
VERIFICATION AND VALIDATION
TECHNIQUES FOR I&C APPLICATIONS
IN NORDIC NPPS
REPORT 2016:268

ENSRIC

Verification and validation techniques for
I&C applications in Nordic NPPs

SAMUEL GEORGE, SOFIA GUERRA AND CATHERINE MENON, ADELARD LLP

ISBN 978-91-7673-268-7 | © 2016 ENERGIFORSK

Energiforsk AB | Phone: 08-677 25 30 | E-mail: kontakt@energiforsk.se | www.energiforsk.se

VERIFICATION AND VALIDATION TECHNIQUES FOR I&C APPLICATIONS IN NORDIC

NPPS

5

Foreword

This report is produced by Adelard LLP for Energiforsk within the research
program ENSRIC, Energiforsk Nuclear Safety Related Instrumentation and
Control systems. The objective of the project was to develop an
understanding of the verification and validation aspects of safety related
systems built on FPGA-technology (Field Programmable Gate Arrays) for
nuclear applications.

FPGAs have been gaining interest from the nuclear industry for a number of years, but
lately they have been questioned and the initial hypothesis that the technology would
be easier to license compared to microprocessor-based platforms for nuclear
applications is now questioned. This report is the second ENSRIC report on FPGA:s,
and it is focused on verification and validation and standards of FPGAs compared to
what is applied to microprocessor-based systems. The previous report is named “Field
Programmable Gate Arrays in safety related instrumentation and control applications”,
Energiforsk report 2015:112.

ENSRIC is focused on safety related I&C systems, processes and methods in the
nuclear industry. The three focus areas of the program are

• LTO of existing analogue platforms
• Asset management of existing digital platforms
• Emerging technologies.

The ENSRIC results are used in the plant development process, including managers,
strategic teams, analysts and implementation teams at the NPPs and at the authorities,
to contribute to safe and robust I&C systems that promotes low Life Cycle Cost. The
program is financed by Vattenfall, Uniper, Fortum, TVO, the Swedish Radiation Safety
Authority, Skellefteå Kraft and Karlstad Energi.

VERIFICATION AND VALIDATION TECHNIQUES FOR I&C APPLICATIONS IN NORDIC

NPPS

6

Sammanfattning

Den här rapporten beskriver metoder för verifiering och validering av
mikroprocessorer och FPGA. Den lyfter fram metoder som är tillämpliga för
dem bägge men även några som är specifika för var och en av dem.

För varje metod redogörs för dess relativa effektivitet och dess förmåga att bidra till
den övergripande konfidensen på ett I&C-systems egenskaper, som utför Cat A-
funktioner. Olika metoder för V&V har jämförts med hjälp av ett trefaldigt
angreppssätt, som har visat sig vara effektivt vid genomförandet av en
säkerhetsdemonstration. Angreppssättet beaktar på ett systematiskt sätt bidragen från
kända standards, analys av beteendeegenskaper samt sårbarheter som vanligen
kopplas samman med specifika teknologier och typer av design

I den komparativa analysen av olika standarder, har skillnader mellan olika relevanta
IEC standarders krav på V&V, genom alla faser i livscykeln, undersökts. De
signifikanta skillnader som identifierades var väldigt få. Generellt sätt kan säga att den
relevanta FPGA standarden är mindre föreskrivande/normativ med avseende på vilka
specifika dokument som behöver tas fram. I vissa fall görs klargöranden genom
hänvisning till den motsvarande standarden för mikroprocessorer. Dessa klargöranden
ställer inte krav på utförande av specifika aktiviteter utan detaljerar snarare vilka andra
standarder som kan tillämpas vid specifika förhållanden. Den relevanta FPGA-
standarden har också undvikit vissa av tvetydigheterna som återfinns i den relevanta
standarden för mikroprocessorer.

Vid undersökning av V&V-metoderna som kan användas för att åstadkomma korrekt
beteende visade det sig att många är desamma eller likartade. Särskilt snarlika är
angreppssätten för dynamisk testning på systemnivå. För vissa tidsparametrar, såsom
responstid och samtidighet, krävs dock olika angreppssätt. Det beror på att FPGA i
grunden är en parallell modell medan mikroprocessorer är sekventiella och naturen
hos de frågeställningar på den fysiska nivån som måste beaktas vid FPGA utveckling
(frågeställningar som en programmerare av mikroprocessorer kan bortse ifrån). FPGA
verktyg är generellt sett mycket mer sofistikerade i sitt sätt att stödja V&V jämfört med
vanliga programmeringsverktyg. FPGA-verktygens ökade komplexitet är nödvändig
för att kompensera för den ökade komplexiteten hos FPGA. Vid FPGA-utveckling finns
ett antal frågeställningar kring elektronikdesign som behöver tas omhand, som faller
inom kortdesignerns ansvarsområde i fallet med mikroprocessorer. På grund av den
naturliga ensidigheten hos HDL verktyg vid hårdvaruutveckling på låg nivå kan det
vara nyttigt med ytterligare kontroll av V&V aktiviteter avseende beteenden hos FPGA
baserade system för att jämföra täckningsgraden för egenskaper som visar korrekt
beteende på olika abstraktionsnivåer med motsvarande metoder som skulle använts
vid V&V av en motsvarande mikroprocessorimplementering för samma applikation.

Metoderna för V&V som riktar sig till att analysera sårbarheten i implementeringar av
FPGA respektive mikroprocesser, skiljer sig åt betydligt på grund av de radikalt olika
fysiska egenskaperna och hårdvarans designparametrar och berör oftast inte systemets
beteende som ”svart låda”. Många av de svårbehandlade sårbarheterna i ett
mikroprocessorbaserat system så som osäkerhet kring påverkan från
avbrottshanteringen på interaktionen mellan uppgifter och övergripande
systemprestanda saknas vid implementering av FPGA. Många av osäkerheterna
relaterade till avbrott är en konsekvens av operativsystemets växlande mellan olika

VERIFICATION AND VALIDATION TECHNIQUES FOR I&C APPLICATIONS IN NORDIC

NPPS

7

uppgifter och dess resurshantering. Operativsystems baskod är också en källa till
sårbarhet eftersom den oftast är utvecklad i förväg och består till en viss del av kod
vars tillförlitlighet är svår att fastställa. Omsorg måste vinnläggas om att för att lindra
bristen på transparens i koden som slutligen laddas upp i FPGA. Likaledes behöver
frågeställningar kring dataflöden och kontrollflöden på hög abstraktionsnivå hanteras,
där HDL statisk analys inte nödvändigtvis behöver tillföra god täckningsgrad.

Kortfattat, vid jämförelse av V&V genom dessa tre olika områden, har det identifierats
få systematiska skillnader bland de aktiviteter som erfordras för mikroprocessorer och
FPGA baserade system. Metoderna som behövs på de lägre nivåerna är olika och
kräver olika typer av expertis. För FPGA gäller i många fall att angreppssättet är mer
omfattande men det är viktigt att utvärdera hela uppsättningen av de V&V –metoder
som använts i varje enskilt fall för att försäkra sig om att alla nivåer i konstruktionen
och implementeringen är tillräckligt täckt , speciellt om den slutliga bedömningen har
gränsytor mot ett annat system som har utvecklats eller utvärderats av ingenjörers som
är mer bekanta med V&V processer för mikroprocessorbaserade system. Förutvecklade
komponenter, så som IP-kärnor för FPGA och operativsystem för mikroprocessorer, är
viktiga aspekter att ta hänsyn till vid säkerhetsbedömning av alla I&C-system. Medan
IP-kärnor kan undvikas (och de är ofta förbjudna i system som utför Cat A funktioner)
kräver säkerhetsbedömning av operativsystem för mikroprocessorer en ansenlig
mängd V&V-aktiviteter.

VERIFICATION AND VALIDATION TECHNIQUES FOR I&C APPLICATIONS IN NORDIC

NPPS

8

Summary

This report considers the verification and validation techniques that can be
applied to microprocessors and FPGAs, highlighting techniques that are
similarly applicable to both, and those that are specific to a particular
platform architecture.

In each case, the relative effectiveness of these techniques and their contribution to the
overall level of confidence of an instrumentation and control (I&C) system performing
a Cat A function is considered. We have compared verification and validation (V&V)
techniques using a threefold approach that we have found to be effective in achieving a
safety justification. This method systematically considers the contribution of recognised
standards, analysis of behavioural properties, and vulnerabilities that are commonly
associated with particular technologies and design approaches.

In our comparative analysis of standards we looked for differences in V&V
requirements in relevant IEC standards at all stages of the development lifecycle, and
found very few significant differences. In general, the relevant FPGA standard is less
prescriptive about the specific documents that need to be produced. In some cases it
has clarified requirements in the equivalent microprocessor standard. These
clarifications have typically not taken the form of requiring that specific activities be
performed, but have given more detail on the applicability of other standards in
various circumstances and have avoided some ambiguities that are present in the
relevant microprocessor standard.

In examining the V&V techniques applicable to establish correct behaviours, we found
that many are the same or similar. In particular, many of the system level dynamic
testing approaches are identical. However, timing and concurrency require different
approaches. This is a consequence of the fundamentally parallel model of an FPGA in
contrast to a sequential microprocessor and the nature of the issues at the physical level
that need to be considered in FPGA development (which a microprocessor
programmer can neglect). FPGA tools are generally much more sophisticated in the
V&V support they provide when compared to ordinary programming tools, but some
of this additional complexity is necessary in order to compensate for the additional
complexity of FPGAs, which must deal with a number of electronic design automation
issues that are the province of the chip designer in the microprocessor case. Owing to
the natural bias of HDL tools to low level hardware development, it may be a useful
additional check in V&V activities for the behaviours of an FPGA based system to
compare the coverage of correctness properties at different levels of abstraction with
the analogous techniques that would be used in the V&V for an equivalent
microprocessor implementation of the same application.

V&V techniques to address vulnerabilities in FPGA and microprocessor
implementations vary considerably owing to the radically different physical properties
and design parameters of the hardware, and do not generally concern the black box
behaviour of a system. Many of the most intractable vulnerabilities in microprocessor
based systems, such as lack of certainty about the impact of interrupts on task
interaction and overall system performance, are absent in FPGA implementation flows.
Many of the uncertainties relating to interrupts are a consequence of the operating
system’s task switching and arbitration between resources. The code base of the
operating system itself is also a source of vulnerabilities, since it is usually pre-

VERIFICATION AND VALIDATION TECHNIQUES FOR I&C APPLICATIONS IN NORDIC

NPPS

9

developed and may amount to a significant amount of code whose reliability is often
difficult to establish. However, care must be taken to mitigate the lack of transparency
in the code artefacts that are eventually uploaded to the FPGA, as well as any data flow
or control flow issues at a high level of abstraction, of which HDL assertion checking
techniques do not necessarily provide good coverage.

Overall, in our comparison of V&V through these three separate lenses, we have found
few systemic differences in the activities required for microprocessor and FPGA based
systems, but the lower level techniques needed are different and require different types
of expertise. In many cases, for FPGA techniques, the approach is more comprehensive,
but it is important to review the whole suite of V&V techniques used in any particular
case to ensure that all levels of design and implementation are adequately covered,
particularly if the resulting justification must interface with another case that has been
developed or reviewed by engineers more familiar with microprocessor based V&V
processes. Pre-developed components such as IP cores for FPGAs and microprocessor
operating systems are an important aspect of assuring any I&C system; while IP cores
may be avoided (and are often prohibited for systems performing Cat A functions), the
assurance of microprocessor operating systems will require a considerable amount of
V&V activity that would need to performed.

