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Foreword 

This report is produced by Adelard LLP for Energiforsk within the research 
program ENSRIC, Energiforsk Nuclear Safety Related Instrumentation and 
Control systems. The objective of the project was to develop an 
understanding of the verification and validation aspects of safety related 
systems built on FPGA-technology (Field Programmable Gate Arrays) for 
nuclear applications.  

FPGAs have been gaining interest from the nuclear industry for a number of years, but 
lately they have been questioned and the initial hypothesis that the technology would 
be easier to license compared to microprocessor-based platforms for nuclear 
applications is now questioned. This report is the second ENSRIC report on FPGA:s, 
and it is focused on verification and validation and standards of FPGAs compared to 
what is applied to microprocessor-based systems. The previous report is named “Field 
Programmable Gate Arrays in safety related instrumentation and control applications”, 
Energiforsk report 2015:112.  

ENSRIC is focused on safety related I&C systems, processes and methods in the 
nuclear industry. The three focus areas of the program are  

• LTO of existing analogue platforms 
• Asset management of existing digital platforms 
• Emerging technologies.  

The ENSRIC results are used in the plant development process, including managers, 
strategic teams, analysts and implementation teams at the NPPs and at the authorities, 
to contribute to safe and robust I&C systems that promotes low Life Cycle Cost. The 
program is financed by Vattenfall, Uniper, Fortum, TVO, the Swedish Radiation Safety 
Authority, Skellefteå Kraft and Karlstad Energi. 
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Sammanfattning 

Den här rapporten beskriver metoder för verifiering och validering av 
mikroprocessorer och FPGA. Den lyfter fram metoder som är tillämpliga för 
dem bägge men även några som är specifika för var och en av dem. 

För varje metod redogörs för dess relativa effektivitet och dess förmåga att bidra till 
den övergripande konfidensen på ett I&C-systems egenskaper, som utför Cat A-
funktioner. Olika metoder för V&V har jämförts med hjälp av ett trefaldigt 
angreppssätt, som har visat sig vara effektivt vid genomförandet av en 
säkerhetsdemonstration. Angreppssättet beaktar på ett systematiskt sätt bidragen från 
kända standards, analys av beteendeegenskaper samt sårbarheter som vanligen 
kopplas samman med specifika teknologier och typer av design 

I den komparativa analysen av olika standarder, har skillnader mellan olika relevanta 
IEC standarders krav på V&V, genom alla faser i livscykeln, undersökts. De 
signifikanta skillnader som identifierades var väldigt få. Generellt sätt kan säga att den 
relevanta FPGA standarden är mindre föreskrivande/normativ med avseende på vilka 
specifika dokument som behöver tas fram. I vissa fall görs klargöranden genom 
hänvisning till den motsvarande standarden för mikroprocessorer. Dessa klargöranden 
ställer inte krav på utförande av specifika aktiviteter utan detaljerar snarare vilka andra 
standarder som kan tillämpas vid specifika förhållanden. Den relevanta FPGA-
standarden har också undvikit vissa av tvetydigheterna som återfinns i den relevanta 
standarden för mikroprocessorer. 

Vid undersökning av V&V-metoderna som kan användas för att åstadkomma korrekt 
beteende visade det sig att många är desamma eller likartade.  Särskilt snarlika är 
angreppssätten för dynamisk testning på systemnivå. För vissa tidsparametrar, såsom 
responstid och samtidighet, krävs dock olika angreppssätt. Det beror på att FPGA i 
grunden är en parallell modell medan mikroprocessorer är sekventiella och naturen 
hos de frågeställningar på den fysiska nivån som måste beaktas vid FPGA utveckling 
(frågeställningar som en programmerare av mikroprocessorer kan bortse ifrån). FPGA 
verktyg är generellt sett mycket mer sofistikerade i sitt sätt att stödja V&V jämfört med 
vanliga programmeringsverktyg. FPGA-verktygens ökade komplexitet är nödvändig 
för att kompensera för den ökade komplexiteten hos FPGA. Vid FPGA-utveckling finns 
ett antal frågeställningar kring elektronikdesign som behöver tas omhand, som faller 
inom kortdesignerns ansvarsområde i fallet med mikroprocessorer. På grund av den 
naturliga ensidigheten hos HDL verktyg vid hårdvaruutveckling på låg nivå kan det 
vara nyttigt med ytterligare kontroll av V&V aktiviteter  avseende beteenden hos FPGA 
baserade system för att jämföra täckningsgraden för egenskaper som visar korrekt 
beteende  på olika abstraktionsnivåer med motsvarande metoder som skulle använts 
vid V&V av en motsvarande mikroprocessorimplementering för samma applikation. 

Metoderna för V&V som riktar sig till att analysera sårbarheten i implementeringar av 
FPGA respektive mikroprocesser, skiljer sig åt betydligt på grund av de radikalt olika 
fysiska egenskaperna och hårdvarans designparametrar och berör oftast inte systemets 
beteende som ”svart låda”.  Många av de svårbehandlade sårbarheterna i ett 
mikroprocessorbaserat system så som osäkerhet kring påverkan från 
avbrottshanteringen på interaktionen mellan uppgifter och övergripande 
systemprestanda saknas vid implementering av FPGA. Många av osäkerheterna 
relaterade till avbrott är en konsekvens av operativsystemets växlande mellan olika 
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uppgifter och dess resurshantering. Operativsystems baskod är också en källa till 
sårbarhet eftersom den oftast är utvecklad i förväg och består till en viss del av kod 
vars tillförlitlighet är svår att fastställa. Omsorg måste vinnläggas om att för att lindra 
bristen på transparens i koden som slutligen laddas upp i FPGA. Likaledes behöver 
frågeställningar kring dataflöden och kontrollflöden på hög abstraktionsnivå hanteras, 
där HDL statisk analys inte nödvändigtvis behöver tillföra god täckningsgrad. 

