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Figure 7-4. Illustration of the method used to test the self-prediction of the different 
LTC methods. 

 
• The first year of the measurement period has been defined as the 

short-term period.  

• The long-term period has been defined as the maximum number (N) of 
complete years with data available within the measurement period for 
each of the selected masts. N ranges between 2 and 8 years for the 
selected masts. 

• The data measured during the short-term period is designated as the 
site short-term data. The data measured during the long-term period 
is the site long-term data. 

• The reference dataset has been chosen as the data, among 
ERA-Interim, MERRA, CFSR/CFSv2, WRF FNL and WRF ERA-Interim, 
whose relationship to the site long-term data shows the highest 
correlation coefficient (calculated on a hourly basis).  

• The reference data corresponding to the long-term period is 
designated as the reference long-term data. 

• The site short-term data and the reference long-term data are given as 
input to the different LTC methods described in Section 7.1., in order 
to estimate the mean wind speed at the site during the long-term 
period, i.e., Estimated vതୱ_୪୲.  

• Note however that since the site measurements cover the long-term 
period, it is possible to calculate the average of the wind speed 
measured at the site during the long-term period. This value is 
denoted by Measured vതୱ_୪୲.  

• The error in the estimate of the long-term corrected (LTC) mean wind 
speed (prediction error) is defined as  

 

Prediction error ൌ ቀ ۳ܞ  ܌܍ܜ܉ܕܑܜܛതܜܔ_ܛ
ܜܔ_ܛതܞ ܌܍ܚܝܛ܉܍ۻ

െ ૚ቁ ·100 Eq. 3 

 
• The options set as default in the different MCP methods have been 

used in this analysis.  
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• Since the Wind Index MCP gives the long-term corrected wind power 
instead of wind speed, a factor of 1/2.5 has been used to convert the 
prediction error in the estimated power output to the corresponding 
error in the wind speed. Note, however, that this conversion factor is 
in reality dependent on the site mean wind speed, and on the chosen 
power curve. The same power curve (generalized power curve set as 
default in WindPRO) has been chosen for all the cases, but the 
different sites correspond to different mean wind speeds. The same 
conversion factor has though been applied to all the cases.  This infers 
some uncertainty on the prediction error values obtained for the Wind 
Index MCP method. 

 
The mean value and the standard deviation of the absolute prediction error 
has been calculated based on the results obtained for the different analyzed 
masts. Figure 7-5 shows the mean absolute prediction error obtained for each 
LTC method. The error bars delimit one standard deviation from the mean 
value. 

 

 
Figure 7-5. Mean absolute prediction error obtained using different LTC methods to 
long-term correct wind measurements from 16 met masts with a hourly correlation 
coefficient between site and reference data larger than 80 %. The error bars delimit 
one standard deviation from the mean value.  The term "tr origin" means that the 
corresponding regression function was forced through the origin. 
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The results presented in Figure 7-5 show that the absolute error obtained in 
the estimate of the long-term mean wind speed is in average about 1.5 to 2 
% for the tested LTC methods. The maximum standard deviation observed is 
about 1.8 %, meaning that in about 68 % of the analyzed masts the 
prediction error deviates at maximum about 1.8 % from its mean value. 
 
It is important to point out that the ranking shown in Figure 7-5 is not 
statistically significant, meaning by this that it is susceptible to the set of site 
and reference data used in the analysis. Particularly, the correlation 
coefficient between the site and reference data used in the analysis is 
expected to affect the performance of the different methods. Figure 7-6 
shows a change in the average performance of the different LTC methods 
when 2 other met masts with lower correlation coefficient (75 to 80 %) were 
added to the database. Furthermore, the mean absolute prediction error 
shows a slight increase for most of the methods. 
 
 

Figure 7-6. Mean absolute prediction error calculated based on 18 met masts with a 
correlation coefficient between site and reference data larger than 75 %. The error 
bars delimit one standard deviation from the mean value. The term "tr origin" means 
that the corresponding regression function was forced through the origin. 

 
The performance of a similar analysis based on cases characterized by a low 
correlation coefficient would be of interest in order to evaluate the 
performance of the different models for such cases. 
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7.3 Dependence of the prediction error on the 
measurement period length 

 

The database used in the previous section will now be used to investigate on 
the influence of the measurement period length on the error of the estimated 
long-term corrected wind speed. The methodology used is the following: 

 

• The long-term period has been defined as the maximum number of 
complete years with available data. This is the same definition as 
the one used in the previous section and illustrated in Figure 7-4. 