VERIFICATION AND VALIDATION TECHNIQUES FOR I&C APPLICATIONS IN NORDIC

NPPS

10

List of content

1 Introduction 12
2 Background 13
3 Standards compliance 15

3.1 Methodology 15
3.2 IEC 60880 15
3.3 IEC 62566 17
3.4 Results 17

3.4.1 Requirements phase 18
3.4.2 Design and implementation phase 18
3.4.3 Verification 19
3.4.4 Software / HPD aspects of system integration 20
3.4.5 Software / HPD aspects of system validation 21
3.4.6 Modification 21
3.4.7 Software tools for development 21
3.4.8 Acceptance of pre-developed products 21

3.5 Conclusions 22
4 Behavioural properties 23

4.1 Functionality 23
4.2 Timing 26

4.2.1 Worst case execution time 28
4.2.2 FPGA static timing issues 29

4.3 Accuracy 29
4.4 Availability 30
4.5 Robustness 31
4.6 Fault tolerance, diagnostics and failure recovery 31
4.7 Conclusions 32

5 Vulnerability assessment 33
5.1 Equivalence between design and implementation levels 33
5.2 Timing vulnerabilities 35

5.2.1 Microprocessors 36
5.2.2 FPGAs 36
5.2.3 Comparison summary 37

5.3 Initialisation 38
5.4 High level code or HDL bugs 38
5.5 Incorporation of third party code 38
5.6 Unrevealed implicit state corruption 39
5.7 Silicon design errors 40
5.8 Microprocessor vulnerabilities absent in FPGAs 41
5.9 Vulnerabilities – conclusions 41

VERIFICATION AND VALIDATION TECHNIQUES FOR I&C APPLICATIONS IN NORDIC

NPPS

11

6 FPGA technology-specific issues 43
6.1 SRAM 43
6.2 Antifuse 43
6.3 Flash 43
6.4 Modules, mezzanine cards, backplanes and communication between

chassis or racks 44
7 Conclusion 45
8 Glossary 46
9 Bibliography 47

VERIFICATION AND VALIDATION TECHNIQUES FOR I&C APPLICATIONS IN NORDIC

NPPS

12

1 Introduction

This report considers the verification and validation (V&V) techniques that can be
applied to microprocessors and FPGAs, highlighting techniques that are similarly
applicable to both, and those that are specific to a particular platform choice. In each
case, the relative effectiveness and the contribution of these techniques to the overall
level of confidence of an instrumentation and control (I&C) system performing a Cat A
function is considered. Section 2 introduces the project context and approach. Section 3
considers similarities and differences between the V&V requirements of standards for
each of the architectures. Section 4 similarly examines V&V techniques needed to
establish particular facets of I&C behaviour, while Section 5 does the same for design
and implementation vulnerabilities. Section 6 considers issues particular to different
FPGA types. Section 7 concludes. Section 8 gives the abbreviations used and Section 9
is a list of references.

VERIFICATION AND VALIDATION TECHNIQUES FOR I&C APPLICATIONS IN NORDIC

NPPS

13

2 Background

Field Programmable Gate Arrays (FPGAs) have been gaining interest from the nuclear
industry for a number of years. Their simplicity compared to microprocessor-based
platforms is expected to simplify the licensing approach, and therefore reduce licensing
risks compared to software-based solutions.

Although the use of an FPGA can result in a final product that is hardware only, with
no run-time software, the process used to develop the application is software-intensive,
using advanced software tools to design, implement and verify the application. In both
cases there is a process of specification, coding and compilation (even if different
languages and tools are used). We would therefore expect the approaches taken for
justifying software-based systems to be broadly similar to the justification of FPGA
applications. Indeed, there is a growing international consensus that the regulatory
review of FPGA-based systems should treat the application development process in a
manner similar to software development, invoking many of the same standards and
guidelines that are used for software-based systems, with some adaptation.

There has been a number of applications of FPGAs in the nuclear industry, such as the
Main Steam and Feedwater Isolation System at Wolf Creek plant, in the US (class 1E),
and a number of safety applications including Reactor Trip Systems (RTS) for 4 Nuclear
Power Plants (NPPs) in Ukraine (24 systems), Engineering Safety Features Actuation
Systems (ESFAS) for 5 NPPs in Ukraine and Bulgaria (18 sets) and Reactor Power
Control and Limitation System (RPCLS) for 4 NPPs (8 systems). A number of
applications are planned for new builds. These applications were developed prior to
the publication of IEC 62566 [6]. For most of the applications in the nuclear industry,
there was no specific FPGA guidance or standard for the development and justification
of FPGAs in nuclear applications. The approach taken was to adapt software
regulations and standards to the context of FPGAs.

During 2014, we worked on a project with the objective of developing an overview of
the position of safety-related systems built on FPGA technology for nuclear
applications. This investigated if FPGA-based systems were a realistic alternative in
future investment programs in the Nordic NPPs within the next 5 years, considering
technological advancement, licensing, market situation etc. The conclusion was that
FPGAs may have a role in future modernisation of I&C systems in Sweden.

This project is a continuation of the work performed in 2014. Its objective is the
evaluation of the V&V activities that are necessary to implement an FPGA-based
application and compare them with equivalent activities to assess a microprocessor-
based solution.

This study reviews the V&V activities that are needed to implement an application in
an FPGA based product and compares it with what might be equivalent for a
microprocessor based application. Different activities have different objectives in terms
of assurance, and will achieve different levels of confidence in the system. In order to
be able to perform this comparison, it is necessary to define criteria. We base our
overall approach on a comparison of different aspects of a safety demonstration so that
similar levels of assurance can be achieved across the different architectures. This is
done considering

• the verification and validation activities required by relevant standards (Section 3)

VERIFICATION AND VALIDATION TECHNIQUES FOR I&C APPLICATIONS IN NORDIC

NPPS

14

• verification and validation activities to achieve confidence that all behavioural
properties have been met (Section 4)

• verification activities to ensure that typical vulnerabilities of the technologies have
been avoided (Section 5)

This approach considers the three aspects of assurance that we usually describe as the
strategy triangle of justification [3], which is described in more detail in Appendix D.

Figure 1: The strategy triangle of justification

The focus of this project is on safety functions, or those categorised as Cat A according
to IEC 61226 [2], and on “small and medium size applications”. It does not cover large
applications where several FPGA based units communicate with each other via
networks or communication links (although several of the issues would be similar).
When practicable, we indicate tools that are available to support the activities.

VERIFICATION AND VALIDATION TECHNIQUES FOR I&C APPLICATIONS IN NORDIC

NPPS

15

3 Standards compliance

This section summarises our findings from reviewing the V&V activities required by
comparable standards for FPGA-based and software-based I&C systems performing
Cat A functions. The standards chosen were IEC standards, with IEC 60880 [4] being
selected for software systems and IEC 62556 [6] for FPGA-based systems.

3.1 METHODOLOGY

To identify the differences for discussion, we first performed a comparison review of
the two standards. As the prescribed development methodologies share many
commonalities (Figure 3 and Figure 4), we began by looking at each distinct lifecycle
phase. It is important to note that this was a semantic review and comparison as
opposed to a syntactic examination; we have identified only those differences that
impact the development activities, rather than cosmetic differences.

In each case where a difference was identified, we assessed this for its potential impact
on the V&V activities. In some cases we considered that there would be no impact, and
therefore have not taken this further in this report. Where we consider that there is a
potential impact on V&V activities, we have identified this and its potential effects in
Section 3.4.

3.2 IEC 60880

The scope of IEC 60880 is to provide requirements for the software aspects of
computer-based I&C systems performing Cat A functions in nuclear power plants. It
was first issued in 1986 and has since been re-issued a number of times to take into
account the changing practices and techniques of software engineering.

IEC 60880 is directly referenced by IEC 61513 [5], which focuses on general
requirements for I&C systems performing functions important to safety in NPPs. IEC
60880 is also associated with IEC 62138, which covers computer-based I&C systems
performing category B and C functions.

IEC 60880 assumes a system safety lifecycle equivalent to that discussed in IEC 61513,
and shown in Figure 2.

VERIFICATION AND VALIDATION TECHNIQUES FOR I&C APPLICATIONS IN NORDIC

NPPS

16

Figure 2: System safety lifecycle from IEC 61513 [5]

IEC 60880 refines this further to identify a software development lifecycle making use
of distinct phases. This is shown in Figure 3. As can be seen, each separate lifecycle
phase involves verification of the phase outputs.

Figure 3: Software development lifecycle from IEC 60880

VERIFICATION AND VALIDATION TECHNIQUES FOR I&C APPLICATIONS IN NORDIC

NPPS

17

3.3 IEC 62566

The scope of IEC 62566 is to provide requirements for the use of HDL-programmed
devices (HPDs) in I&C systems performing Cat A functions in nuclear power plants. It
was first issued in 2012 and has not been re-issued since.

IEC 62566 references IEC 61513 [5], which focuses on general requirements for I&C
systems performing functions important to safety in NPPs. IEC 62566 is intended to be
used in conjunction with IEC 60987, which covers generic hardware design issues, and
with IEC 60880 for aspects of the development when the HPD and software issues are
identical.

Like IEC 60880, IEC 62566 assumes a system safety lifecycle equivalent to that
discussed in IEC 61513, and shown in Figure 2. The HPD development activities as
described by IEC 62566 also follow a V-model very similar to that in IEC 60880, as
shown in Figure 4.

Figure 4: HPD development lifecycle from 62566

3.4 RESULTS

Overall, there are very few significant differences in terms of V&V requirements
imposed by IEC 60880 and IEC 62566. The two major differences that we found were
firstly, that IEC 62566 is generally more goal-based and less prescriptive about how the
results of the difference activities have to be recorded and secondly, that some of the
ambiguities in phrasing in IEC 60880 have been clarified in the more recent IEC 62566.

IEC 62566 appears to move away from the more prescriptive pattern of IEC 60880, and
this means that alternative verification and development activities may be introduced.

Where IEC 60880 was previously unclear about precisely which sections or clauses
were applicable in different situations, IEC 62566 has gone some way to address this.
This is typical of what we would expect from a standard which has been developed
more recently.

VERIFICATION AND VALIDATION TECHNIQUES FOR I&C APPLICATIONS IN NORDIC

NPPS

18

In the following sections we discuss our results in more detail. When identifying these,
we have made the assumption that the differences of interest are those which have an
impact on V&V. Where there is a difference between the standards which we consider
will not have a significant impact on the V&V activities to be performed, we have not
discussed this in detail.

3.4.1 Requirements phase

The requirements phase is dealt with in Section 6 in IEC 60880 and Section 6 in IEC
62566. Although the standards are slightly different, this is not due to the difference in
technologies used. More specifically, there are very few significant differences relevant
to this phase which impact on V&V activities, with the exception of verification of the
requirements specification. Section 6.6 of IEC 62566 requires that a critical analysis of
the requirements specification is performed, while IEC 60880 does not. This critical
analysis is intended as verification of the requirements specification, and provides an
opportunity to identify potential omissions and inconsistencies before design and
implementation begins.

We would note that Section 8.1.8 of IEC 60880 does state that the output of each phase
of the development lifecycle should be verified, which could be read as a requirement
to review and analyse the requirements specification. However, this is less explicit, and
we consider that it would be reasonable to expect that less rigorous analyses of
requirements may be presented under IEC 60880 than IEC 62566.

3.4.2 Design and implementation phase

Design and implementation is dealt with in Section 7 in IEC 60880 and Section 8 in IEC
62566. There is some divergence in the content of the standards in this section, as we
might expect due to the use of design and implementation techniques relevant to the
particular technology under consideration. However, not all of these differences impact
V&V; those that do are described below.

In terms of design constraints, IEC 60880 is more prescriptive in what must be
considered at the design and implementation stage. Specifically, both Section 7.3 and
Annex B require that consideration is given to decomposition into modules, use of
interrupts, execution time calculations, modification control, coding rules, memory
access and so on. If this consideration is not given, then IEC 60880 requires that a
justification be provided. In addition IEC 60880 also states in Section 7.2.2 that the
choice of language should not prevent the use of certain error-limiting constructs, and
provides guidance for the selection of language and tools. This should be contrasted
with Section 8.3.4.3 of IEC 62566. This section introduces strongly recommended
constraints relating to side-effects, resources, initialization of signals and delays.
However, the standard emphasises that these are not mandatory, a declaration which is
missing from the constraints given in Section 7.3 of IEC 60880.

In addition, IEC 62566 is more explicit that additional design considerations may apply
on a case by case basis, with Section 8.3.4 stating that the design rules should reflect the
latest knowledge. That is, IEC 60880 may be interpreted as containing an exhaustive list
of all design considerations, while IEC 62566 makes it clearer that the design
considerations identified are a representative sample of those which may apply for any
given system.

VERIFICATION AND VALIDATION TECHNIQUES FOR I&C APPLICATIONS IN NORDIC

NPPS

19

The second area in which the standards differ relates to the use of tools. IEC 60880
requires firstly (Section 7.2) that translators should be thoroughly tested, and in
addition to this recommends the use of automated tools and the imposition of further
requirements for tool qualification (discussed in this report in Section 3.4.7). By
contrast, the design and implementation section of IEC 62566 does not explicitly
require the thorough testing of tools – such as those used for synthesis, place and route
– if this has already been performed and documented by the supplier of such tools,
although it does also impose equivalent requirements to those discussed in this report
in Section 3.4.7.

In addition to the requirements placed on tools, the standards differ in what they
require to be present in the design documentation. Section 8.3.10 of IEC 62566 is more
explicit than the equivalent Section 7.4 of 60880, requiring the description of design
decisions pertaining to issues including control flows and data paths, protocols and
algorithms, initialization of registers and the memory map. By contrast, IEC 60880
requires only that “sufficient detail” should be provided. This has two potential
impacts on the verification and validation activities: firstly, that under IEC 60880 it may
be possible to have multiple interpretations of how much detail is sufficient, and
secondly that under IEC 62566 the adequacy of the design decisions must be justified –
and can therefore be confirmed.

The final area in which the standards differ in this phase is in the extent of V&V that
they recommend performing. Although both of them have a dedicated verification
section (see Section 3.4.3 in this report), both also discuss V&V activities, to differing
extents, in this section.