Kortfattat, vid jämförelse av V&V genom dessa tre olika områden, har det identifierats 
få systematiska skillnader bland de aktiviteter som erfordras för mikroprocessorer och 
FPGA baserade system. Metoderna som behövs på de lägre nivåerna är olika och 
kräver olika typer av expertis. För FPGA gäller i många fall att angreppssättet är mer 
omfattande men det är viktigt att utvärdera hela uppsättningen av de V&V –metoder 
som använts i varje enskilt fall för att försäkra sig om att alla nivåer i konstruktionen 
och implementeringen är tillräckligt täckt , speciellt om den slutliga bedömningen har 
gränsytor mot ett annat system som har utvecklats eller utvärderats av ingenjörers som 
är mer bekanta med V&V processer för mikroprocessorbaserade system. Förutvecklade 
komponenter, så som IP-kärnor för FPGA och operativsystem för mikroprocessorer, är 
viktiga aspekter att ta hänsyn till vid säkerhetsbedömning av alla I&C-system. Medan 
IP-kärnor kan undvikas (och de är ofta förbjudna i system som utför Cat A funktioner) 
kräver säkerhetsbedömning av operativsystem för mikroprocessorer en ansenlig 
mängd V&V-aktiviteter. 
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Summary 

This report considers the verification and validation techniques that can be 
applied to microprocessors and FPGAs, highlighting techniques that are 
similarly applicable to both, and those that are specific to a particular 
platform architecture. 

In each case, the relative effectiveness of these techniques and their contribution to the 
overall level of confidence of an instrumentation and control (I&C) system performing 
a Cat A function is considered. We have compared verification and validation (V&V) 
techniques using a threefold approach that we have found to be effective in achieving a 
safety justification. This method systematically considers the contribution of recognised 
standards, analysis of behavioural properties, and vulnerabilities that are commonly 
associated with particular technologies and design approaches. 

In our comparative analysis of standards we looked for differences in V&V 
requirements in relevant IEC standards at all stages of the development lifecycle, and 
found very few significant differences. In general, the relevant FPGA standard is less 
prescriptive about the specific documents that need to be produced. In some cases it 
has clarified requirements in the equivalent microprocessor standard. These 
clarifications have typically not taken the form of requiring that specific activities be 
performed, but have given more detail on the applicability of other standards in 
various circumstances and have avoided some ambiguities that are present in the 
relevant microprocessor standard. 

In examining the V&V techniques applicable to establish correct behaviours, we found 
that many are the same or similar. In particular, many of the system level dynamic 
testing approaches are identical. However, timing and concurrency require different 
approaches. This is a consequence of the fundamentally parallel model of an FPGA in 
contrast to a sequential microprocessor and the nature of the issues at the physical level 
that need to be considered in FPGA development (which a microprocessor 
programmer can neglect). FPGA tools are generally much more sophisticated in the 
V&V support they provide when compared to ordinary programming tools, but some 
of this additional complexity is necessary in order to compensate for the additional 
complexity of FPGAs, which must deal with a number of electronic design automation 
issues that are the province of the chip designer in the microprocessor case. Owing to 
the natural bias of HDL tools to low level hardware development, it may be a useful 
additional check in V&V activities for the behaviours of an FPGA based system to 
compare the coverage of correctness properties at different levels of abstraction with 
the analogous techniques that would be used in the V&V for an equivalent 
microprocessor implementation of the same application. 

V&V techniques to address vulnerabilities in FPGA and microprocessor 
implementations vary considerably owing to the radically different physical properties 
and design parameters of the hardware, and do not generally concern the black box 
behaviour of a system. Many of the most intractable vulnerabilities in microprocessor 
based systems, such as lack of certainty about the impact of interrupts on task 
interaction and overall system performance, are absent in FPGA implementation flows. 
Many of the uncertainties relating to interrupts are a consequence of the operating 
system’s task switching and arbitration between resources. The code base of the 
operating system itself is also a source of vulnerabilities, since it is usually pre-
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developed and may amount to a significant amount of code whose reliability is often 
difficult to establish. However, care must be taken to mitigate the lack of transparency 
in the code artefacts that are eventually uploaded to the FPGA, as well as any data flow 
or control flow issues at a high level of abstraction, of which HDL assertion checking 
techniques do not necessarily provide good coverage. 

Overall, in our comparison of V&V through these three separate lenses, we have found 
few systemic differences in the activities required for microprocessor and FPGA based 
systems, but the lower level techniques needed are different and require different types 
of expertise. In many cases, for FPGA techniques, the approach is more comprehensive, 
but it is important to review the whole suite of V&V techniques used in any particular 
case to ensure that all levels of design and implementation are adequately covered, 
particularly if the resulting justification must interface with another case that has been 
developed or reviewed by engineers more familiar with microprocessor based V&V 
processes. Pre-developed components such as IP cores for FPGAs and microprocessor 
operating systems are an important aspect of assuring any I&C system; while IP cores 
may be avoided (and are often prohibited for systems performing Cat A functions), the 
assurance of microprocessor operating systems will require a considerable amount of 
V&V activity that would need to performed. 
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1 Introduction 

This report considers the verification and validation (V&V) techniques that can be 
applied to microprocessors and FPGAs, highlighting techniques that are similarly 
applicable to both, and those that are specific to a particular platform choice. In each 
case, the relative effectiveness and the contribution of these techniques to the overall 
level of confidence of an instrumentation and control (I&C) system performing a Cat A 
function is considered. Section 2 introduces the project context and approach. Section 3 
considers similarities and differences between the V&V requirements of standards for 
each of the architectures. Section 4 similarly examines V&V techniques needed to 
establish particular facets of I&C behaviour, while Section 5 does the same for design 
and implementation vulnerabilities. Section 6 considers issues particular to different 
FPGA types. Section 7 concludes. Section 8 gives the abbreviations used and Section 9 
is a list of references. 
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2 Background 

Field Programmable Gate Arrays (FPGAs) have been gaining interest from the nuclear 
industry for a number of years. Their simplicity compared to microprocessor-based 
platforms is expected to simplify the licensing approach, and therefore reduce licensing 
risks compared to software-based solutions.  

Although the use of an FPGA can result in a final product that is hardware only, with 
no run-time software, the process used to develop the application is software-intensive, 
using advanced software tools to design, implement and verify the application. In both 
cases there is a process of specification, coding and compilation (even if different 
languages and tools are used). We would therefore expect the approaches taken for 
justifying software-based systems to be broadly similar to the justification of FPGA 
applications. Indeed, there is a growing international consensus that the regulatory 
review of FPGA-based systems should treat the application development process in a 
manner similar to software development, invoking many of the same standards and 
guidelines that are used for software-based systems, with some adaptation. 