• The short-term period is here varied from 2 months to the 
maximum possible number of months within the long-term period, 
by steps of 2 months. 

• The site short-term data and the reference long-term data (the 
meaning of these terms, and the choice of the reference data, are 
the same as described in the previous section) are given as input to 
the following LTC methods: T&N, KH and U&N method.  

The reason for the choice of these methods is because they allow 
the automatic performance of this exercise. The consideration of the 
other methods described in Section 7.1 would also have been 
relevant, but would have been very time-consuming, since the 
change of the short-term period has to be done manually.  

• The prediction error obtained based on each of the considered 
short-term periods is then calculated using Eq. 3. The results are 
shown in Figure 7-7. 
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Figure 7-7. Mean absolute prediction error as a function of the measurement period 
length. The results are based on data from 16 different masts with a hourly correlation 
coefficient between site and reference data larger than 80 %. The LTC methods used 
are the KH, T&N and U&N methods. 

 
The mean absolute prediction error is seen to strongly decrease with the 
increase of the measurement period (concurrent period) length from 2 to 12 
months. A further decrease of the mean prediction error from about 1.8 to 0.8 
% is seen when the measurement period length is increased from 1 to 3 
years. Note also the increase in the prediction error when slightly more than 1 
and than 2 years of measurements are used. This might be related to a bias 
introduced by the unequal representation of each month. The use of complete 
years of measurements is recommended. 

The accuracy of the U&N method appears to become lower than the accuracy 
of the KH and T&N methods for longer measurement periods. The reason for 
the lower performance of the U&N method for longer measurement periods 
should be further investigated. Applying quantile regression also to the 
stability conditions of the site and reference positions may contribute to the 
improvement of the method's performance (see Appendix).   

The dashed lines in Figures 7-8 to 7-10 show one standard deviation below 
and above the mean value of the absolute prediction error, for the KH, T&N 
and U&N methods, respectively. The standard deviation of the mean absolute 
prediction error decreases with increasing length of the measurement period 
when using the KH and T&N methods, while it slightly increases for the U&N 
method, reflecting its lower accuracy for longer measurement periods. 
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Figure 7-8. Mean absolute prediction error as a function of the measurement period 
length when using the KH method. The dashed lines show one standard deviation 
below and above the mean value. 

 

Figure 7-9. Mean absolute prediction error as a function of the measurement period 
length when using the T&N method. The dashed lines show one standard deviation 
below and above the mean value. 
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Figure 7-10. Mean absolute prediction error as a function of the measurement period 
length when using the U&N method. The dashed lines show 1 standard deviation below 
and above the mean value. 

The main conclusions drawn from the results presented in this chapter are the 
following: 

 
• The error in the estimate of the long-term corrected wind speed is 

about 1.5 to 2 % independently on the LTC method applied, provided 
that the hourly correlation coefficient between site measurements and 
reference data is greater than 75-80%, and that 1 year of site 
measurements with high data coverage is used. The standard 
deviation from the mean value may vary up to about 2 %. 

 
• Increasing the length of the measurement period from 1 to 2 years is 

seen to reduce the prediction error to slightly over 1 %. This result 
was obtained using the KH and the T&N methods. 
 

• The use of complete years of measurements is recommended. 

 
• The evaluation of the performance of the different LTC methods for 

cases with low correlation coefficient would be of interest. 
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8 Conclusions 

The main conclusions obtained in the present work are summarized below. 

 

Chapter 2  Description of different long-term reference datasets 

• A rather large number of datasets covering a long time period back in 
time are available either publicly or for purchase. These datasets may 
be surface and satellite observations, as well as reanalysis global 
datasets and finer resolution reanalysis mesoscale datasets. The main 
properties of some of these datasets are described in Chapter 2. 

 

Chapter 3  Using reanalysis data to describe the local wind climate in                
 terrain with low complexity 

• The coarse spatial resolution of the R1 (2.5 x 2.5 degrees) and of the 
JRA-25 (1.25 x 1.25 degrees) reanalysis datasets make these data less 
suitable to the use in the long-term correction of wind measurements. 
A rather large difference is observed in the linear rate of change 
pattern  of these datasets as compared to that of the finer resolution 
datasets ERA-Interim, MERRA and CFSR/CFSv2, which show rather 
similar patterns between each other. 