In Section 7.3, IEC 60880 explicitly requires verification of intermediate design
products, which is not required by IEC 62566. We note that this may be implied in the
requirement of IEC 62566 that the design should allow easy verification, but this is not
equivalent to the explicit requirement that intermediate design products should
undergo verification. By contrast, Section 8.7 of IEC 62566 describes a formal review
process to be undertaken at the end of the design and implementation phase; this
constraint is, however, omitted from IEC 60880. There is a brief mention of a review
process in Section 7.4 of IEC 60880, but no equivalent description of the V&V activities
to be undertaken during this. The effect of these different requirements is that we may
expect different verification artefacts from the design and implementation phase of
systems developed under the two standards.

Additionally, Section 8.4.7 of IEC 62566 explicitly requires static timing analysis to be
performed, for which no equivalent requirement is found in IEC 60880.
Correspondingly, it would be expected that verification of best and worst case time –
amongst other properties – has been performed for systems developed under IEC
62566, but not necessarily for those under IEC 60880.

3.4.3 Verification

Verification of software and HPDs is dealt with in Section 8 of IEC 60880 and Section 9
of IEC 62566 respectively. Although these sections are relatively extensive, there are
only a few significant differences between the two standards in this phase.

The first difference relates to the scope of verification, with particular reference to the
use of pre-developed items. Section 9.3 of IEC 62566 identifies that part of the role of
verification is to assess pre-developed products against the rules specified by their

VERIFICATION AND VALIDATION TECHNIQUES FOR I&C APPLICATIONS IN NORDIC

NPPS

20

suppliers, and the requirements of Section 7 (dealing specifically with pre-developed
items, and covered in this report in Section 3.4.8). By contrast, although Section 8.2.3.3
of IEC 60880 also requires that the requirements of Section 15 (dealing specifically with
pre-developed items, and covered in this report in Section 3.4.8) are met, there is no
equivalent requirement that pre-developed items should be assessed against rules
specified by their suppliers. The effect of this omission is a slightly different scope in
the V&V activities required by each standard. Furthermore, Section 9.1 of IEC 62566
identifies a requirement to confirm the adequacy of selection of pre-developed items,
and of such items with their component requirement specification. That is, the use of
pre-developed items must be justified, and shown to be necessary within the wider
system. These differences should be taken into account when considering the
implications of IEC 62566 Section 7 vs IEC 60880 Section 15 on verification of pre-
developed items (as we do in this report in Section 3.4.8).

Secondly, we have already seen that the two standards differ in the extent to which
they explicitly describe the content of documentation. IEC 60880 is more prescriptive
about the documentation to be produced during verification, requiring a distinct
software test specification, test report and design verification report. It is also quite
specific about the information to be included in each of these, requiring for example
that the test specification includes test environment, test procedures, acceptance criteria
and so forth. By contrast, IEC 62566 does require that tests, goals, expected results,
acceptance criteria, inputs and outputs etc. should be recorded, but does not constrain
the type of documentation to be produced (e.g. test specification, test report). Although
the two standards do require the same rigour of documentation in the verification
phase, it is important to be aware that this documentation may be presented differently
under the two standards.

In addition, IEC 62566 places much more emphasis on automation of tests, requiring
tests to be fully automated and any manual input or observation justified (as these are
considered potentially error-prone). IEC 60880, by contrast, permits automated code
analysis but does not require manual analysis to be justified.

Finally, with reference to the actual activities performed during V&V, IEC 62566 is
slightly more prescriptive in terms of identifying the verification activities which must
be performed (for example, static verification activities such as type / syntax checking,
parameter checking, OOR checking and dead state detection). By contrast, IEC 60880
provides an informative annex detailing potential verification activities including
program analysis, program proving, path testing, data movement testing. However,
because these are informative only, their selection must be on a case-by-case basis,
unlike the mandatory activities prescribed by IEC 62566.

3.4.4 Software / HPD aspects of system integration

Software and HPD aspects of system integration are dealt with in Section 9 of IEC
60880 and Section 10 of IEC 62566. There are no significant differences which impact
V&V, with the only exception being that IEC 62566 explicitly requires that verification
software tools should be compliant with its requirements on software tools for
development (Section 15 of IEC 62566, which is detailed in this report in Section 3.4.7).
IEC 60880 does not explicitly require this, so should any software tools be used for
verification then this may be an area where further work could be merited.

VERIFICATION AND VALIDATION TECHNIQUES FOR I&C APPLICATIONS IN NORDIC

NPPS

21

3.4.5 Software / HPD aspects of system validation

Software and HPD aspects of system validation are dealt with in Section 10 of IEC
60880 and Section 11 of IEC 62566. As above, there are no significant differences to
discuss, with the exception of a slightly more stringent constraint on the equipment
used for calibration. IEC 60880 requires that this be demonstrated to be suited to the
purpose of system validation, while IEC 62566 does not require this. However, this is
unlikely to have a significant impact on V&V activities.

The only other area of difference in this phase relates to the documentation. Section
10.3 of 60880 identifies that software tools used in the validation process should be
documented as an item in the validation report. The corresponding section dealing
with validation reports in IEC 62566, Section 11.4, does not mention this, although it is
included in IEC 61513. There is unlikely to be any significant impact on verification and
validation, but this omission from IEC 62566 may be an indication that information on
software tools for validation could potentially be missing.

3.4.6 Modification

Software and HPD modification is covered in Section 11 of IEC 60880 and Section 12 of
IEC 62566. There are no significant differences between the two standards in terms of
verification and validation activities.

3.4.7 Software tools for development

The use of software tools for development is addressed in Section 14 of IEC 60880 and
Section 15 of IEC 62566. There are no significant differences to discuss; indeed, IEC
62566 explicitly requires conformance with IEC 60880 with the exception of a small
number of constraints specific to microprocessors. It also adds some HPD-specific
requirements around tools for logic synthesis, HDL source statements, command-line
arguments

3.4.8 Acceptance of pre-developed products

The acceptance process for pre-developed products is considered in Section 15 of IEC
60880 (and configuration of these in Section 7.1.4), and in Section 7 of IEC 62566.

One area in which the two standards differ, and which can have a significant impact on
verification and validation, is in the evaluation of the quality of the pre-developed
product. IEC 62566 allows more scope for interpretation in the ways in which the
quality of the product could be demonstrated. In particular, Section 15.3.2 of IEC 60880
explicitly identifies the documentation that we should expect to be made available. This
includes the software quality plan, the specification documents, the software /
hardware integration plan, the validation plan and the results of verification and
validation. By contrast, IEC 62566 requires only that a documentation review is carried
out on the design and verification documents of the pre-developed product. This
difference can be partly attributed to the fact that pre-developed products - such as IP
cores – for use in FPGA-based systems may not be provided with all of the specific
documentation discussed in IEC 60880; that is, the information may be present, but
provided in a different form.

Furthermore, IEC 60880 imposes a further quality requirement, that the development of
the pre-developed product should have been in accordance with the annexes of IEC

VERIFICATION AND VALIDATION TECHNIQUES FOR I&C APPLICATIONS IN NORDIC

NPPS

22

60880 itself. IEC 62566 does not impose an equivalent requirement. However, it is
worth nothing that the programming process for blank integrated circuits is required to
be “fault free”.

The other area in which IEC 62566 and IEC 60880 differ is in the scope for, and
constraints placed on, the use of operating experience when assessing a pre-developed
product. In general, IEC 62566 allows more scope for interpretation in the ways in
which operating experience can be used, with Section 7.4.3 stating that it may be used
to compensate for limited documentation weaknesses regarding reliability or design.
By contrast, Section 15.3.3.2 of IEC 60880 is explicit that operating experience can never
completely replace documentation evaluation. IEC 60880 is also more specific about the
weaknesses in design that can be compensated for with operating experience.

By contrast, however, IEC 62566 is more specific about the conditions under which
operating experience can be considered valid, with Section 7.4.3 requiring “equivalent”
conditions. IEC 60880, in Section 15.3.3.1 requires “similar” conditions. As there is no
further information given about the ways in which the conditions must be similar,
IEC 60880 has the potential for multiple differing interpretations when determining the
validity of operating experience.

3.5 CONCLUSIONS

Overall, we have found very few indications of significant differences impacting on
V&V between IEC 60880 and IEC 62566, at any stage of the development lifecycle.

In general, IEC 62566 is less prescriptive about the specific documents that need to be
produced. In some cases IEC 62566 has clarified requirements in IEC 60880, resulting in
a greater specificity in these clauses. As above, these clarifications have typically not
taken the form of requiring that specific activities be performed, but have rather been
clarifications that, for example, the constraints of a particular clause either in IEC 62566
or in another standard are applicable in situations which were previously ambiguous.

VERIFICATION AND VALIDATION TECHNIQUES FOR I&C APPLICATIONS IN NORDIC

NPPS

23

4 Behavioural properties

In the safety triangle of justification, consideration of the behavioural properties aims to
show that the expected behaviour of the system or component is met. Typically, this is
organised under attribute headings such as functionality, timing and accuracy. This
typically requires the use of a number of V&V techniques. Different properties (or
attributes) can be considered for different types of systems or components. The exact
set of attributes to be considered would need to be defined for each system.

Therefore, in assessing the usefulness of a particular technique, it is necessary to
consider

• the contribution of the behavioural attribute to the overall case
• the contribution of the V&V technique to establishing the behavioural attribute
• the inputs required to apply the V&V technique

The combination of all the techniques deployed for each behavioural attribute
generates a level of confidence that the behaviour of the complete system is well
understood and correctly implemented. In selecting appropriate V&V techniques, the
most productive are those that provide a high level of assurance but require modest
amounts of effort, while the least attractive provide little assurance and involve large
amounts of effort. The position of a technique on the spectrum depends on the nature
and structure of the application being assessed. In this section, for common groupings
of behavioural attributes, we compare how V&V techniques vary between
microprocessor and FPGA based systems, with particular emphasis on those areas
where the V&V required for one architecture gives significantly more confidence or
requires significantly less effort than another.

4.1 FUNCTIONALITY

The V&V of a system’s functionality refers to the correct implementation of the defined
system functions. One type of functionality involves specifying the existence of a
facility or capability of the system: for example, an instrument measuring temperature
may specify that the user be able to calibrate sensor X using some particular kind of
data set, perhaps over a particular interface. A part of the specification of the
functionality of the system can also involve prescribing an algorithm or properties of an
algorithm used to calculate some quantity in the system.

VERIFICATION AND VALIDATION TECHNIQUES FOR I&C APPLICATIONS IN NORDIC

NPPS

24

V&V area Microprocessor V&V FPGA V&V

Code inspection Code inspection of code written in
a high level language can reveal the
logical intent of well-structured
single-threaded code, but by
suggesting structures, may lead the
reviewer into making the same
logical errors as the developer.
Concurrent functional
requirements are difficult to
analyse using code review without
tool support, particularly as it may
not be obvious that another
function implemented elsewhere in
the code may interact with shared
resources such as global variables.
Effectiveness/cost
Low cost, reasonable confidence if
code is well structured and
commented with limited
concurrent behaviour or assembly
code.

Code inspection of HDL can produce
less confidence than the equivalent
activity for microprocessor code
because hardware implementation
details are exposed, and HDL designs
are inherently more concurrent. It may
be more useful to concentrate on code
review at the ESL level rather than at
executable HDL level, although
subsequent coverage of potential
issues that are created at HDL level
only depends on the means by which
the HDL is generated. A summary of
the development flow can be found in
Appendix B.
Effectiveness/cost
Low cost, less confidence than
microprocessor, especially if review
confined to low level HDL.

Random testing,
functional
testing

These techniques are similarly applicable to both microprocessors and FPGAs.
Effectiveness/cost
Relatively low cost. The effectiveness of testing is heavily dependent on the
linkage between a test profile and the specific claims supported by the
results.

VERIFICATION AND VALIDATION TECHNIQUES FOR I&C APPLICATIONS IN NORDIC

NPPS

25

V&V area Microprocessor V&V FPGA V&V

Formal
verification

Static analysis using a tool such as
Malpas or Frama-C produces a
deductive proof that a piece of
code has a behaviour that is stated
in a formal specification language.
The effectiveness of the technique
depends on the identification of
significant functions and correct
translation of their natural
language requirements into
mathematical definitions of
behaviours. Depending on the
extent of the properties proved,
levels of confidence can be high.
Tools require qualification, and
those that need extensive manual
intervention to link deductions
together may introduce
opportunities for error.
Effectiveness/cost
Depending on the functional
properties verified, static analysis is
time consuming but is considered
to produces the highest practical
levels of confidence in the
functional correctness of code.
Tools range in cost from free to
expensive.