There has been a number of applications of FPGAs in the nuclear industry, such as the 
Main Steam and Feedwater Isolation System at Wolf Creek plant, in the US (class 1E), 
and a number of safety applications including Reactor Trip Systems (RTS) for 4 Nuclear 
Power Plants (NPPs) in Ukraine (24 systems), Engineering Safety Features Actuation 
Systems (ESFAS) for 5 NPPs in Ukraine and Bulgaria (18 sets) and Reactor Power 
Control and Limitation System (RPCLS) for 4 NPPs (8 systems). A number of 
applications are planned for new builds. These applications were developed prior to 
the publication of IEC 62566 [6]. For most of the applications in the nuclear industry, 
there was no specific FPGA guidance or standard for the development and justification 
of FPGAs in nuclear applications. The approach taken was to adapt software 
regulations and standards to the context of FPGAs. 

During 2014, we worked on a project with the objective of developing an overview of 
the position of safety-related systems built on FPGA technology for nuclear 
applications. This investigated if FPGA-based systems were a realistic alternative in 
future investment programs in the Nordic NPPs within the next 5 years, considering 
technological advancement, licensing, market situation etc. The conclusion was that 
FPGAs may have a role in future modernisation of I&C systems in Sweden. 

This project is a continuation of the work performed in 2014. Its objective is the 
evaluation of the V&V activities that are necessary to implement an FPGA-based 
application and compare them with equivalent activities to assess a microprocessor-
based solution. 

This study reviews the V&V activities that are needed to implement an application in 
an FPGA based product and compares it with what might be equivalent for a 
microprocessor based application. Different activities have different objectives in terms 
of assurance, and will achieve different levels of confidence in the system. In order to 
be able to perform this comparison, it is necessary to define criteria. We base our 
overall approach on a comparison of different aspects of a safety demonstration so that 
similar levels of assurance can be achieved across the different architectures. This is 
done considering 

• the verification and validation activities required by relevant standards (Section 3) 
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• verification and validation activities to achieve confidence that all behavioural 
properties have been met (Section 4) 

• verification activities to ensure that typical vulnerabilities of the technologies have 
been avoided (Section 5) 

This approach considers the three aspects of assurance that we usually describe as the 
strategy triangle of justification [3], which is described in more detail in Appendix D. 

 
Figure 1: The strategy triangle of justification 

 

The focus of this project is on safety functions, or those categorised as Cat A according 
to IEC 61226 [2], and on “small and medium size applications”. It does not cover large 
applications where several FPGA based units communicate with each other via 
networks or communication links (although several of the issues would be similar). 
When practicable, we indicate tools that are available to support the activities. 
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3 Standards compliance 

This section summarises our findings from reviewing the V&V activities required by 
comparable standards for FPGA-based and software-based I&C systems performing 
Cat A functions. The standards chosen were IEC standards, with IEC 60880 [4] being 
selected for software systems and IEC 62556 [6] for FPGA-based systems.  

3.1 METHODOLOGY 

To identify the differences for discussion, we first performed a comparison review of 
the two standards. As the prescribed development methodologies share many 
commonalities (Figure 3 and Figure 4), we began by looking at each distinct lifecycle 
phase. It is important to note that this was a semantic review and comparison as 
opposed to a syntactic examination; we have identified only those differences that 
impact the development activities, rather than cosmetic differences. 

In each case where a difference was identified, we assessed this for its potential impact 
on the V&V activities. In some cases we considered that there would be no impact, and 
therefore have not taken this further in this report. Where we consider that there is a 
potential impact on V&V activities, we have identified this and its potential effects in 
Section 3.4. 

3.2 IEC 60880 

The scope of IEC 60880 is to provide requirements for the software aspects of 
computer-based I&C systems performing Cat A functions in nuclear power plants. It 
was first issued in 1986 and has since been re-issued a number of times to take into 
account the changing practices and techniques of software engineering. 

IEC 60880 is directly referenced by IEC 61513 [5], which focuses on general 
requirements for I&C systems performing functions important to safety in NPPs. IEC 
60880 is also associated with IEC 62138, which covers computer-based I&C systems 
performing category B and C functions. 

IEC 60880 assumes a system safety lifecycle equivalent to that discussed in IEC 61513, 
and shown in Figure 2. 
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Figure 2: System safety lifecycle from IEC 61513 [5] 

 

IEC 60880 refines this further to identify a software development lifecycle making use 
of distinct phases. This is shown in Figure 3. As can be seen, each separate lifecycle 
phase involves verification of the phase outputs. 

 
Figure 3: Software development lifecycle from IEC 60880 
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3.3 IEC 62566 

The scope of IEC 62566 is to provide requirements for the use of HDL-programmed 
devices (HPDs) in I&C systems performing Cat A functions in nuclear power plants. It 
was first issued in 2012 and has not been re-issued since. 

IEC 62566 references IEC 61513 [5], which focuses on general requirements for I&C 
systems performing functions important to safety in NPPs. IEC 62566 is intended to be 
used in conjunction with IEC 60987, which covers generic hardware design issues, and 
with IEC 60880 for aspects of the development when the HPD and software issues are 
identical. 

Like IEC 60880, IEC 62566 assumes a system safety lifecycle equivalent to that 
discussed in IEC 61513, and shown in Figure 2. The HPD development activities as 
described by IEC 62566 also follow a V-model very similar to that in IEC 60880, as 
shown in Figure 4. 

 
Figure 4: HPD development lifecycle from 62566 

3.4 RESULTS 

Overall, there are very few significant differences in terms of V&V requirements 
imposed by IEC 60880 and IEC 62566. The two major differences that we found were 
firstly, that IEC 62566 is generally more goal-based and less prescriptive about how the 
results of the difference activities have to be recorded and secondly, that some of the 
ambiguities in phrasing in IEC 60880 have been clarified in the more recent IEC 62566. 

IEC 62566 appears to move away from the more prescriptive pattern of IEC 60880, and 
this means that alternative verification and development activities may be introduced. 