• The use of decomposition techniques (e.g. BFAST) is recommended in 
order to further analyze the temporal characteristics of a specific wind 
speed time series, prior to its use in the long-term correction of wind 
measurements. 

• In terrain with low complexity, the hourly correlation coefficient of the 
relationship between MERRA surface wind speed data and measured 
wind speed is, for the majority of the analyzed cases, larger (median R 
= 0.85) than using other reanalysis global datasets (median R = 0.80), 
and slightly larger than using the reanalysis mesoscale datasets WRF 
ERA-Interim and WRF FNL (median R = 0.83). These results suggest 
that MERRA, as well as WRF ERA-Interim and WRF FNL, are, among 
the selected datasets, the most suitable to the use in the long-term 
correction of wind measurements performed in terrain with low 
complexity. The results also suggest that the increase of the spatial 
resolution of a long-term dataset to finer than about 0.5 x 0.5 degrees 
in latitude and longitude (~55 km x 30 km) does not necessarily result 
in the increase of the hourly correlation coefficient of its relationship to 
site wind measurements. 

• The monthly correlation coefficients obtained for different reanalysis 
surface datasets are very similar (0.94-0.95), suggesting that the 
influence of the factors differentiating these datasets is smoothed out 
when analyzing the data on a monthly basis.  
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• Neither the hourly nor the monthly correlation coefficients are an ideal 
measure of the reference data's representativeness. By 
representativeness it is meant how well the reference data describe 
the long-term wind variations at the measurement site. The hourly 
correlation coefficient is strongly influenced by simultaneity (i.e., phase 
consistency) which is not a necessary requirement of 
representativeness. On the other hand, the monthly correlation 
coefficient is influenced by seasonality which masks the 
representativeness at shorter time scales. This issue should be further 
investigated. 

 

Chapter 4  Inter-annual variability of the wind speed 

• The inter-annual variability of the wind speed is rather site specific and 
should therefore be evaluated specifically for the site in consideration. 
Values ranging between about 3 and 7 % are found in the analyzed 
region (Norway, Denmark, Sweden, Finland and the Baltic countries), 
based on reanalysis data. 

• Larger spatial variations are seen in the inter-annual variability of the 
wind speed when calculated based on WRF ERA-Interim data (finer 
resolution) as compared to using MERRA data. 

• The performance of a study on the ability of WRF ERA-Interim and of 
MERRA data to describe the inter-annual variability of the wind speed 
would be of interest. 

 

Chapter 5  The past wind climate according to 20CRv2 data 

• The 20CRv2 reanalysis dataset spans about 140 years, from the end of 
1869 to the end of 2010. This dataset differs from other reanalyses in 
the fact that only surface observations of synoptic pressure were 
assimilated. Previous published studies (e.g. Compo et al., 2011) have 
shown that the 20CRv2 data appear to be of fairly good quality. 

• In an earlier study by Wern and Bärring (2009), an average negative 
long-term trend (-4%) was found in the wind speed in Sweden for the 
period 1951 to 2008. The authors emphasized though that this trend 
was not statistically significant. The results presented here based on 
20CRv2 data confirm that there is no statistically significant trend in 
the wind speed during that period in Sweden (+0.3 % and not 
statistically significant). 

• 20CRv2 wind speed data show a positive long-term trend (~2-3 %) 
over central and northern Norway in the period 1951-2008 which 
appears to be statistically significant. A similar analysis based on 
another long-term reference dataset would be of interest.  

• There is a clear relationship between the variations in the annual wind 
index calculated based on 20CRv2 data, and in the NAO winter index, 
particularly during the period 1935 to 2010. Note that the NAO index 
has no defined periodicity (Førland et al., 2009), being impossible to 
predict how it will vary in the future.  
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• The period 1989 to 1995 was characterized by unusual high annual 

mean wind speeds associated with a large positive peak in the NAO 
index. 

• The decrease in the mean wind speed seen between 1990 and 2005  
represents a return to the longer-term mean, after the unusual large 
maximum in 1990. This result is in accordance with the conclusions by 
Thomas et al (2009) obtained based on different windiness indexes for 
northern Europe. 