Assertion languages (which can
sometimes be part of an HDL) enable
statements to be written about the
behaviour of a piece of HDL code,
which can be checked by simulation or
deductive means using a range of
tools. However, the low level nature of
these assertions can make it difficult to
frame high level functional properties.
Verification tools at ESL/TLM level
address functionality more fully, but
tend to work by simulation rather than
deductive means, as the complexity of
ESL language complexity does not
easily facilitate deductive proof.
Simulation cannot typically provide
complete coverage of a state space in
systems of more than trivial
complexity, although there are
established techniques available to
gain confidence that a given level of
coverage has been achieved.
Effectiveness/cost
HDL verification tools can be
expensive, even on a subscription
basis. These tools are generally closed
source, but have long development
pedigrees and wide use in industry.
The level of confidence that can be
obtained through using these tools at a
low level for functional (as opposed to
integrity) properties is not particularly
high, but their use is mandated by
IEC 62566. Some HDL verification tools
provide assertion generators or check
that assertions cover particular
properties, but these tools cannot
infer the designer’s intention about
what the code is supposed to do. HDL
assertion checking is a technique
better suited to addressing
vulnerabilities in designing code for
FPGAs, so we return to it in Section 5.

Model checking Model checking techniques use a high level representation of a design in a
language such as Promela and check properties of interactions between
functional blocks and state transitions at a high level. In both the case of
microprocessor and FPGAs, some element of skill and discretion is needed in
manually constructing a suitable model. It is time-consuming and expensive
task, although many common tools are free or open source.
Effectiveness/cost
In each case, the strength of the conclusions with reference to the model
being checked is high, but is limited in the context of the actual
implementation it is modelling by constraints on the confidence in the
equivalence of the models to the implementation in question. Model
checking is labour-intensive and expensive.

Table 1: Functionality V&V

VERIFICATION AND VALIDATION TECHNIQUES FOR I&C APPLICATIONS IN NORDIC

NPPS

26

4.2 TIMING

Timing behaviour has different facets depending on whether we are considering

• low-level hardware concerns such as propagation of signals and rise times of
particular transistor technologies

• length of time for a particular clocked processor to work through a compiled
algorithm written in a high level programming language

• latency of a real time signal processing pipeline or response time to an
asynchronously presented demand

Some of these concerns apply predominantly to microprocessor based
implementations, while some apply to HDL implementations. Functional level testing
techniques apply to both. These issues are presented in Table 2 and elaborated in the
sections that follow.

V&V area Microprocessor V&V FPGA V&V

Worst case
execution time
analysis (WCET)

We describe the issues
involved in worst case
execution time analysis
in Section 4.2.1.
Effectiveness/cost
WCET analysis can give
high levels of
confidence in adequate
timing performance of
an algorithm
implementation, but it
is an expensive activity,
often requiring manual
intervention that is
frequently intractable,
in which case
approximations can be
used (which give a
reduced level of
confidence compared
with an analytical
solution).

Although not directly applicable as WCET
analysis is a technique used for microprocessor
code, HDL program code can nevertheless be
written in a paradigm in which data flows round
a (spatial) loop several times, and after some
number of iterations emerges into a different
part of a data processing pipeline. It is
important to ensure that this kind of hidden but
semantically significant construction is not
neglected in HDL verification.

VERIFICATION AND VALIDATION TECHNIQUES FOR I&C APPLICATIONS IN NORDIC

NPPS

27

V&V area Microprocessor V&V FPGA V&V

Static timing
analysis

For a microprocessor,
verification of timing
properties at the HDL
physical levels takes
place when the
microprocessor is
designed and verified by
the manufacturer. The
programmer writing
code for a
microprocessor should
address WCET and
performance issues, but
does not need to be
concerned with
propagation or other
electronic issues: the
microprocessor
programmer’s model of
hardware is a discrete
abstraction.

Background to static timing analysis is given in
Section 4.2.2. Static timing analysis is important
in order to check that synchronous timing
constraints that are implicit at HDL level are not
violated during place-and-route. It is an
automated process supported by a wide variety
of tools. So called “back annotations” imposing
extra constraints on the HDL as a result of how
that HDL has been synthesised and placed onto
the FPGA can result in a cyclic FPGA
development process, where multiple revisions
may be necessary before an acceptable
bitstream is produced. However, this is not so
different from the case with a microprocessor,
where a design might not necessarily fit into
memory or within the timing constraints of the
application after a first pass. Similarly, with a
microprocessor, some elements of the analysis
of high level code or synchronous HDL can be
applied independently of a particular
microprocessor or FPGA, while issues such as
place-and-route that are dependent on a
particular FPGA are analogous in difficulties
encountered when a traditional piece of code is
compiled for a different microprocessor.
However, in the case of a microprocessor, the
extra WCET analysis that would be required for
a microprocessor based design would be a
larger task than rerunning an automatic static
timing analysis for an FPGA. While static timing
analysis for an FPGA is common practice among
developers of FPGA-based solutions, WCET
analysis is typically only part of rigorous
development processes.
Effectiveness/cost
Static timing analysis should not pose a
significant extra difficulty unless a design is
being targeted onto an FPGA that is not large or
fast enough to accommodate the high level
design. Reliance on complex closed source
toolchain may have a small negative impact on
confidence when compared to a
microprocessor where the consequences of
place-and-route are concerned because, like a
microprocessor, an FPGA chip design must be
verified, so the verification of the HDL for the
programmable part of the FPGA is an extra step
with opportunities for bugs or inaccuracies.
Since static timing analysis is a routine activity
in FPGA development, some extra V&V benefit
may be gained over microprocessors, although
this is highly dependent on whether the
compared code is written at a high or low level
of functional abstraction.

VERIFICATION AND VALIDATION TECHNIQUES FOR I&C APPLICATIONS IN NORDIC

NPPS

28

V&V area Microprocessor V&V FPGA V&V

Time response test This is a generic technique for asynchronous applications. At this level,
timing properties are dictated by communications protocols or plant need.
For example, real time protocols can require responses within a fixed
interval, while a plant need might specify a maximum time that should
elapse between a detectable set of plant conditions and a control or safety
response, such as an alarm annunciation.
Effectiveness/cost
These techniques are inexpensive and give reasonable levels of confidence,
although this is dependent on arguing that there is adequate coverage of
the tests over inputs and environments to which timing might be sensitive.
This can be more difficult in the microprocessor case, where operating
system interactions between concurrent tasks often produce intractable
corner cases.

Table 2: Timing V&V

4.2.1 Worst case execution time

Most programming languages used in the development of I&C systems are imperative
languages. This means that they set up a set of variables with state, and consist of
sequential statements that modify that state. (The allocation of variables that form part
of the notional state at any one time changes as functions are entered and exited, but
this can be overlooked for the sake of the current discussion.) Some statements contain
logical tests, such that the next statement to be executed may be determined by the
value of some data in a variable. There is an infinite number of ways1 of implementing
an algorithm defined by an application in imperative code. Each different way of
implementing the algorithm may give rise to a different number of statements that
must be executed until the eventual result is computed; this number of statements will
usually change, depending on the values of the input data to a given algorithm. The
system of state transitions is discrete: each transition is notionally instantaneous, and
any execution history always contains a whole number of executed statements.
However, each of these transitions cannot in practice be instantaneous, so a given
algorithm takes a finite amount of time to complete. The worst case execution time
(WCET) is determined by whichever input data produces an execution with the largest
number of statements. The more transitions, the longer this time will be. The state
transitions corresponding to this timescale of sequential C statements does not have a
straightforward relationship to physical time. This is because different statements will
be converted into different sequences of microprocessor instructions by different
compilers, and different microprocessor instructions take different numbers of physical
clock cycles to complete. Instruction retries and processor optimisations such as
pipelining, out-of-order execution and asynchronous communications with external
ICs over system buses can even make the length of time needed to process an
instruction non-deterministic.

In themselves, these factors make WCET analysis a complex task that involves
consideration of interactions between high level language, compiler and
microprocessor. It is made even harder when an operating system is used, or where
function invocation is driven by asynchronous interrupts, because function execution
can be arbitrarily interrupted by other parts of a system, which can result in complex
mutual dependencies or reliance on unbounded external stimuli, which can result in an
analytically intractable implementation. Where bounds can be found, they are often

1 though a finite number of good ways

VERIFICATION AND VALIDATION TECHNIQUES FOR I&C APPLICATIONS IN NORDIC

NPPS

29

unnecessarily or unusably conservative. In such cases, it is necessary to rely on
approximate or statistical techniques based on testing. Although design rules
restricting the choice of microprocessor and language use can in theory make this
timing behaviour more predictable, common microprocessor based platforms have all
of these complexities.

The time between idealised transitions in an application level model places an upper
bound on what WCET is acceptable in any given instance. Where it is decided to
undertake a WCET analysis for a microprocessor based systems, tools such as AbsInt
aiT can be used.

For most purposes in the analysis of a microprocessor code, the semantic model of the
microprocessor is considered to be time-deterministic. However, incomplete
information about any optimisations or integration into a platform which does not
synchronously constrain buses or interrupts may nevertheless render the platform as a
whole non-deterministic. Non-determinism may be a result of a specification being not
fully known or defined, or may be a feature of a physical design that results in
behaviour that is impossible to predict because a design is metastable or otherwise
sensitive to probabilistic physical effects.

In summary, worst case execution time analysis is a technique used for microprocessor
code: it is difficult and often intractable, so the lack of an obviously similar kind of
analysis needed for FPGAs is an advantage for FPGA based designs. However, if an
HDL design uses a control or data flow paradigm from a high level language for a
microprocessor (such as C), some high level elements of WCET-style analysis may be
appropriate, using suitable assertions, model checking or theorem proving. Even so,
such an analysis should be much less affected by sources of non-determinism present
in the microprocessor case.

4.2.2 FPGA static timing issues

FPGA design rules discussed below constrain HDL to a synchronous (deterministic)
subset, but similarly may have non-deterministic elements at the system level,
depending on how the FPGA is connected to peripheral ICs. At synchronous level,
where the semantics assume instantaneous propagation, timing issues are relatively
straightforward. However, there is a need to consider clock recovery tolerances at I/O
interfaces and clock domain crossing between components that may be asynchronous
at application level and not share a common clock. A basic V&V requirement here is to
verify that the HDL design is actually synchronous. This can be checked by using an
analysis tool.2

4.3 ACCURACY

The definition of accuracy changes radically depending on the system boundary. For
example, it can be of

• the digital output (of temperature, for the sake of argument), given the actual
physical state of a sensor

• the digital output, given the analogue potential difference across a thermocouple
(this has the same limitation as above)

2 to verify that the directed graph of component interconnections contains no cyclic structures that are
not interrupted by a clocked register

VERIFICATION AND VALIDATION TECHNIQUES FOR I&C APPLICATIONS IN NORDIC

NPPS

30

• the accuracy of the internal digital representation of voltage, given the potential
difference across a thermocouple

• the numerical precision of that voltage
• the numerical precision of the output (temperature)
• the numerical precision of the intermediate values in any calculations or the

divergence of the result from idealised real number intermediate values

We may therefore be talking about the precision of an entire instrument, a component
of it, or an algorithm. The accuracy and precision of the physical aspects of the
instrument and ADC/DAC converter resolutions are a relatively high level issue that
should be dealt with in framing the requirements of the entire software application, but
the precision and numerical stability questions tend to arise at the implementation
stage. The different types of V&V activities applicable are summarised in Table 3.

V&V area Microprocessor V&V FPGA V&V

Accuracy
tests of
black box
system

No differences between microprocessor and FPGA case – external measurement
equally applicable in both cases.
Effectiveness/cost
Good degree of confidence at relatively low cost.

Simulation Applicable in both cases.
Effectiveness/cost
Highly dependent on the amount of simulation performed and the state space
needed to be covered. The degree of concurrency in an FPGA can make
simulation a computationally intensive task. The software needed for performing
simulation testing for HDL and FPGAs tends to be more expensive than that for
code in an ordinary programming language, although the facility can be part of or
an extension to software that is needed in any event for other parts of the FPGA
development process.

Numerical
analysis

Techniques such as sensitivity analysis and proof in interval arithmetic could be
used in both cases. Where there is a temporal aspect to the accuracy of a
calculation (for example, the size of a discrete interval in the numerical
integration of a property over time) there is little difference between a
microprocessor and FPGA, unless in one case source code is not available for a
pre-developed component.
Effectiveness/cost
Sensitivity analysis can be easy and inexpensive, though relating the coverage
achieved to the confidence gained can be more difficult. Proofs in interval
arithmetic are difficult, time consuming and expensive, and not often done:
however, they do offer very high levels of assurance.

The numerical accuracy of an algorithm written in a
high level programming language will depend on the
size of datatypes on the target architecture, the
treatment of which may vary according to the
compiler and targeted hardware. If a binary library is
used, this information may not be readily accessible:
object code can be decompiled and analysed, but this
is not straightforward and may be in breach of
licence terms.