Where IEC 60880 was previously unclear about precisely which sections or clauses 
were applicable in different situations, IEC 62566 has gone some way to address this. 
This is typical of what we would expect from a standard which has been developed 
more recently. 
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In the following sections we discuss our results in more detail. When identifying these, 
we have made the assumption that the differences of interest are those which have an 
impact on V&V. Where there is a difference between the standards which we consider 
will not have a significant impact on the V&V activities to be performed, we have not 
discussed this in detail. 

3.4.1 Requirements phase 

The requirements phase is dealt with in Section 6 in IEC 60880 and Section 6 in IEC 
62566. Although the standards are slightly different, this is not due to the difference in 
technologies used. More specifically, there are very few significant differences relevant 
to this phase which impact on V&V activities, with the exception of verification of the 
requirements specification. Section 6.6 of IEC 62566 requires that a critical analysis of 
the requirements specification is performed, while IEC 60880 does not. This critical 
analysis is intended as verification of the requirements specification, and provides an 
opportunity to identify potential omissions and inconsistencies before design and 
implementation begins. 

We would note that Section 8.1.8 of IEC 60880 does state that the output of each phase 
of the development lifecycle should be verified, which could be read as a requirement 
to review and analyse the requirements specification. However, this is less explicit, and 
we consider that it would be reasonable to expect that less rigorous analyses of 
requirements may be presented under IEC 60880 than IEC 62566. 

3.4.2 Design and implementation phase 

Design and implementation is dealt with in Section 7 in IEC 60880 and Section 8 in IEC 
62566. There is some divergence in the content of the standards in this section, as we 
might expect due to the use of design and implementation techniques relevant to the 
particular technology under consideration. However, not all of these differences impact 
V&V; those that do are described below.  

In terms of design constraints, IEC 60880 is more prescriptive in what must be 
considered at the design and implementation stage. Specifically, both Section 7.3 and 
Annex B require that consideration is given to decomposition into modules, use of 
interrupts, execution time calculations, modification control, coding rules, memory 
access and so on. If this consideration is not given, then IEC 60880 requires that a 
justification be provided. In addition IEC 60880 also states in Section 7.2.2 that the 
choice of language should not prevent the use of certain error-limiting constructs, and 
provides guidance for the selection of language and tools. This should be contrasted 
with Section 8.3.4.3 of IEC 62566. This section introduces strongly recommended 
constraints relating to side-effects, resources, initialization of signals and delays. 
However, the standard emphasises that these are not mandatory, a declaration which is 
missing from the constraints given in Section 7.3 of IEC 60880. 

In addition, IEC 62566 is more explicit that additional design considerations may apply 
on a case by case basis, with Section 8.3.4 stating that the design rules should reflect the 
latest knowledge. That is, IEC 60880 may be interpreted as containing an exhaustive list 
of all design considerations, while IEC 62566 makes it clearer that the design 
considerations identified are a representative sample of those which may apply for any 
given system. 
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The second area in which the standards differ relates to the use of tools. IEC 60880 
requires firstly (Section 7.2) that translators should be thoroughly tested, and in 
addition to this recommends the use of automated tools and the imposition of further 
requirements for tool qualification (discussed in this report in Section 3.4.7). By 
contrast, the design and implementation section of IEC 62566 does not explicitly 
require the thorough testing of tools – such as those used for synthesis, place and route 
– if this has already been performed and documented by the supplier of such tools, 
although it does also impose equivalent requirements to those discussed in this report 
in Section 3.4.7. 

In addition to the requirements placed on tools, the standards differ in what they 
require to be present in the design documentation. Section 8.3.10 of IEC 62566 is more 
explicit than the equivalent Section 7.4 of 60880, requiring the description of design 
decisions pertaining to issues including control flows and data paths, protocols and 
algorithms, initialization of registers and the memory map. By contrast, IEC 60880 
requires only that “sufficient detail” should be provided. This has two potential 
impacts on the verification and validation activities: firstly, that under IEC 60880 it may 
be possible to have multiple interpretations of how much detail is sufficient, and 
secondly that under IEC 62566 the adequacy of the design decisions must be justified – 
and can therefore be confirmed. 

The final area in which the standards differ in this phase is in the extent of V&V that 
they recommend performing. Although both of them have a dedicated verification 
section (see Section 3.4.3 in this report), both also discuss V&V activities, to differing 
extents, in this section. 

In Section 7.3, IEC 60880 explicitly requires verification of intermediate design 
products, which is not required by IEC 62566. We note that this may be implied in the 
requirement of IEC 62566 that the design should allow easy verification, but this is not 
equivalent to the explicit requirement that intermediate design products should 
undergo verification. By contrast, Section 8.7 of IEC 62566 describes a formal review 
process to be undertaken at the end of the design and implementation phase; this 
constraint is, however, omitted from IEC 60880. There is a brief mention of a review 
process in Section 7.4 of IEC 60880, but no equivalent description of the V&V activities 
to be undertaken during this. The effect of these different requirements is that we may 
expect different verification artefacts from the design and implementation phase of 
systems developed under the two standards. 

Additionally, Section 8.4.7 of IEC 62566 explicitly requires static timing analysis to be 
performed, for which no equivalent requirement is found in IEC 60880. 
Correspondingly, it would be expected that verification of best and worst case time – 
amongst other properties – has been performed for systems developed under IEC 
62566, but not necessarily for those under IEC 60880. 

3.4.3 Verification 

Verification of software and HPDs is dealt with in Section 8 of IEC 60880 and Section 9 
of IEC 62566 respectively. Although these sections are relatively extensive, there are 
only a few significant differences between the two standards in this phase.  

The first difference relates to the scope of verification, with particular reference to the 
use of pre-developed items. Section 9.3 of IEC 62566 identifies that part of the role of 
verification is to assess pre-developed products against the rules specified by their 
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suppliers, and the requirements of Section 7 (dealing specifically with pre-developed 
items, and covered in this report in Section 3.4.8). By contrast, although Section 8.2.3.3 
of IEC 60880 also requires that the requirements of Section 15 (dealing specifically with 
pre-developed items, and covered in this report in Section 3.4.8) are met, there is no 
equivalent requirement that pre-developed items should be assessed against rules 
specified by their suppliers. The effect of this omission is a slightly different scope in 
the V&V activities required by each standard. Furthermore, Section 9.1 of IEC 62566 
identifies a requirement to confirm the adequacy of selection of pre-developed items, 
and of such items with their component requirement specification. That is, the use of 
pre-developed items must be justified, and shown to be necessary within the wider 
system. These differences should be taken into account when considering the 
implications of IEC 62566 Section 7 vs IEC 60880 Section 15 on verification of pre-
developed items (as we do in this report in Section 3.4.8). 