 

Chapter 6  Choice of the reference period 

• The near past may not be a more accurate predictor of the future as 
compared to the far past. As an example, the mean wind speed during 
the 15-year period 1981-1995 was, in the analyzed region, about 2-6 
% larger than the mean wind speed during the following 15-year 
period 1996-2010. The unusual high wind period observed in 1989-
1995 explains this large prediction error. 

• The comparison of the mean wind speed in other reference periods 
from the far past (prior to 1981-1995), with the mean wind speed in 
the period 1996-2010, shows on average a prediction error of about 1-
2 %.  

• Random and consecutive sampling of the years forming the reference 
period lead to very similar results, with consecutive sampling resulting 
in a slightly smaller prediction error. This conclusion suggests the 
existence of a weak underlying pattern (non-randomness) in the 
annual mean wind speed from one year to the next. 

• The results show the non-existence of an optimal reference period 
length valid for all the grid points, i.e., valid over the entire analyzed 
region. By optimal reference period length it is meant the length of the 
reference period giving the lowest prediction error. This length is seen 
to vary between 7 and 30 years based on 20CRv2 data for the 
analyzed region. 

• However, the results show that the mean prediction error decreases 
significantly with the increase of the reference period length from 1 to 
about 12-15 years, remaining in average rather constant (1.5 %) for 
longer reference periods. The standard deviation shows however a 
slight increase for lengths larger than 20 years. Based on these results, 
the choice of a reference period length of about 15 to 20 years appears 
reasonable. 

• The choice of a 15 to 20-year long reference period from the near past 
period 1993-2012 gives multiple alternatives: the 17-year period 
1996-2012 as a more conservative choice; and for example the 20-
year period 1993-2012 as a less conservative choice. 

• The assumption of the past being a predictor of the future mean wind 
speed is associated with a typical prediction error of about 1.5 to 2 %, 
provided that a reference period length of 15-20 years is chosen. 
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However, the prediction error may in a worst-case scenario vary up to 
6 %. These values are based on the analysis of the wind speed 
variations, occurred in the past 60-year period 1951 to 2010, 
according to 20CRv2 data. Possible future climate changes that may 
lead to smaller or larger wind variations as compared to those occurred 
in the past, are not considered. 
 

Chapter 7 Long-term correction methods 

• A description of the main properties of the most commonly used LTC 
methods is given in Section 7.1. 

• The error in the estimate of the long-term corrected wind speed is 
seen to be in average about 1.5 to 2 % independently on the LTC 
method applied, provided that a long-term reanalysis dataset with fine 
spatial resolution is chosen as reference data; the hourly correlation 
coefficient of the relationship between reference and site data is rather 
large (>75-80%), and 1 year of site wind measurements with a data 
coverage (after quality control filtrering) larger than 85 % is used. The 
average error is seen to normally vary up to about 4 % (mean value 
plus standard deviation of the mean value).  

• Increasing the length of the measurement period from 1 to 2 years 
may reduce the average prediction error from 1.5-2 % to a level close 
to 1 %, when using the KH and the T&N methods. 

• The prediction error is seen to increase when slightly more than 1 and 
than 2 years of measurements are used. This might be related to a 
bias introduced by the unequal representation of each month. The use 
of complete years of measurements is recommended. 
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9 Guidelines on uncertainty reduction 
and on expected values for the 
uncertainty interval 

An important step in the assessment of the energy production of a wind farm 
is the evaluation of the uncertainty in the estimated annual energy 
production. One of the major contributors to the total uncertainty is the 
long-term correction of wind measurements; another is the inter-annual 
variability of the wind speed.  

Factors such as the choice of the long-term reference data and of the 
long-term correction method, the influence of the measurement period length 
and of the reference period length, as well as the assumption of the past 
being a predictor of the future, are sources of uncertainty contributing to the 
total uncertainty in the long-term corrected wind conditions.  