FPGA data sizes and
encodings are more
explicit unless
intermediate values or
algorithmic details are
hidden in pre-developed
blocks (IP cores).

Table 3: Accuracy V&V

4.4 AVAILABILITY

Availability of a system is its readiness for correct service. It is a system-level attribute
supported by component attributes. In the cases of both microprocessors and FPGAs it

VERIFICATION AND VALIDATION TECHNIQUES FOR I&C APPLICATIONS IN NORDIC

NPPS

31

can be considered as a hardware attribute, in which case it reduces to the physical
reliability of electronic components, or a software process, for which it relates to the
ability of a software system to service external interactions, which requires it to be
operating properly and keeping the correct internal state. In the latter case, the speed of
the hardware and freedom of the code from starvation issues are relevant, but are more
appropriately considered as vulnerabilities. On a system scale, availability can be
affected by the reliability of components, which can be assessed by statistical testing.
Statistical testing can be expensive where very large numbers of tests may be needed to
reach adequate confidence levels.

4.5 ROBUSTNESS

Robust behaviours are tolerant to out-of-normal inputs and stressful conditions. Where
this concerns over-voltage or other physical problem these are largely hardware
properties that apply similarly to microprocessors and FPGAs, as the integrated circuit
(IC) fabrication technology determines the electrical sensitivity to over- and under-
voltage or inaccurate clocking. In software, it is possible that malconfiguration of
scaling parameters can lead to unforeseen overflows or nonsensical values, which can
then cascade meaningless computations into other processing functions. Testing at
extremes of value ranges can provide some confidence that this should not happen.
Microprocessor code and HDL should both be checked for implementation of sensible
defensive behaviours, such as range checking of values before they are used. Both
microprocessor based designs (where interrupts might be activated by an external
stimulus more frequently than the coder expected) or FPGA designs (where some
asynchronous stimulus is applied more often than expected) could lead to demands
being ignored or timed out. Robust software or HDL design should have defined
behaviours in overload circumstances such as this (such as ignoring or queuing), which
are validated to be safe in the context of the wider application.

4.6 FAULT TOLERANCE, DIAGNOSTICS AND FAILURE RECOVERY

Many of the system level approaches to fault tolerance apply similarly to FPGA based
systems as they do to microprocessor based systems. Familiar techniques such as the
use of error detection and correction codes and modular redundancy are equally
applicable. FPGAs increase the scope of some of these approaches because they can be
implemented more flexibly on-chip. For example, modular redundancy on an FPGA
may be implemented by spatially separating multiple instances of the same logic. This
approach can work together with usual design strategies such as divisional
redundancy.

FPGAs can provide some semi-automatic detection and repair facilities. However,
these approaches tend to rely on IP cores and may therefore increase the design
footprint of the whole solution and thus also the justification overhead.

Since FPGAs are dynamically configurable (with the exception of the one-time-
programmable antifuse type), they are susceptible to configuration upsets as well as
execution upsets: this is addressed in Section 6. Detection and protection of these errors
is often a standard feature of FPGAs, but does not address the usual bit flip concerns
familiar in microprocessor based designs.

Failure recovery differs from fault detection and tolerance attributes in that it concerns
the response to a failure that has occurred rather than one that has been masked to a

VERIFICATION AND VALIDATION TECHNIQUES FOR I&C APPLICATIONS IN NORDIC

NPPS

32

higher system level. Modular approaches to fault containment and recovery from
failure are sufficiently abstract that there is no real difference between the approach
taken with microprocessors and FPGAs. The main difference between FPGAs and
microprocessors in the scope for implementing failure detection and repair of soft
errors is that the level of tolerance for FPGAs can be very flexibly tailored to a given
target tolerability of upsets. Additionally, since FPGAs are reconfigurable, permanent
failures due to electromigration or other causes may in theory be accommodated by
reprogramming, although it is questionable whether dynamic reconfiguration of this
kind would be compatible with the requirement to maintain a stable configuration.

4.7 CONCLUSIONS

Many V&V techniques that pertain to system level behaviours are equally applicable to
microprocessors and FPGAs. However, behaviour relating to timing and concurrency
needs to be assessed in different ways. FPGAs have extra behavioural facets that must
be considered because verifying them involves tools that must use non-discrete
physical models to handle issues such as propagation delay. These V&V obligations
arise on a per-development basis rather than at chip design time as is the case for
microprocessors, although in the case of microprocessors, it is rare to have access to the
verification records. V&V for FPGAs does not need to address an operating system or
require analysis of control flow through instruction sets at a low level, but it is
important not to neglect any dataflow paradigms that might be adapted from
microprocessor development idioms, which may not be naturally covered by HDL
verification tools that are aimed at low level IC development.

VERIFICATION AND VALIDATION TECHNIQUES FOR I&C APPLICATIONS IN NORDIC

NPPS

33

5 Vulnerability assessment

Vulnerabilities of artefacts, tools or processes are properties of particular technologies
that often lead to predicable patterns of failure. For example, a program written for a
microprocessor will likely involve using and manipulating memory addresses, which is
well known to be a source of programmer error. Concurrency in programs for
microprocessors is vulnerable to data corruption, starvation or performance issues,
while the synthesis and deployment of HDL code onto an FPGA is known to be
vulnerable to timing propagation errors and unpredictable asynchronous behaviours.
At the physical level, certain types of FPGAs are vulnerable to spontaneous
configuration changes owing to ionising radiation (see Section 6).

In this section we analyse the similarities and differences among the vulnerabilities
found in microprocessor and FPGA based designs, and the implications this has for
V&V requirements and available approaches in each case. We compare
microprocessor-based systems and FPGA based systems, considering small and medium
sized applications at Cat A. Such systems comprise the core FPGA or microprocessor
chip, supporting electronics and proprietary module structure, such as hot swap
boards in a single chassis, using a proprietary interconnection system and development
tools. We do not consider systems that are housed in more than one chassis or
heterogeneous systems. The extent of the theoretical vulnerabilities and strengths of
microprocessors and FPGAs chips often diverges from what is achievable with the
systems on the market that are suitable for use in nuclear power plants, which include
some element of common platform code: where this contains elements that are
intractable to analyse (such as microprocessor platforms that make more than very
limited use of interrupts) this places a limit on the feasibility of a deterministic analysis
for an entire implemented system consisting of a platform and an application.

FPGA vulnerabilities concern common patterns of error in rendering requirements
specifications in HDL and the tools used to refine HDL code into a deployed FPGA,
and can occur both in IP cores (see Section 5.5) and per-development code. Since IEC
62566 mandates that all HDL designs be fully synchronous, if maximum logic
propagation times for combinatorial logic do not generate unsynthesisable timing
constraints, FPGA-specific vulnerabilities can in principle be reduced to toolchain
vulnerabilities. Similarly, the logic functions generated by synthesis tools are in
principle correct by construction, although some cautions and provisos are discussed
below. An analogous situation with microprocessor based designs is that some classes
of memory interference bugs are extremely easy to introduce in manually written
assembly code programs, but are completely avoided by use of a suitable high level
programming language – but the protection is lost if the compiler is flawed or the tool
flow not followed properly.

5.1 EQUIVALENCE BETWEEN DESIGN AND IMPLEMENTATION LEVELS

Development of both HDL and code for microprocessors usually proceeds according to
the ordinary V model of development (see Figure 3 and Figure 4). Using the V model, a
design is implemented in increasing detail at progressively lower levels of abstraction.
With each artefact and translation between equivalent artefacts at different design
levels, there are opportunities for errors to occur. V&V processes can be applied to each
artefact as it is generated in order to address this vulnerability, and to the tools and

VERIFICATION AND VALIDATION TECHNIQUES FOR I&C APPLICATIONS IN NORDIC

NPPS

34

processes that are used to move from a high level artefact to a more detailed one. As
part of the development process, the functionality is broken down into smaller
components, and these are verified at each stage within the semantics of the abstraction
level in question. When all of the low level modules have been implemented, they are
again verified as they are integrated towards the top system level, with validation of
the final implemented system taking place against the original requirements.

In FPGA contexts, it is common to use “Electronic System Level” (ESL) tools to capture
a design at a high level. “ESL” is a term used by IEC 62566 to mean “high-level
description of an electronic system, based on a set of processes representing
functionalities of components such as microprocessors, memories, specialized
computing units, or communication channels” [6]3. This is often referred to as
“Transaction Level Modelling” (TLM), and is facilitated by languages such as SystemC
and SystemVerilog. IEC 62566 provisions such as clause 6.6.3 (in relation to ESL usage)
mandate that “[t]he requirement specification shall be reviewed to check its
completeness and its consistency”; this language mirrors that in IEC 60880 about
requirements specification, although IEC 60880 does not provide for any ESL-like
languages other than in an oblique reference to high level tools in Clause 14.1.1.

Clause 6.5.3 of IEC 62566 states that “[t]he semantics of the languages used to express
the requirement specification at ESL level may differ from the semantics of the HDL
languages used during design.” The reason this can present a problem is not that the
semantics differ in themselves, but the equivalence relations between the semantics can
be incomplete and contain ambiguities that may be resolved differently by different
human implementers or transformation tools. While ESL level tools are expressive,
facilities for verification beyond simulation and assertion checking are limited.
IEC 62566 (in clauses 6.5 and 8.5) discusses the requirements for using “Electronic
System Level” (ESL) tools, imposing similar qualification standards on them as for the
lower level FPGA toolsets. Assertion languages can be used at ESL level, although
these do not give assurance of the level of coverage or completeness. IEC 62566 [6] (at
clause 8.5) raises a number of provisos if HDL is to be produced by an automated
toolchain.

Both IEC 60880 and IEC 62566 are silent on the use of even higher level tools such as
Simulink and Matlab and traceability through tools such as DOORS to system
requirements and plant need, but such techniques are increasingly deployed in modern
design flows, and can also apply to systems that are eventually implemented using
microprocessors.

High level code (microprocessors) or HDL (FPGAs) to physical implementation
equivalence concerns the correctness of compilers and assemblers (for microprocessors)
and logic synthesis and place-and-route tools (for FPGAs). In the microprocessor case,
object code analysis after compilation can provide a high level of assurance that the
compiler has not introduced bugs, but this is very expensive when applied to an entire
code base. Owing to the closed source nature of place-and-route tools and the
mechanisms for generating bitstreams and loading them onto FPGAs, it is not possible
to conduct a fully equivalent exercise of this kind using an independent tool or manual
inspection. However, the logic synthesis process from HDL to RTL can be readily
examined (this part of the process is more analogous to high level code to assembly
code compilation for microprocessors). Moreover, the standard closed source tools for

3 Clause 3.4

VERIFICATION AND VALIDATION TECHNIQUES FOR I&C APPLICATIONS IN NORDIC

NPPS

35

FPGA synthesis will test the bitstream against RTL as a matter of routine. Whether this
bitstream checking (which corresponds to a stage absent in microprocessor based
designs) provides extra confidence compared to a microprocessor, or whether it simply
compensates for the extra complexity present in an FPGA is a somewhat subjective
question. For FPGA designs, this problem can be mitigated by synthesising HDL code
onto diverse platforms and using voting arrangements on different divisions to
mitigate the consequences of any FPGA tool flaws.

5.2 TIMING VULNERABILITIES

At the application level, timing events may be asynchronous. For example, a demand
on a safety alarm system may come at any time. Further, the state transitions as a result
of these stimuli might be immediate, or constrained as a functional requirement to
occur with some specific delay or within some time interval. However, this transition
bears little relationship to the time it takes to compute the next state from the current
state. If the next state function involved a computationally intensive mathematical
function involved in modelling the state of a reactor, it cannot be taken for granted that
the state transition time is negligible. This has two consequences at the level of HDL or
ordinary programming languages:

• there is some implicit or explicit constraint on worst case execution time for a
particular piece of code

• given a non-zero state transition time at the synchronous level, there are implicit
constraints at the application level on the number, frequency, parameters and
coincidence of demands

The application’s implicit or explicit requirements for timeliness of response must be
matched with worst case execution time of the implementing logic. In microprocessor
systems, this is often fraught with practical problems, and empirical and statistical
arguments are often used rather than analytical techniques to provide assurance of this
correspondence. In FPGA designs, spatial separation of functions can make this kind of
analysis easier. It should be noted that it does not remove it altogether, because
pipelined functions, particularly where there are cyclic data flow structures, still
require an element of worst case timing analysis. Further, combinatorial logic takes a
minimum time to settle that is dependent on both logic synthesis and place-and-route.
However, timing analysis at this level is simpler than the equivalent for a
microprocessor because it bypasses many low level control details, assembly language,
operating system and processor dependencies that need to be dealt with the in the
microprocessor case. Table 4 summarises the equivalences between areas of concern at
the synchronous code level.