Secondly, we have already seen that the two standards differ in the extent to which 
they explicitly describe the content of documentation. IEC 60880 is more prescriptive 
about the documentation to be produced during verification, requiring a distinct 
software test specification, test report and design verification report. It is also quite 
specific about the information to be included in each of these, requiring for example 
that the test specification includes test environment, test procedures, acceptance criteria 
and so forth. By contrast, IEC 62566 does require that tests, goals, expected results, 
acceptance criteria, inputs and outputs etc. should be recorded, but does not constrain 
the type of documentation to be produced (e.g. test specification, test report). Although 
the two standards do require the same rigour of documentation in the verification 
phase, it is important to be aware that this documentation may be presented differently 
under the two standards. 

In addition, IEC 62566 places much more emphasis on automation of tests, requiring 
tests to be fully automated and any manual input or observation justified (as these are 
considered potentially error-prone). IEC 60880, by contrast, permits automated code 
analysis but does not require manual analysis to be justified. 

Finally, with reference to the actual activities performed during V&V, IEC 62566 is 
slightly more prescriptive in terms of identifying the verification activities which must 
be performed (for example, static verification activities such as type / syntax checking, 
parameter checking, OOR checking and dead state detection). By contrast, IEC 60880 
provides an informative annex detailing potential verification activities including 
program analysis, program proving, path testing, data movement testing. However, 
because these are informative only, their selection must be on a case-by-case basis, 
unlike the mandatory activities prescribed by IEC 62566. 

3.4.4 Software / HPD aspects of system integration 

Software and HPD aspects of system integration are dealt with in Section 9 of IEC 
60880 and Section 10 of IEC 62566. There are no significant differences which impact 
V&V, with the only exception being that IEC 62566 explicitly requires that verification 
software tools should be compliant with its requirements on software tools for 
development (Section 15 of IEC 62566, which is detailed in this report in Section 3.4.7). 
IEC 60880 does not explicitly require this, so should any software tools be used for 
verification then this may be an area where further work could be merited. 
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3.4.5 Software / HPD aspects of system validation 

Software and HPD aspects of system validation are dealt with in Section 10 of IEC 
60880 and Section 11 of IEC 62566. As above, there are no significant differences to 
discuss, with the exception of a slightly more stringent constraint on the equipment 
used for calibration. IEC 60880 requires that this be demonstrated to be suited to the 
purpose of system validation, while IEC 62566 does not require this. However, this is 
unlikely to have a significant impact on V&V activities. 

The only other area of difference in this phase relates to the documentation. Section 
10.3 of 60880 identifies that software tools used in the validation process should be 
documented as an item in the validation report. The corresponding section dealing 
with validation reports in IEC 62566, Section 11.4, does not mention this, although it is 
included in IEC 61513. There is unlikely to be any significant impact on verification and 
validation, but this omission from IEC 62566 may be an indication that information on 
software tools for validation could potentially be missing. 

3.4.6 Modification 

Software and HPD modification is covered in Section 11 of IEC 60880 and Section 12 of 
IEC 62566. There are no significant differences between the two standards in terms of 
verification and validation activities. 

3.4.7 Software tools for development 

The use of software tools for development is addressed in Section 14 of IEC 60880 and 
Section 15 of IEC 62566. There are no significant differences to discuss; indeed, IEC 
62566 explicitly requires conformance with IEC 60880 with the exception of a small 
number of constraints specific to microprocessors. It also adds some HPD-specific 
requirements around tools for logic synthesis, HDL source statements, command-line 
arguments 

3.4.8 Acceptance of pre-developed products 

The acceptance process for pre-developed products is considered in Section 15 of IEC 
60880 (and configuration of these in Section 7.1.4), and in Section 7 of IEC 62566.   

One area in which the two standards differ, and which can have a significant impact on 
verification and validation, is in the evaluation of the quality of the pre-developed 
product. IEC 62566 allows more scope for interpretation in the ways in which the 
quality of the product could be demonstrated. In particular, Section 15.3.2 of IEC 60880 
explicitly identifies the documentation that we should expect to be made available. This 
includes the software quality plan, the specification documents, the software / 
hardware integration plan, the validation plan and the results of verification and 
validation. By contrast, IEC 62566 requires only that a documentation review is carried 
out on the design and verification documents of the pre-developed product. This 
difference can be partly attributed to the fact that pre-developed products - such as IP 
cores – for use in FPGA-based systems may not be provided with all of the specific 
documentation discussed in IEC 60880; that is, the information may be present, but 
provided in a different form. 

Furthermore, IEC 60880 imposes a further quality requirement, that the development of 
the pre-developed product should have been in accordance with the annexes of IEC 
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60880 itself. IEC 62566 does not impose an equivalent requirement. However, it is 
worth nothing that the programming process for blank integrated circuits is required to 
be “fault free”. 

The other area in which IEC 62566 and IEC 60880 differ is in the scope for, and 
constraints placed on, the use of operating experience when assessing a pre-developed 
product. In general, IEC 62566 allows more scope for interpretation in the ways in 
which operating experience can be used, with Section 7.4.3 stating that it may be used 
to compensate for limited documentation weaknesses regarding reliability or design. 
By contrast, Section 15.3.3.2 of IEC 60880 is explicit that operating experience can never 
completely replace documentation evaluation. IEC 60880 is also more specific about the 
weaknesses in design that can be compensated for with operating experience. 

By contrast, however, IEC 62566 is more specific about the conditions under which 
operating experience can be considered valid, with Section 7.4.3 requiring “equivalent” 
conditions. IEC 60880, in Section 15.3.3.1 requires “similar” conditions. As there is no 
further information given about the ways in which the conditions must be similar, 
IEC 60880 has the potential for multiple differing interpretations when determining the 
validity of operating experience. 

3.5 CONCLUSIONS 

Overall, we have found very few indications of significant differences impacting on 
V&V between IEC 60880 and IEC 62566, at any stage of the development lifecycle. 