The estimated long-term corrected wind conditions represent the "normal" 
wind conditions expected to most probably occur at a given site. However, 
due to the intrinsic inter-annual variability of the wind conditions, the annual 
energy production of a wind farm may deviate about 8 to 18% (Chapter 4) 
from the "normal" production, i.e., from the long-term corrected annual 
energy production. As commented in Chapter 4, the awareness of this fact is 
important for investors, as well as for electric utilities that handle the energy 
production. The uncertainty arising from the wind variability is therefore also 
taken into account in the total uncertainty of the estimated annual energy 
production. 

Table 4 presents expected minimum and maximum values for the uncertainty 
associated with the long-term correction of wind measurements, and Table 5 
for the uncertainty associated with the inter-annual variability of the wind 
speed. These values are the result of the different analyses presented in this 
report.  

A description of the different uncertainty sources included in Table 4 is given 
below. 

 

• Choice of the long-term reference data, the long-term correction 
method, and the length of the measurement period. 

 Based on the results presented in Chapter 3 regarding the use of 
reanalysis data, the choice of reanalysis long-term reference datasets 
with fine spatial resolution is recommended. The comparison of the 
results using at least two different long-term datasets may be wise, 
since it gives an indication of the sensitivity of the results to the choice 
of different long-term datasets. 

 The choice of the LTC method appears not to influence significantly the 
uncertainty in the estimated long-term wind speed, providing that the 
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hourly correlation coefficient (R) is larger than 75-80 %. The 
performance of the different LTC methods for cases with a lower 
correlation coefficient has not been analyzed. 

Note that the analysis presented in Section 7.2 involves not only the 
uncertainty associated with the choice of a given LTC method, but also 
the uncertainty in the chosen long-term reference data and the 
uncertainty resultant from the used measurement period length. It is 
not possible to evaluate these three different sources independently. 
For this reason, they are presented together in Table 4. 

An expected interval for the uncertainty in the long-term corrected 
wind speed associated with the abovementioned choices is 1.5 to 4 %, 
if 1 year of site measurements with a data coverage larger than 85 % 
(after quality control filtering), are available. A conservative approach 
is adopted, where the minimum uncertainty value is chosen as equal to 
the mean prediction error obtained in Figures 7-5 and 7-6, while the 
maximum uncertainty value is chosen as the mean prediction error 
plus one standard deviation. This approach is also used for all the 
cases presented below. 

The uncertainty in the long-term corrected wind speed associated with 
the abovementioned choices decreases to about 1.0-3.0 % (Figures 
7-7 to 7-10) if the measurement period is increased to 2 years, and to 
about 0.7-2.0 % if 3 to 4 years of measurements are used. For 
measurement periods between 4 and 6 years the resultant uncertainty 
may be in the range 0.5-1.0 %. 

 

• Past used as a predictor of the future wind conditions 

The discussion presented in Chapter 6 led to the conclusion that the 
use of a 15 to 20-year long reference period in the long-term 
correction of wind measurements is considered to be an appropriate 
choice. 

Furthermore, the analyses presented in Sections 6.1 and 6.3 suggest 
that the uncertainty associated with the assumption of the past being a 
predictor of the future mean wind speed, is on average about 1.5 % 
and may normally reach 2 % (mean plus standard deviation), provided 
that a reference period length of 15-20 years is chosen (Figures 6-9 
and 6-4). A worst-case scenario is analyzed (Figure 6-2) where the 
uncertainty reaches up to 6 %. However, this case is considered to be 
rather unusual. 

Note that the values presented here are based on the analysis of the 
wind speed variations, occurred in the past 60-year period 1951 to 
2010, according to 20CRv2 data. Possible future climate changes that 
that may lead to smaller or larger wind variations as compared to 
those occurred in the past, are not considered. 
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Long-term correction of wind measurements 

Uncertainty source 

Expected interval of the 
uncertainty in wind speed (%) 

Min Max 

Choice of the long-term reference data, 
the long-term correction method, and the 
length of the measurement period   

1 year measurements 1.5 4.0 

2 years measurements 1.0 3.0 

3-4 years measurements 0.7 2.0 

4-6 years measurements 0.5 1.0 

  Past used as a predictor of the future   
  wind conditions 
 

1.5 2.0 

Total uncertainty 
  

1 year measurements 2.1 4.5 

2 years measurements 1.8 3.6 

3-4 years measurements 1.7 2.8 

4-6 years measurements 1.6 2.2 

Table 4. Uncertainty associated with the long-term correction of wind measurements. 
Expected values for the minimum and maximum uncertainty values are presented. 