 Imperative microprocessor programming FPGA-implemented design

Transition Assignment of expressions Clocked combinatorial logic

Iteration Looping and recursion Cyclic data paths

Table 4: Transition and iteration analogues

Timing constraints can arise not only from external demands, but from implicit
requirements of internal concurrent behaviour. If a particular application state
transition A is dependent on some other transition B occurring before or after another

VERIFICATION AND VALIDATION TECHNIQUES FOR I&C APPLICATIONS IN NORDIC

NPPS

36

transition C, subtle timing bugs can occur, leading to (potentially intermittent)
opportunities for starvation.

Synchronous level languages such as ordinary C or synchronous subsets of HDL are
not sufficient to completely (or deterministically) describe a system behaviour at the C
or HDL programming level. This is because sources of asynchrony from the application
and physical levels often undermine assumptions necessary for synchronous operation.
We will see that this problem is more difficult to deal with in the microprocessor case
than with HDL-based designs, owing to the presence of interrupts and operating
systems, the constraints on which are usually incompletely defined. V&V for FPGA
based systems can be somewhat more straightforward in this area.

5.2.1 Microprocessors

At the physical level, from the programmer’s or compiler writer’s point of view, a
microprocessor is a discrete state machine. The state of the processor and its memory is
a deterministic function of some starting state, a program, and some set of state
transitions that are uniquely determined by instructions in that program. While this
means that the programmer is protected from any concerns about gate design,
propagation time or latching stability of integrated circuits, the apparent determinism
of a microprocessor is illusory:

• Usually the microprocessor may be interrupted. Even if sources of interrupts
external to a system are regimented so as to occur with some minimum interval,
software generated interrupts are much more difficult to constrain, as the times at
which they occur is highly dependent on the final compiled object code, the data
on which a program is operating, and the discontinuity of running code caused by
operating system pre-emption or other interrupts.

• Microprocessors may pipeline concurrent processes to optimise instruction
throughput.

• Contention on buses (where two parts of a system want to assert data on a bus at
the same time) is resolved by hardware bus arbitrators, which are metastable and
hence non-deterministic.

5.2.2 FPGAs

On the other hand, a common design paradigm for an FPGA based development
assigns dedicated hardware to particular functions, so the difficulties born of
contention and scheduling in a microprocessor design do not apply. On an FPGA, a
particular piece of logic connected to an input/output takes the place of an interrupt in
dealing with asynchronous external processes. It is still necessary to consider the
frequency of demand of these “interrupts” and how the input handling logic
synchronises external demands with the clocking domains and the processing cycles of
any iterating structures, but the overall complexity of these issues is reduced. The main
drawback of FPGAs where physical timing is concerned is that the programmer and
toolchain must handle low-level propagation, synchronisation and stability issues that
a microprocessor programmer may safely neglect.

The tool chain used to program an FPGA is similar to a compiler for a microprocessor.
However, it is more complex as it has to take account of physical factors on the IC (in
logic synthesis and place and route), and also frequently involves guided refinement
and higher level transformations than are the case for a microprocessor compiler.
Timing can be complicated by “back annotations”, where the transformation tool

VERIFICATION AND VALIDATION TECHNIQUES FOR I&C APPLICATIONS IN NORDIC

NPPS

37

refines timing requirements that can have an effect at the RTL level, and may need
some re-verification. For example, if a very long chain of combinatorial logic is
included in the flows between some clocked registers, then it may not be synthesisable,
owing to the cumulative propagation delay through the gates. This violates the
assumption that, from a microprocessor user’s point of view, compilation is an acyclic
refinement process. These complications and others in the toolchain provide more
scope for tooling-induced errors, and issues with initialisation, power loss and
transients.

A further vulnerability exists if a Verilog or VHDL development is not confined to a
synthesisable subset. Behavioural directions such as “wait 10ns” are not synthesisable,
and can be ignored by synthesis tools. In a synchronous design, waiting should be
enforced by the clocking of registers only.

A problem can exist even in a fully synchronous design if registers are clocked at a
different frequency. Section 8.4.7 of IEC 62566 prescribes static timing analysis to deal
with this kind of problem. Section 8.4.7 of IEC 62566 does not fully explain what kind
of static timing analysis is envisaged: some kinds are in effect part of the ordinary
synthesis flow, whereas others can be carried out using back annotations generated by
the synthesis flow. Section 8.4.7.4 of IEC 62566 mentions that clock skew should be
analysed. This is only possible in external tools for those parts of clock transmission
that are handled in programmable logic, or which are made known by the FPGA
manufacturer.

This can be contrasted with the microprocessor case, in which timing is only non-
deterministic if interrupts are used, or if a very aggressive multithreaded pipeline is
employed. We consider the use of asynchronous interrupts to be an application-level
timing issue. WCET for functions implemented in microprocessors is a matter that
belongs at the synchronous level of abstraction, since assembly code is no less time
deterministic than C, and rather more detailed.

Avoidance of timing errors in synthesis flows is reliant on particular FPGAs and
synthesis tools, so some mitigation of these vulnerabilities can be achieved by platform
and tool diversification.

Static timing analysis of the kind mentioned in Section 4.2.2 is an essential verification
activity but addresses low level integrity concerns rather than high level timing
constraints. Any hardware level timing constraints on the system boundary should be
incorporated into the design and it should be verified that the design meets them. That
the timing requirements themselves are correct should be validated by desktop review
and integration testing.

5.2.3 Comparison summary

In summary, timing vulnerabilities arise from

• the potential for mismatch between an application requirement for an output
within a particular time and the length of time microprocessor code or an HDL
design takes to produce it

• consequential effects on concurrency and coordination affecting either
microprocessor code or HDL

• low level physical propagation, latching and clock domain issues, affecting only
FPGAs

VERIFICATION AND VALIDATION TECHNIQUES FOR I&C APPLICATIONS IN NORDIC

NPPS

38

With the exception of FPGA low-level issues, the principles of V&V techniques for
checking that application timing assumptions are not violated are the same across
platform architectures. Suitable assertions over HDL (combined with automated formal
analysis or simulation tools) can provide a similar effect to some kinds of WCET
analysis, should require less work to verify, and provide greater determinism with
more confidence. However, it is important to check that any such assertions are
adequate to cover the application requirements, as HDL is not a natural language to
express application level constraints.

5.3 INITIALISATION

The situation with FPGAs is similar to that with microprocessors. However, the state of
the gates at start-up needs to be documented. Evidence also needs to be provided that
the effect of the initial state of high level data in state machines and cyclic structures
has been sufficiently determined.

For a microprocessor, initialisation and reset design is dealt with at hardware design-
time and is opaque to the programmer: correct operation depends on the correct
installation of the processor in the hardware platform. In an FPGA design, initialisation
and reset must be dealt with more explicitly. In an FPGA design, state is stored across
the whole design, particularly if there are cyclic structures and pipelines. The safe
initialisation of all parts of the HDL design should be covered by appropriate
assertions, which can be checked using FPGA verification or simulation tools.

5.4 HIGH LEVEL CODE OR HDL BUGS

This section concerns problems with code that arise from common patterns of mistakes,
but mistakes of the kind that a person not expert in the application would be able to
spot and correct. This applies both to high level languages (for microprocessors) or
HDL (for FPGAs).

For microprocessor code, integrity static analysis using tools such as QAC can
effectively locate many common coding and logical errors.

Assertion generators can provide similar coverage of specific types of problems with
HDL code. There are a number of tools available that will generate these sorts of
assertions with HDL, often with a claim about the level of coverage of these
vulnerabilities achieved.

It should be noted that neither of these kinds of tool check that design refinement has
been performed correctly and that the code realises the intention of the high-level
application design. This is a matter of functional verification, which is a type of
behavioural attribute discussed in Section 4.1.

5.5 INCORPORATION OF THIRD PARTY CODE

Third party code can be found in both microprocessor and FPGA implementations. In
both cases, the issue is whether the source code is available for the third party code, so
that it can be analysed. In microprocessor implementations, some hidden code for
missing instructions such as floating point operations can also be included as library
functions, in which case object code verification is often necessary. Similarly, it is
important to check whether any synthesis optimisation processes in an HDL design

VERIFICATION AND VALIDATION TECHNIQUES FOR I&C APPLICATIONS IN NORDIC

NPPS

39

include any IP from hidden libraries. The key differences between third party code for
microprocessors and FPGA is that it is in general much more difficult to obtain source
code for FPGA IP cores, and to be sure that the synthesis does not cause unexpected
interactions between IP blocks and bespoke code (spatial isolation on the final layout
can help here). Source code access to FPGA IP cores is typically much more expensive
than netlist access, and the complexity of analysing such designs is further complicated
by the fact that many have architectures that are parameterisable with some higher
level tool. To keep the cost of IP cores down, in other applications, encrypted netlists
are often used, but these should never be used as they are not compatible with IEC
62566.

IEC 62566 does not prohibit the use of IP cores (there are provisions about their
inclusion in Clauses 7 and 9.3), but compliance is difficult for the reasons above.

The use of IP cores should be avoided where possible. If an IP core must be used, it
may be easier to justify the use of an IP core supplied by the FPGA manufacturer or one
of their affiliates: such cores are more likely to have good supplier pedigree and a wide
body of evidence of prior use.

Clause 7 of IEC 62566 specifies how the requirements for an IP core should be captured
and the acceptance criteria for candidate cores, most of which involve review exercises
that are similar in scope to the activities needed to justify other kinds of COTS
components. IP cores are often supplied “pre-verified”. Clause 7.4.2.1 of IEC 62566
requires that the verification of a pre-developed block be reviewed as part of the
acceptance process.

5.6 UNREVEALED IMPLICIT STATE CORRUPTION

Wherever there are cyclic structures in code for microprocessors or FPGAs, there is
capacity for SEUs or other physical defects to cause a transient problem that causes
internal state to diverge from what it should be (where a correct current state is defined
as a function of an input history). It is easier for such failures to be revealed in a
microprocessor design, because important state held in static memory can be checked
by dedicated code, while local data on the stack is ephemeral. In the case of FPGAs, a
corrupt state is harder to detect, as it is physically distributed, and there are no out-of-
band facilities to detect application data corruption directly. (Application data is here
distinct from configuration data for the FPGA, for which consistency checks against a
stored configuration are often implemented by the FPGA hardware.) Figure 5
illustrates to process blocks A and B that are capable of accumulating state. If B is, for
example, computing a rolling average of some quantity that is being sampled through
the external input to A, any transient corruption will not be detectable, but will
influence later calculations of the rolling average.

A

B
Figure 5: State loops

VERIFICATION AND VALIDATION TECHNIQUES FOR I&C APPLICATIONS IN NORDIC

NPPS

40

The use of cyclic structures should generally be minimised where possible. If a cyclic
structure is being used as a hardware analogue of a “while loop”, a simple mitigation is
to ensure that cyclic structures are reinitialised each time the loop is invoked by a
sequential pipeline. If the loop is calculating some rolling quantity, then the algorithm
should be designed so that the influence of earlier values decays with time. If more
active checks are needed, then a layer of dedicated logic is needed to detect and/or
correct transient errors.

Control or data flow loops in a design can be easily identified using static analysis
techniques: this applies equally to microprocessor and FPGA based implementations of
an application. Once identified, different degrees of verification are necessary
depending on the justification or mitigation of the loop, or the potential consequences
for the application if a state corruption occurs.

5.7 SILICON DESIGN ERRORS

At the implementation level, programs for microprocessors are immune from physical
timing problems on the chip, as long as the IC design has been verified and
manufactured correctly. Two issues arise with this in comparison with FPGAs:

• Especially for the more specialist FPGA architectures (e.g. antifuse designs) a given
chip IC likely to be less widely used than a common microprocessor that has been
in production for decades, and thus may have less compelling field experience
available.

• FPGAs have all the same EDA and fabrication vulnerabilities as microprocessors,
but in addition have software tools that allow the user to do similar kinds of design
verification, but parametrically in higher level design languages. These tools are
usually proprietary to given FPGA manufactures, and are highly complex. They
therefore introduce an entirely new area of vulnerability when compared with
microprocessors.

Specifically, at the implementation level, an FPGA-based application can be susceptible
to logic propagation delays, clock distribution problems, latches that are not given
enough time to latch, fan-out delays and logic replication synchronisation issues.

In the case of an FPGA, if a synchronous subset of an HDL is used to specify the low
level logic of a system as specified by IEC 62566 (isolating the implementation from
application level timing issues), and assuming that the synthesis has been set up to
allow sufficient settling time to latch registers after each piece of combinatorial logic,
then the problems of Section 5.7 can be reduced to the level of confidence in the FPGA
toolchain, rather than errors by the implementer of the application. This toolchain is
typically a closely guarded proprietary secret of the FPGA manufacturer, so additional
confidence may need to be obtained by using diverse FPGA implementations of the
same logic.