In general, IEC 62566 is less prescriptive about the specific documents that need to be 
produced. In some cases IEC 62566 has clarified requirements in IEC 60880, resulting in 
a greater specificity in these clauses. As above, these clarifications have typically not 
taken the form of requiring that specific activities be performed, but have rather been 
clarifications that, for example, the constraints of a particular clause either in IEC 62566 
or in another standard are applicable in situations which were previously ambiguous. 



 
VERIFICATION AND VALIDATION TECHNIQUES FOR I&C APPLICATIONS IN NORDIC 

NPPS 
 

23 

 

 

 

4 Behavioural properties 

In the safety triangle of justification, consideration of the behavioural properties aims to 
show that the expected behaviour of the system or component is met. Typically, this is 
organised under attribute headings such as functionality, timing and accuracy. This 
typically requires the use of a number of V&V techniques. Different properties (or 
attributes) can be considered for different types of systems or components. The exact 
set of attributes to be considered would need to be defined for each system. 

Therefore, in assessing the usefulness of a particular technique, it is necessary to 
consider 

• the contribution of the behavioural attribute to the overall case 
• the contribution of the V&V technique to establishing the behavioural attribute 
• the inputs required to apply the V&V technique 

The combination of all the techniques deployed for each behavioural attribute 
generates a level of confidence that the behaviour of the complete system is well 
understood and correctly implemented. In selecting appropriate V&V techniques, the 
most productive are those that provide a high level of assurance but require modest 
amounts of effort, while the least attractive provide little assurance and involve large 
amounts of effort. The position of a technique on the spectrum depends on the nature 
and structure of the application being assessed. In this section, for common groupings 
of behavioural attributes, we compare how V&V techniques vary between 
microprocessor and FPGA based systems, with particular emphasis on those areas 
where the V&V required for one architecture gives significantly more confidence or 
requires significantly less effort than another. 

4.1 FUNCTIONALITY 

The V&V of a system’s functionality refers to the correct implementation of the defined 
system functions. One type of functionality involves specifying the existence of a 
facility or capability of the system: for example, an instrument measuring temperature 
may specify that the user be able to calibrate sensor X using some particular kind of 
data set, perhaps over a particular interface. A part of the specification of the 
functionality of the system can also involve prescribing an algorithm or properties of an 
algorithm used to calculate some quantity in the system. 
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V&V area Microprocessor V&V FPGA V&V 

Code inspection Code inspection of code written in 
a high level language can reveal the 
logical intent of well-structured 
single-threaded code, but by 
suggesting structures, may lead the 
reviewer into making the same 
logical errors as the developer. 
Concurrent functional 
requirements are difficult to 
analyse using code review without 
tool support, particularly as it may 
not be obvious that another 
function implemented elsewhere in 
the code may interact with shared 
resources such as global variables. 
Effectiveness/cost 
Low cost, reasonable confidence if 
code is well structured and 
commented with limited 
concurrent behaviour or assembly 
code. 

Code inspection of HDL can produce 
less confidence than the equivalent 
activity for microprocessor code 
because hardware implementation 
details are exposed, and HDL designs 
are inherently more concurrent. It may 
be more useful to concentrate on code 
review at the ESL level rather than at 
executable HDL level, although 
subsequent coverage of potential 
issues that are created at HDL level 
only depends on the means by which 
the HDL is generated. A summary of 
the development flow can be found in 
Appendix B. 
Effectiveness/cost 
Low cost, less confidence than 
microprocessor, especially if review 
confined to low level HDL. 

Random testing, 
functional 
testing 

These techniques are similarly applicable to both microprocessors and FPGAs. 
Effectiveness/cost 
Relatively low cost. The effectiveness of testing is heavily dependent on the 
linkage between a test profile and the specific claims supported by the 
results. 
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V&V area Microprocessor V&V FPGA V&V 

Formal 
verification 

Static analysis using a tool such as 
Malpas or Frama-C produces a 
deductive proof that a piece of 
code has a behaviour that is stated 
in a formal specification language. 
The effectiveness of the technique 
depends on the identification of 
significant functions and correct 
translation of their natural 
language requirements into 
mathematical definitions of 
behaviours. Depending on the 
extent of the properties proved, 
levels of confidence can be high. 
Tools require qualification, and 
those that need extensive manual 
intervention to link deductions 
together may introduce 
opportunities for error. 
Effectiveness/cost 
Depending on the functional 
properties verified, static analysis is 
time consuming but is considered 
to produces the highest practical 
levels of confidence in the 
functional correctness of code. 
Tools range in cost from free to 
expensive. 

Assertion languages (which can 
sometimes be part of an HDL) enable 
statements to be written about the 
behaviour of a piece of HDL code, 
which can be checked by simulation or 
deductive means using a range of 
tools. However, the low level nature of 
these assertions can make it difficult to 
frame high level functional properties. 
Verification tools at ESL/TLM level 
address functionality more fully, but 
tend to work by simulation rather than 
deductive means, as the complexity of 
ESL language complexity does not 
easily facilitate deductive proof. 
Simulation cannot typically provide 
complete coverage of a state space in 
systems of more than trivial 
complexity, although there are 
established techniques available to 
gain confidence that a given level of 
coverage has been achieved. 
Effectiveness/cost 
HDL verification tools can be 
expensive, even on a subscription 
basis. These tools are generally closed 
source, but have long development 
pedigrees and wide use in industry. 
The level of confidence that can be 
obtained through using these tools at a 
low level for functional (as opposed to 
integrity) properties is not particularly 
high, but their use is mandated by 
IEC 62566. Some HDL verification tools 
provide assertion generators or check 
that assertions cover particular 
properties, but these tools cannot 
infer the designer’s intention about 
what the code is supposed to do. HDL 
assertion checking is a technique 
better suited to addressing 
vulnerabilities in designing code for 
FPGAs, so we return to it in Section 5. 

Model checking Model checking techniques use a high level representation of a design in a 
language such as Promela and check properties of interactions between 
functional blocks and state transitions at a high level. In both the case of 
microprocessor and FPGAs, some element of skill and discretion is needed in 
manually constructing a suitable model. It is time-consuming and expensive 
task, although many common tools are free or open source. 
Effectiveness/cost 
In each case, the strength of the conclusions with reference to the model 
being checked is high, but is limited in the context of the actual 
implementation it is modelling by constraints on the confidence in the 
equivalence of the models to the implementation in question. Model 
checking is labour-intensive and expensive. 