 

Table 4 shows that the total uncertainty associated with the long-term 
correction of wind measurements is about 2.1 to 4.5 %, provided that 1 year 
of local wind measurements with high quality and a data coverage (after 
quality control filtering) larger than 85 %, are used; long-term reference data 
with fine spatial resolution is chosen; the correlation coefficient (R) of the 
relationship between measured and reference data is larger than 75-80 %, 
and a 15 to 20-year long reference period is chosen. The increase of the 
measurement period from 1 to 2 years results on a decrease of the total 
uncertainty related to the long-term correction of wind measurements, to 
about 1.8 to 3.6 %. Note that the uncertainty associated with the quality of 
the wind measurements shall be evaluated separately from the long-term 
correction uncertainty, and is therefore not considered here. 

The uncertainty in the estimated annual mean wind speed associated with the 
inter-annual variability of the wind speed is presented in Table 5 below. As 
discussed in Chapter 4, the inter-annual variability of the wind speed is site 
specific and should therefore be estimated specifically for the site in 
consideration. Reasonable values range between 3 and 7 % for the 1-year 
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variability in the analyzed region. Assuming statistical independence of the 
annual mean wind speed (which is a rather certain assumption since no 
strong underlying pattern in the annual mean wind speed has been 
identified), the uncertainty in the 10-year mean wind speed may be 
expressed by the standard error of the mean value, i.e., by the ration 
between the standard deviation of the annual mean wind speed and the root 
square of 10. In a similar way, the uncertainty in the 20-year mean wind 
speed is given by the standard deviation of the annual mean wind speed 
divided by the root square of 20. 

 

Inter-annual variability of the wind  

 

Expected interval of the 
uncertainty in wind speed (%)  

Time frame Min  Max  

   1 year 3.0 7.0 

   10 years  0.9  2.2  

   20 years  0.7  1.6  

Table 5. Uncertainty associated with the inter-annual variability of the mean wind 
speed. Reasonable values for the minimum and maximum uncertainty values are 
presented for 1, 10 and 20-year frames. 
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10 Future work 

Several issues have been identified during the development of this project 
that we consider of relevance for further investigation. These are presented 
below. 

 

• Is the Blended Sea Winds dataset suitable as long-term reference data 
in the long-term correction of offshore wind measurements? 

• How should one measure the long-term data's representativeness? By 
representativeness it is meant how well a time series represents the 
long-term wind variations at a given measurement site. As discussed 
in Chapter 3, the hourly and the monthly correlation coefficients 
present weaknesses in this respect.  

• This study has analyzed the strength of the relationship between 
reanalysis wind speed data and site wind speed measurements 
performed in terrain with low complexity. How well can reanalysis data 
represent the local long-term wind conditions in terrain with high 
complexity? 

• WRF ERA-Interim data show larger inter-annual variability than the 
MERRA data. Is this result explained by the finer spatial resolution of 
the WRF ERA-Interim dataset? A study on the ability of these datasets 
to describe the variability in the wind speed at different time-scales 
would be relevant. 

• The investigation presented in this report has only focused on the 
long-term correction of the wind speed. However, the wind direction 
and the frequency distribution of the wind speed (more specifically the 
Weibull scale and shape parameters) may also vary from one year to 
the next. How large is the inter-annual variability of the wind direction 
and of the Weibull scale and shape parameters? Variations in these 
parameters have a clear impact in the energy production. 
Furthermore, the analysis of the inter-annual variability of the wind 
shear is also of interest. 

• This study has shown the existence of a statistically significant positive 
long-term trend in the wind speed over central and northern Norway in 
the period 1951-2008 based on 20CRv2 reanalysis data. Is this result 
confirmed by the analysis of other datasets that also cover this time 
period?  

• The performance of different long-term correction methods has only 
been analyzed based on cases with a hourly correlation coefficient 
larger than 75-80%. However, in cases when a measurement site is 
located in highly complex terrain, the correlation coefficient of the 
relationship between reference and site data may be much lower. 
Which long-term correction methods are more accurate in these cases? 
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11 Appendix - U&N method 

11.1 Method description 
 

The primary basis of the U&N method is the Q-Q method. This is a quantile 
method that consists in plotting quantile values of two datasets. The resultant 
plot is called the Q-Q plot. If the relation between the two datasets is linear, 
than the Q-Q plot shows a straight line. A simple example is the case of two 
datasets of the same size. In this case, to make the Q–Q plot, one orders 
each set in increasing order, then pairs off and plots the corresponding 
values. The Q-Q method ignores simultaneity, and focuses on the statistics of 
the datasets. 
 