Designs should be restricted to synchronous-only HDL designs as specified by IEC
62566 (this does not in itself require that only directed acyclic graphs of gates between
registers be used). This design rule bars some common structures such as asynchronous
bus arbiters and ripple counters. The ensurance of preservation of timing properties
from HDL, through logic synthesis and place-and-route to bitstream, is in the hands of
a manufacturer’s closed source tool, and thus independent static assurance of timing
correctness is likely to be impossible. The pedigree of the FPGA/tool manufacturer and
standard of production is of even higher importance than that of a compiler for a

VERIFICATION AND VALIDATION TECHNIQUES FOR I&C APPLICATIONS IN NORDIC

NPPS

41

microprocessor, since no object code is available to analyse after compilation. Although
the trust relationship in this case is similar to that involved in trusting the verification
activities of a microprocessor manufacturer, the addition of a synthesis tool adds an
additional layer of complexity over hardware synthesis that creates more opportunities
for errors than in the microprocessor case. This problem can be mitigated by using
diverse FPGAs and tools to synthesise their netlists and bitstreams.

In the case of a microprocessor, analysis of electronic timing issues is out of scope
(implementation timing at the assembly code level is a matter of code or discrete model
refinement correctness, as assembly language semantics are discrete).

For FPGAs, a number of techniques are available. As observed in Section 5.1, there is
little scope for analysing FPGA synthesis tools themselves. However, integrity
properties of HDL designs can be analysed, as assertion languages such as PSL or SVA
can be used to make logical claims of the behaviour of a given piece of HDL. Code can
be verified against assertions by

• simulation testing of assertions
• model checking
• formal (static) verification of assertions

Tools are available from independent software houses that perform these tasks. Some
of their functionality (regarding constraints imposed by synthesis for a particular target
architecture) has to be provided with the cooperation of the FPGA manufacturer.

5.8 MICROPROCESSOR VULNERABILITIES ABSENT IN FPGAS

FPGAs are free of problems with interrupts, which is a major advantage over
microprocessor based systems. Concurrent tasks are able to run without mutual
interference. Although FPGAs must deal with asynchronous demands across its I/O
interfaces, these demands do not interfere with other running tasks, which makes
analysis of the impact of such interactions easier. Memory management is not an issue
in FPGA designs unless memory banks are used in a microprocessor style idiom, which
would defeat much of the purpose of using an FPGA. Similarly, the presence of a
microprocessor IP core would vitiate many of the advantages of using an FPGA: these
should be avoided.

5.9 VULNERABILITIES – CONCLUSIONS

V&V techniques to address vulnerabilities in FPGA and microprocessor
implementations differ more than those involved for behavioural attributes. This is
because many behavioural properties concern the black box or system level
functionality of an I&C application, whereas vulnerabilities tend to be particular
opportunities for making mistakes that arise from different development paradigms,
tools and implementation targets. Some of these mistakes are particular to the
languages used, and both HDL and ordinary programming language code can be
checked by automated tools for adherence to coding standards in order to check that
certain common pitfalls or practices associated with subtler errors have been avoided.
Many of the most intractable vulnerabilities in microprocessor based systems, such as
lack of certainty about the impact of interrupts on task interaction and overall system
performance are absent in FPGA implementation flows. However, care must be taken
to mitigate the lack of transparency in the code artefacts that are eventually uploaded

VERIFICATION AND VALIDATION TECHNIQUES FOR I&C APPLICATIONS IN NORDIC

NPPS

42

to the FPGA, as well as any hidden microprocessor-style development paradigms that
might be used in and HDL design, of which HDL assertion checking techniques do not
necessarily provide good coverage. The lack of transparency in code artefacts is caused
by the complex synthesis toolchain involved in producing an FPGA design. Many of
the tools are closed source, and the toolchain is lengthier than for the microprocessor
compilation workflow.

A tabular presentation of this section can be found in Appendix C.

VERIFICATION AND VALIDATION TECHNIQUES FOR I&C APPLICATIONS IN NORDIC

NPPS

43

6 FPGA technology-specific issues

In this section we review vulnerabilities that are specific to particular FPGA types.
There are three main defences to these vulnerabilities:

• The selection and justification of the particular technology given its installation
environment. For example, an FPGA local to a sensor in an area with high levels of
ionising radiation will tend to suggest antifuse or Flash types.

• Selection of defensive design rules such as configuration integrity checking and
range checking, supported by V&V measures to check the consistent application of
these design rules.

• Testing in a realistic environment or simulation of disturbances.

6.1 SRAM

SRAM types of FPGA use static RAM to configure the lookup tables (LUT) and
interconnection sensitivities on the chip. At initialisation, these patterns are loaded
from some persistent storage and configure the device. This type of FPGA is
susceptible to single event upsets (SEUs) caused by free neutrons or alpha particles
interacting with latches. FPGA manufacturers have developed architectures that
monitor the configuration state of the FPGA using cyclic redundancy checks (CRCs)
and compare it against that in persistent storage and make corrections if necessary.
Clause 6.4 of IEC 62566 stipulates how these issues should be mitigated using defensive
design techniques, but is not explicit about the extent to which a degree of systematic
checking is necessary that the design rules have been met. Fault injection techniques
have been suggested in the academic literature to test these behaviours dynamically,
but IEC 62566 does not explicitly require them.

The SRAM type of FPGA Includes those with on-board Flash used to initialise SRAM.
The main advantage of putting the Flash memory on the chip is that it makes it more
difficult to intercept and copy a bitstream, but this is not the dominant consideration in
a bespoke nuclear application, where the physical security of these components and the
facilities for their manufacture and preparation should be high.

6.2 ANTIFUSE

Antifuse FPGAs are “one time programmable” (OTP) devices. They are a relatively
niche product, produced by, for example, Microsemi. Once programmed, the
connection topology of the FPGA is fixed, and does not need to be loaded on power-up.
They are resistant to SEUs affecting configuration, but are still vulnerable to SEUs on
application data, and, like any electronic device, they can suffer from hard faults. Any
such hard faults may not be revealed in ordinary use. Defensive design is therefore still
necessary, but need not encompass on-line configuration checking. Static analysis
techniques may be used to check compliance with design rules, but would require
bespoke or customised tooling.

6.3 FLASH

Flash-based FPGAs use Flash cells built into the gates that controlling LUT and
interconnection configuration. They are less susceptible than SRAM types to radiation

VERIFICATION AND VALIDATION TECHNIQUES FOR I&C APPLICATIONS IN NORDIC

NPPS

44

bit flips, but are more susceptible than antifuse types. This type is not the same as a
SRAM FPGA with an on-chip Flash area (which is sometimes used for convenience and
as a mechanism to protect the intellectual property on an FPGA). Again, devices of this
type are available from, for example, Microsemi. The same techniques as discussed in
Section 6.1 apply, but the quantitative aspects of any analysis (in terms of tolerable SEU
rates) would be different (see also Section 4.6).

EEPROM can be used in an alternative to bulk Flash memory, but tends to have smaller
capacity and less read/write cycle tolerance, so it is not usually employed in new
applications.

6.4 MODULES, MEZZANINE CARDS, BACKPLANES AND COMMUNICATION BETWEEN
CHASSIS OR RACKS

FPGAs are usually used in prefabricated modules, which form part of a wider system.
A wider system could include a variety of Cots components using common standards
such as mezzanine cards (e.g. AMC, FMC), ADC/DAC cards, backplanes (e.g.
AdvancedTCA, VPX), and communications systems for digital communication
between chassis and equipment racks (e.g. Ethernet, RapidIO). It is difficult to
axiomatise a coherent model of an ad hoc collection of these kinds of products, so, for
nuclear applications, a unified platform supported by a particular manufacturer is
usually preferred, such as Radiy RadICS or Westinghouse’s ALS platform. The V&V
tools available for these platforms is specific to the manufacturer. However, higher
level standards for systems development processes such as IEC 61513 are relevant here.

VERIFICATION AND VALIDATION TECHNIQUES FOR I&C APPLICATIONS IN NORDIC

NPPS

45

7 Conclusion

We have compared verification and validation (V&V) techniques for FPGA and
microprocessor techniques by considering the requirements of the respective
standards, a behaviour based analysis, and a survey of vulnerabilities that are
commonly associated with particular technologies and design approaches. Overall, we
have found few systemic differences, although V&V techniques at lower design and
implementation levels do diverge somewhat.

In our analysis of standards we looked for differences in V&V requirements in relevant
IEC standards at all stages of the development lifecycle, and found very few significant
differences. In general, the relevant FPGA standard is less prescriptive about the
specific documents that need to be produced, and in some cases it has clarified
requirements in the equivalent microprocessor standard.

In examining the V&V techniques applicable to establish correct behaviours, we found
that many are the same or similar. In particular, many of the system level dynamic
testing approaches are identical. However, timing and concurrency require different
approaches owing to the different physical design and abstraction level of the different
architectures. FPGA tools are generally much more sophisticated in the V&V support
they provide when compared to ordinary programming tools, but some of this
additional complexity is necessary in order to compensate for the additional
complexity of FPGAs.

V&V techniques to address vulnerabilities in FPGA and microprocessor
implementations vary in more respects than the other aspects that we have considered.
Many of the most intractable vulnerabilities in microprocessor based systems, such as
lack of certainty about the impact of interrupts on task interaction and overall system
performance, are absent in FPGA implementation flows. Operating systems are absent
in FPGAs (although some platform code may be shared, it should not have the same
problems with interrupts). However, care must be taken to mitigate the lack of
transparency in the code artefacts that are eventually uploaded to the FPGA, and
coverage of any data flow or control flow issues at a high level of abstraction should be
reviewed, since HDL assertion checking techniques are not optimised for this.

In assessing a suite of V&V measures chosen for a particular implementation, FPGA
workflows tend to be supported by more comprehensive toolsets, but it is important to
review the whole set of V&V techniques used in any particular case to ensure that all
abstraction levels are adequately covered, particularly if the resulting justification must
interface with another case that has been developed or reviewed by engineers more
familiar with microprocessor based V&V processes.

VERIFICATION AND VALIDATION TECHNIQUES FOR I&C APPLICATIONS IN NORDIC

NPPS

46

8 Glossary

Abbreviation Term

ADC Analogue digital converter

AMC Advanced Mezzanine Card

COTS Commercial off-the-shelf

DAC Digital analogue converter

EDA Electronic Design Automation

EMC Electromagnetic compatibility

ESL Electronic System Level

FMC FPGA Mezzanine Card

FPGA Field Programmable Gate Array

HDL Hardware Description Language

HPD HDL-programmed devices

I&C Instrumentation and control

IEC International Electrotechnical Commission

IC Integrated circuit

I/O Input/output

IP Intellectual property

LUT Look-up table

NPP Nuclear power plant

OOR Out of range

OTP One time programmable

RAM Random Access Memory

RTL Register Transfer Level

SEU Single event upset

SRAM Static random access memory

TLM Transaction Level Modelling

V&V Verification and validation

WCET Worst case execution time

VERIFICATION AND VALIDATION TECHNIQUES FOR I&C APPLICATIONS IN NORDIC

NPPS

47

9 Bibliography

1. S. Guerra, FPGAs in Safety Related I&C Applications, Adelard document ref.
P/733/309/527 v1.0. Adelard project proposal, 11 June 2015.

2. IEC 61226. Nuclear power plants – Instrumentation and control important to safety
– Classification of instrumentation and control functions. 2010.

3. P Bishop, R Bloomfield and S Guerra. The future of goal-based assurance cases. In
Proceedings of Workshop on Assurance Cases. Supplemental Volume of the 2004
International Conference on Dependable Systems and Networks, pp. 390-395,
Florence, Italy, June 2004.

4. Nuclear Power Plants – Instrumentation and Control Systems Important to Safety -
IEC 60880, Edition 2, 2006.

5. Nuclear Power Plants – Instrumentation and Control Important to Safety – General
Requirements for Systems, IEC 61513, Edition 2.0, 2011.

6. Nuclear Power Plants – Instrumentation and Control Important to Safety –
Development of HDL-programmed Integrated Circuits for Systems Performing
Category A Functions, IEC 62566, Edition 1.0, 2012.

VERIFICATION AND VALIDATION TECHNIQUES FOR I&C APPLICATIONS IN NORDIC

NPPS

48

: Tabular comparison

The following table identifies the major points of difference between the two standards
at each lifecycle phase.