Table 1: Functionality V&V 
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4.2 TIMING 

Timing behaviour has different facets depending on whether we are considering 

• low-level hardware concerns such as propagation of signals and rise times of 
particular transistor technologies 

• length of time for a particular clocked processor to work through a compiled 
algorithm written in a high level programming language 

• latency of a real time signal processing pipeline or response time to an 
asynchronously presented demand 

Some of these concerns apply predominantly to microprocessor based 
implementations, while some apply to HDL implementations. Functional level testing 
techniques apply to both. These issues are presented in Table 2 and elaborated in the 
sections that follow. 

 

V&V area Microprocessor V&V FPGA V&V 

Worst case 
execution time 
analysis (WCET) 

We describe the issues 
involved in worst case 
execution time analysis 
in Section 4.2.1. 
Effectiveness/cost 
WCET analysis can give 
high levels of 
confidence in adequate 
timing performance of 
an algorithm 
implementation, but it 
is an expensive activity, 
often requiring manual 
intervention that is 
frequently intractable, 
in which case 
approximations can be 
used (which give a 
reduced level of 
confidence compared 
with an analytical 
solution). 

Although not directly applicable as WCET 
analysis is a technique used for microprocessor 
code, HDL program code can nevertheless be 
written in a paradigm in which data flows round 
a (spatial) loop several times, and after some 
number of iterations emerges into a different 
part of a data processing pipeline. It is 
important to ensure that this kind of hidden but 
semantically significant construction is not 
neglected in HDL verification. 
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V&V area Microprocessor V&V FPGA V&V 

Static timing 
analysis 

For a microprocessor, 
verification of timing 
properties at the HDL 
physical levels takes 
place when the 
microprocessor is 
designed and verified by 
the manufacturer. The 
programmer writing 
code for a 
microprocessor should 
address WCET and 
performance issues, but 
does not need to be 
concerned with 
propagation or other 
electronic issues: the 
microprocessor 
programmer’s model of 
hardware is a discrete 
abstraction. 

Background to static timing analysis is given in 
Section 4.2.2. Static timing analysis is important 
in order to check that synchronous timing 
constraints that are implicit at HDL level are not 
violated during place-and-route. It is an 
automated process supported by a wide variety 
of tools. So called “back annotations” imposing 
extra constraints on the HDL as a result of how 
that HDL has been synthesised and placed onto 
the FPGA can result in a cyclic FPGA 
development process, where multiple revisions 
may be necessary before an acceptable 
bitstream is produced. However, this is not so 
different from the case with a microprocessor, 
where a design might not necessarily fit into 
memory or within the timing constraints of the 
application after a first pass. Similarly, with a 
microprocessor, some elements of the analysis 
of high level code or synchronous HDL can be 
applied independently of a particular 
microprocessor or FPGA, while issues such as 
place-and-route that are dependent on a 
particular FPGA are analogous in difficulties 
encountered when a traditional piece of code is 
compiled for a different microprocessor. 
However, in the case of a microprocessor, the 
extra WCET analysis that would be required for 
a microprocessor based design would be a 
larger task than rerunning an automatic static 
timing analysis for an FPGA. While static timing 
analysis for an FPGA is common practice among 
developers of FPGA-based solutions, WCET 
analysis is typically only part of rigorous 
development processes. 
Effectiveness/cost 
Static timing analysis should not pose a 
significant extra difficulty unless a design is 
being targeted onto an FPGA that is not large or 
fast enough to accommodate the high level 
design. Reliance on complex closed source 
toolchain may have a small negative impact on 
confidence when compared to a 
microprocessor where the consequences of 
place-and-route are concerned because, like a 
microprocessor, an FPGA chip design must be 
verified, so the verification of the HDL for the 
programmable part of the FPGA is an extra step 
with opportunities for bugs or inaccuracies. 
Since static timing analysis is a routine activity 
in FPGA development, some extra V&V benefit 
may be gained over microprocessors, although 
this is highly dependent on whether the 
compared code is written at a high or low level 
of functional abstraction. 
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V&V area Microprocessor V&V FPGA V&V 

Time response test This is a generic technique for asynchronous applications. At this level, 
timing properties are dictated by communications protocols or plant need. 
For example, real time protocols can require responses within a fixed 
interval, while a plant need might specify a maximum time that should 
elapse between a detectable set of plant conditions and a control or safety 
response, such as an alarm annunciation. 
Effectiveness/cost 
These techniques are inexpensive and give reasonable levels of confidence, 
although this is dependent on arguing that there is adequate coverage of 
the tests over inputs and environments to which timing might be sensitive. 
This can be more difficult in the microprocessor case, where operating 
system interactions between concurrent tasks often produce intractable 
corner cases. 

Table 2: Timing V&V 

4.2.1 Worst case execution time 

Most programming languages used in the development of I&C systems are imperative 
languages. This means that they set up a set of variables with state, and consist of 
sequential statements that modify that state. (The allocation of variables that form part 
of the notional state at any one time changes as functions are entered and exited, but 
this can be overlooked for the sake of the current discussion.) Some statements contain 
logical tests, such that the next statement to be executed may be determined by the 
value of some data in a variable. There is an infinite number of ways1 of implementing 
an algorithm defined by an application in imperative code. Each different way of 
implementing the algorithm may give rise to a different number of statements that 
must be executed until the eventual result is computed; this number of statements will 
usually change, depending on the values of the input data to a given algorithm. The 
system of state transitions is discrete: each transition is notionally instantaneous, and 
any execution history always contains a whole number of executed statements. 
However, each of these transitions cannot in practice be instantaneous, so a given 
algorithm takes a finite amount of time to complete. The worst case execution time 
(WCET) is determined by whichever input data produces an execution with the largest 
number of statements. The more transitions, the longer this time will be. The state 
transitions corresponding to this timescale of sequential C statements does not have a 
straightforward relationship to physical time. This is because different statements will 
be converted into different sequences of microprocessor instructions by different 
compilers, and different microprocessor instructions take different numbers of physical 
clock cycles to complete. Instruction retries and processor optimisations such as 
pipelining, out-of-order execution and asynchronous communications with external 
ICs over system buses can even make the length of time needed to process an 
instruction non-deterministic. 