The present version of the U&N method focuses on the wind direction and 
velocity. However, a relevant further development of this method would be to 
include stability. The methodology used seeks to capture the probability 
distribution of both the wind direction and the wind speed, as opposed to the 
majority of other long-term correction methods that focuses mainly on the 
direction distribution together with the mean value of the wind speed. The 
U&N method compares concurrent site and reference data, but unlike the 
majority of other LTC methods, the concurrency is only a starting point to 
ensure that the data represents the same time period.  

11.1.1 Long-term direction distribution 
 

The strength of the Q–Q methodology is also a weakness. When the 
concurrency for the wind direction is discarded, the direction conversion 
methodology will depend on a reference wind direction towards which the 
datasets are sorted. It is important that this reference wind direction 
represents the differences in the wind direction of the two sites as good as 
possible. To ensure this, the reference direction is chosen as the predominant 
wind direction at the reference station. For this direction, the corresponding 
median direction at site is found based on simultaneous data. The site wind 
direction time series is then corrected for the difference between these 
values. This synchronization of the endpoints is needed as the Q-Q method 
sorts the two datasets ascending independently. 
Note, that this difference is calculated based on simultaneous data but only 
for the predominant wind direction observations. This value is however 
applied to the entire direction series, even though the simultaneity of the 
entire series has not been taken into account.  
 
Based on the sorted wind direction time series for the site and the reference 
station, the direction difference is calculated for each 1° direction bin (Figure 
11-1). The reference wind direction time series is then shifted by this 
difference to obtain the synthetic long-term time series of the site wind 
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direction. The methodology used will ensure that the statistical properties of 
the site wind rose will be correctly represented in the resultant site long-term 
time series for the period of simultaneous data. 

Figure 11-1. Example of the direction difference between a site time series and the 
corresponding reference time series. 

11.1.2 Long-term wind speed distribution 
 

As a result of the previous step, the site and reference wind speed time series 
are individually sorted by direction. The focus will now be on establishing the 
wind speed correction factors. The data is first divided into 24 direction 
sectors with equal number of elements in each sector. Since the sectors are 
defined based on equal amount of data, less predominant directions with few 
observations will be clustered into broader sectors, whereas the most frequent 
directions will form narrower sectors. This results in an improved accuracy of 
the long-term time series as compared to using the standard direction binning 
into 12 sectors with uniform width. A 12 sector version of the synthetic 
method is also available for comparison to other methods that are based on a 
12 sector binning (different binning will cause some smoothing between the 
sectors). 
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Regardless of the chosen binning method, the next step is to establish the 
wind speed relation between the site and the reference station for the given 
direction bin. Also here the wind speeds of the corresponding sectors at the 
site and the reference station are sorted individually to give a detailed wind 
speed relation. This relation is then applied to the long-term reference wind 
speed to obtain a synthetic long-term time series of the wind speed at the 
site. 
 
Figure 11-2 and Figure 11-3 show an example of the relation between the 
wind speeds at the site and the reference station for sectors 1 and 6, 
respectively. The relation for sector 1 is almost linear, whereas there is a kink 
at about 9 m/s for sector 6, reflecting a non-linear relation for this sector. A 
main advantage of this method is that non-linear properties are captured.  

Figure 11-2. Relation between the site and the reference wind speeds for sector 1. The 
blue line indicates the extrapolation line for observations exceeding the values 
contained in the dataset. 
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Figure 11-3. Relation between the site and the reference wind speeds for sector 6. The 
blue line indicates the extrapolation line for observations exceeding the values 
contained in the dataset. 
 
For the test case shown in the previous figures, an average of 37 % of the 
data points in the different direction groups are simultaneous data. This is less 
than an half which means that this method may not be the most appropriate 
to estimate the temporal dimension of the site long-term wind conditions, i.e., 
when exactly each observation occurs. However, the statistical properties of 
the site long-term wind speed and direction distributions are well described. 
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