 IEC 60880 IEC 62566

Requirements Does not explicitly require
verification of the requirements
specification

Requires verification (critical
analysis) of the requirements
specification

Design and
Implementation

Fairly prescriptive in terms of what
must be considered
Design considerations listed; no
explicit statement that additional
design rules may be needed on a
case by case basis
Requires that translators and tools
are thoroughly tested, as well as
being qualified according to the
standard
Requires that sufficient detail be
included in design documents, but
no further guidance is provided
Requires verification of
intermediate design products
Does not explicitly require static
timing analysis to be performed

Strongly recommended design
constraints identified
Listed design rules explicitly
identified as potentially applicable,
but the decision must be made on
a case by case basis and reflect
latest knowledge
Requires tools to be qualified
according to the standard, but
does not explicitly require
thorough testing apart from this
Greater specificity on what design
considerations must be
documented, at a minimum
Does not require verification of
intermediate design products,
although does describe a formal
review process to be performed at
the end of this phase
Requires static timing analysis to
be performed

Verification Pre-developed products to be
assessed only against the
requirements of this standard
Adequacy of selection process for
pre-developed products not
explicitly required to be justified,
nor their use in the wider system
Explicit requirements placed on
documentation, including listing of
individual documentation items to
be produced
Automated code analysis
permitted, but justification of
manual input is not required
Informative annex provides
information on potential
verification activities

Pre-developed products to be
assessed against the rules of their
suppliers, as well as against the
requirements of this standard
Adequacy of selection of pre-
developed products to be justified,
along with their use and their
conformance with their
component requirements
specification
Similar information required to be
contained in documentation, but
the type of document produced is
not similarly constrained
Tests must be fully automated and
manual input justified
Greater specificity in identifying
the minimum verification activities
to be performed, including a
requirement to perform static
verification activities

Software / HPD
aspects of system
integration

Verification software tools not
explicitly require to be compliant

Verification software tools should
be compliant with requirements of

VERIFICATION AND VALIDATION TECHNIQUES FOR I&C APPLICATIONS IN NORDIC

NPPS

49

 IEC 60880 IEC 62566
with requirements of this standard
on software tools for development

this standard on software tools for
development

Software / HPD
aspects of system
validation

Equipment used for calibration
should be demonstrated to be
suited to the purpose of system
validation
Software tools used in validation
to be documented as an item in
the validation report

No explicit requirement that
equipment used for calibration
must be demonstrated to be
suited to system validation
No explicit requirement for
validation software tools to be
documented in the validation
report, although this is a
requirement of IEC 61513

Modification No significant differences
impacting V&V

No significant differences
impacting V&V

Software tools for
development

No significant differences, with the
exception of HPD-specific
constraints around logic synthesis

No significant differences, with IEC
62566 requiring conformance with
IEC 60880, with the exception of
microprocessor-specific
constraints around compilers

Acceptance of pre-
developed products

Explicit about the quality
documentation needed, and the
development process used for the
pre-developed product
Operating experience must have
been obtained under similar
conditions
Operating experience can never
completely replace
documentation evaluation, and
can only be used to compensate
for specific named weaknesses in
design

Requires only that a review is
carried out on the available design
and verification documents of the
pre-developed product
Operating experience must have
been obtained under equivalent
conditions
Operating experience may be used
to compensate for limited
documentation weaknesses in
reliability or design, but no specific
weaknesses are named

Table 5: Tabular comparison

VERIFICATION AND VALIDATION TECHNIQUES FOR I&C APPLICATIONS IN NORDIC

NPPS

50

: FPGA development flow

Artefact Activity

Plant need

 
 Requirements capture

Requirements specification

Application level modelling using ESL tool (sometimes)

 
 Design and coding process

HDL source code or schematic diagram
Register-Transfer-Level description

 
 Implementation: Synthesis

Netlist
(gate-level description)

 
 Implementation: Place and route

Bitstream
(binary image to be loaded on to the
FPGA)

 
 Instantiation on hardware

Observed execution

Table 6: Tabular representation of the FPGA development process

VERIFICATION AND VALIDATION TECHNIQUES FOR I&C APPLICATIONS IN NORDIC

NPPS

51

: Comparison of V&V vulnerabilities

Vulnerability Microprocessors FPGAs

Explanation Design pattern mitigations
and V&V activities

Explanation Design pattern
mitigations and V&V
activities

Timing errors –
application
asynchronous
timing

Timely response
to external
stimulus or
preserving order
of internal
events

Testing, formal methods
applied to high level
programming language with
suitable assertions, model
checking

As
microprocessors

Use design rules to
check synchronous
only design. Validate
data and control flow
propagation assertions
against application
requirements and use
simulation and formal
methods from FPGA
toolchain to verify.

Timing errors –
instruction
sequences

Assembly
language, clock
speed, compiler
choices,
optimisations
and inclusion of
hidden library
code affect
execution time
of atomic
transitions in
high level
programming
language.

WCET analysis N/A N/A

Timing errors –
physical level
issues

Correctness of
microprocessor
silicon design
and interaction
with external
components

This is a matter for the
microprocessor manufacturer.
Direct access to V&V
information is not usually
available. Check interfaces
with external buses for source
of non-determinism.

Propagation time,
transistor
technology and
metastable
constructions

Avoid metastable
constructions by using
synchronous-only
design, enforced by
design rule checkers.
Use back annotations
and the FPGA vendor’s
static timing analysis
tools to ensure that
place-and-route does
not place unsafe
bounds on times
during which signals
are stable. Use
simulation and on-chip
testing.

Initialisation Chip initialisation
dealt with at a
hardware level

No scope for V&V other than
by manufacturer, which is not
normally available. Check
initialisation semantics
understood and any assembly
code used in
bootstrap/initialisation/reset.

Reset lines must
be able to return
all logic to defined
condition, which
must correlate to
the starting
assumptions
within the

Use FPGA toolchain to
check. Check assertions
adequately address
application
assumptions.

VERIFICATION AND VALIDATION TECHNIQUES FOR I&C APPLICATIONS IN NORDIC

NPPS

52

Vulnerability Microprocessors FPGAs

Explanation Design pattern mitigations
and V&V activities

Explanation Design pattern
mitigations and V&V
activities

semantics of the
application.

High level code
bugs

Common error
patterns

Use integrity static analysis
tools to enforce design rules,
find common mistakes and
risky practices.

As
microprocessors

Use design rule
checkers and assertion
generators in
combination with
simulators and HDL
formal verification
tools.

Incorporation of
third party code

Included
libraries,
operating
systems and
compiler
introduced
assembly code
routines

Object code analysis. Conduct
ordinary V&V of source code
where available. Limit use and
complexity of operating
systems.

IP cores and
shared platform
code

Avoid IP cores and
verify source code.
Comply with IEC 62566
provisions on pre-
developed blocks.

Unrevealed
implicit state
corruption

Memory
corruption

Check use of memory checking
as well as value plausibility and
consistency checks in mainline
code. Consider effects of state
divergence between divisions.

Cyclic structures
and bulk memory
may keep state
that diverges
undetectably
during execution
owing to SEUs or
localised hard
faults.

Review all cyclic
structures for
consequences of state
divergence and
introduce monitoring
logic if necessary.

Silicon design
errors

Manufacturer
errors in hard
silicon design

Usually not possible to assess
directly manufacturer’s
hardware V&V.

As for
microprocessors.
Interaction
between
bitstream and
silicon-level
design proprietary
information.

Not available.
Manufacturer’s post
place and route
analysis tools should
be used. FPGA diversity
may compensate.

Reconfiguration
errors

Limited to
unwanted
firmware
updates or
corruption of
code in RAM

Check defensive coding
practices used (such as range
checking, memory checking
and use of watchdogs) and
firmware configuration locked
down.

SRAM (and to a
lesser extent
Flash) types of
FPGA are
susceptible to bit
flips from SEUs.

Check use of on-line
configuration checking
facilities.

Table 7: Comparison of V&V vulnerabilities

VERIFICATION AND VALIDATION TECHNIQUES FOR I&C APPLICATIONS IN NORDIC

NPPS

53

: The strategy triangle of justification

The strategy is property-based, vulnerability-aware and standards-informed. It is
described by the safety justification triangle of [3]. Each of these different aspects of the
strategy is discussed in the following sections.

Figure 6: The strategy triangle of justification

D.1 Property-based approach

A property-based approach focuses directly on the behaviour of the system or
component and explores claims about the satisfaction of the requirements and the
mitigation of potential hazards. This approach is usually linked to specific claims about
properties of the device being justified (e.g., time response, accuracy).

Different properties can be considered for different types of systems or components,
and the approach is generally applicable to any I&C system.

D.2 Vulnerability-aware approach

Vulnerabilities are weaknesses in a system. They could lead to a hazardous situation
(e.g., if a divide by zero is not caught by error handling) but are not strictly a hazard.
Experience has shown that bad things can occur from them and so they should be
considered within a vulnerability analysis viewpoint. Therefore, here we consider
whether there may be vulnerabilities that would affect the ability of the device to
exhibit the properties considered in Section D.1.

There are several methods and techniques that can be employed to perform a
vulnerability analysis for a component and its system. Lessons learned from internal
and external sources should be incorporated into the vulnerability assessment.

D.3 Standards compliance

Another principle, the third part of the assessment triangle, is that we should recognize
the experience of others and, where there is a consensus, comply with appropriate
standards.

The standards compliance argument would involve assessing the development process
and design against relevant nuclear standards for a system performing Cat A functions:
IEC 62566, “Development of HDL-programmed integrated circuits for systems
performing Cat A functions”. For software-based systems, the corresponding standard
is IEC 60880 [4].

VERIFICATION AND VALIDATION
TECHNIQUES FOR I&C APPLICATIONS
IN NORDIC NPPS
This report considers the verification and validation (V&V) techniques that
can be applied to microprocessors and FPGAs. It finds that many techniques
apply similarly to both, but at lower design and implementation levels the tools
diverge, particularly when considering mitigations of vulnerabilities. Techni-
ques for FPGA V&V are generally more comprehensive and integrated into the
standard toolchains. Some of this complexity is needed to address extra de-
sign vulnerabilities present in FPGAs as compared to microprocessors, but in
other areas the resulting analysis is arguably more routine and more thorough
than is usually attempted for microprocessors. FPGAs are also free from some
particularly difficult uncertainties and intractable analysis problems caused by
the presence of operating systems in microprocessor-based platforms. Some
behavioural V&V techniques dealing with application level issues such as data
flow do not have such obvious analogues in HDL V&V methods based on hard-
ware assertions. Consequentially, it is important to review the whole suite of
V&V measures used for a given application to ensure that all abstraction levels
are adequately covered, particularly if the resulting justification must interface
with another assurance case that has been developed or reviewed by engineers
more familiar with microprocessor based V&V processes.

Another step forward in Swedish energy research
Energiforsk – Swedish Energy Research Centre is a research and knowledge based organization
that brings together large parts of Swedish research and development on energy. The goal is
to increase the efficiency and implementation of scientific results to meet future challenges
in the energy sector. We work in a number of research areas such as hydropower, energy gases
and liquid automotive fuels, fuel based combined heat and power generation, and energy
management in the forest industry. Our mission also includes the generation of knowledge
about resource-efficient sourcing of energy in an overall perspective, via its transformation and
transmission to its end-use. Read more: www.energiforsk.se

	1 Introduction
	2 Background
	3 Standards compliance
	3.1 METHODOLOGY
	3.2 IEC 60880
	3.3 IEC 62566
	3.4 RESULTS
	3.4.1 Requirements phase
	3.4.2 Design and implementation phase
	3.4.3 Verification
	3.4.4 Software / HPD aspects of system integration
	3.4.5 Software / HPD aspects of system validation
	3.4.6 Modification
	3.4.7 Software tools for development
	3.4.8 Acceptance of pre-developed products

	3.5 CONCLUSIONS

	4 Behavioural properties
	4.1 FUNCTIONALITY
	4.2 TIMING
	4.2.1 Worst case execution time
	4.2.2 FPGA static timing issues

	4.3 ACCURACY
	4.4 AVAILABILITY
	4.5 ROBUSTNESS
	4.6 FAULT TOLERANCE, DIAGNOSTICS AND FAILURE RECOVERY
	4.7 CONCLUSIONS

	5 Vulnerability assessment
	5.1 EQUIVALENCE BETWEEN DESIGN AND IMPLEMENTATION LEVELS
	5.2 TIMING VULNERABILITIES
	5.2.1 Microprocessors
	5.2.2 FPGAs
	5.2.3 Comparison summary

	5.3 INITIALISATION
	5.4 HIGH LEVEL CODE OR HDL BUGS
	5.5 INCORPORATION OF THIRD PARTY CODE
	5.6 UNREVEALED IMPLICIT STATE CORRUPTION
	5.7 SILICON DESIGN ERRORS
	5.8 MICROPROCESSOR VULNERABILITIES ABSENT IN FPGAS
	5.9 VULNERABILITIES – CONCLUSIONS

	6 FPGA technology-specific issues
	6.1 SRAM
	6.2 ANTIFUSE
	6.3 FLASH
	6.4 MODULES, MEZZANINE CARDS, BACKPLANES AND COMMUNICATION BETWEEN CHASSIS OR RACKS

	7 Conclusion
	8 Glossary
	9 Bibliography
	Appendix A : Tabular comparison
	Appendix B : FPGA development flow
	Appendix C : Comparison of V&V vulnerabilities
	Appendix D : The strategy triangle of justification
	D.1 Property-based approach
	D.2 Vulnerability-aware approach
	D.3 Standards compliance