In themselves, these factors make WCET analysis a complex task that involves 
consideration of interactions between high level language, compiler and 
microprocessor. It is made even harder when an operating system is used, or where 
function invocation is driven by asynchronous interrupts, because function execution 
can be arbitrarily interrupted by other parts of a system, which can result in complex 
mutual dependencies or reliance on unbounded external stimuli, which can result in an 
analytically intractable implementation. Where bounds can be found, they are often 
                                                             
1 though a finite number of good ways 
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unnecessarily or unusably conservative. In such cases, it is necessary to rely on 
approximate or statistical techniques based on testing. Although design rules 
restricting the choice of microprocessor and language use can in theory make this 
timing behaviour more predictable, common microprocessor based platforms have all 
of these complexities. 

The time between idealised transitions in an application level model places an upper 
bound on what WCET is acceptable in any given instance. Where it is decided to 
undertake a WCET analysis for a microprocessor based systems, tools such as AbsInt 
aiT can be used. 

For most purposes in the analysis of a microprocessor code, the semantic model of the 
microprocessor is considered to be time-deterministic. However, incomplete 
information about any optimisations or integration into a platform which does not 
synchronously constrain buses or interrupts may nevertheless render the platform as a 
whole non-deterministic. Non-determinism may be a result of a specification being not 
fully known or defined, or may be a feature of a physical design that results in 
behaviour that is impossible to predict because a design is metastable or otherwise 
sensitive to probabilistic physical effects. 

In summary, worst case execution time analysis is a technique used for microprocessor 
code: it is difficult and often intractable, so the lack of an obviously similar kind of 
analysis needed for FPGAs is an advantage for FPGA based designs. However, if an 
HDL design uses a control or data flow paradigm from a high level language for a 
microprocessor (such as C), some high level elements of WCET-style analysis may be 
appropriate, using suitable assertions, model checking or theorem proving. Even so, 
such an analysis should be much less affected by sources of non-determinism present 
in the microprocessor case. 

4.2.2 FPGA static timing issues 

FPGA design rules discussed below constrain HDL to a synchronous (deterministic) 
subset, but similarly may have non-deterministic elements at the system level, 
depending on how the FPGA is connected to peripheral ICs. At synchronous level, 
where the semantics assume instantaneous propagation, timing issues are relatively 
straightforward. However, there is a need to consider clock recovery tolerances at I/O 
interfaces and clock domain crossing between components that may be asynchronous 
at application level and not share a common clock. A basic V&V requirement here is to 
verify that the HDL design is actually synchronous. This can be checked by using an 
analysis tool.2 

4.3 ACCURACY 

The definition of accuracy changes radically depending on the system boundary. For 
example, it can be of 

• the digital output (of temperature, for the sake of argument), given the actual 
physical state of a sensor 

• the digital output, given the analogue potential difference across a thermocouple 
(this has the same limitation as above) 

                                                             
2 to verify that the directed graph of component interconnections contains no cyclic structures that are 
not interrupted by a clocked register 
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• the accuracy of the internal digital representation of voltage, given the potential 
difference across a thermocouple 

• the numerical precision of that voltage 
• the numerical precision of the output (temperature) 
• the numerical precision of the intermediate values in any calculations or the 

divergence of the result from idealised real number intermediate values 

We may therefore be talking about the precision of an entire instrument, a component 
of it, or an algorithm. The accuracy and precision of the physical aspects of the 
instrument and ADC/DAC converter resolutions are a relatively high level issue that 
should be dealt with in framing the requirements of the entire software application, but 
the precision and numerical stability questions tend to arise at the implementation 
stage. The different types of V&V activities applicable are summarised in Table 3. 

V&V area Microprocessor V&V FPGA V&V 

Accuracy 
tests of 
black box 
system 

No differences between microprocessor and FPGA case – external measurement 
equally applicable in both cases. 
Effectiveness/cost 
Good degree of confidence at relatively low cost. 

Simulation Applicable in both cases. 
Effectiveness/cost 
Highly dependent on the amount of simulation performed and the state space 
needed to be covered. The degree of concurrency in an FPGA can make 
simulation a computationally intensive task. The software needed for performing 
simulation testing for HDL and FPGAs tends to be more expensive than that for 
code in an ordinary programming language, although the facility can be part of or 
an extension to software that is needed in any event for other parts of the FPGA 
development process. 

Numerical 
analysis 

Techniques such as sensitivity analysis and proof in interval arithmetic could be 
used in both cases. Where there is a temporal aspect to the accuracy of a 
calculation (for example, the size of a discrete interval in the numerical 
integration of a property over time) there is little difference between a 
microprocessor and FPGA, unless in one case source code is not available for a 
pre-developed component. 
Effectiveness/cost 
Sensitivity analysis can be easy and inexpensive, though relating the coverage 
achieved to the confidence gained can be more difficult. Proofs in interval 
arithmetic are difficult, time consuming and expensive, and not often done: 
however, they do offer very high levels of assurance. 

The numerical accuracy of an algorithm written in a 
high level programming language will depend on the 
size of datatypes on the target architecture, the 
treatment of which may vary according to the 
compiler and targeted hardware. If a binary library is 
used, this information may not be readily accessible: 
object code can be decompiled and analysed, but this 
is not straightforward and may be in breach of 
licence terms. 

FPGA data sizes and 
encodings are more 
explicit unless 
intermediate values or 
algorithmic details are 
hidden in pre-developed 
blocks (IP cores). 

Table 3: Accuracy V&V 

4.4 AVAILABILITY 

Availability of a system is its readiness for correct service. It is a system-level attribute 
supported by component attributes. In the cases of both microprocessors and FPGAs it 
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can be considered as a hardware attribute, in which case it reduces to the physical 
reliability of electronic components, or a software process, for which it relates to the 
ability of a software system to service external interactions, which requires it to be 
operating properly and keeping the correct internal state. In the latter case, the speed of 
the hardware and freedom of the code from starvation issues are relevant, but are more 
appropriately considered as vulnerabilities. On a system scale, availability can be 
affected by the reliability of components, which can be assessed by statistical testing. 
Statistical testing can be expensive where very large numbers of tests may be needed to 
reach adequate confidence levels. 

4.5 ROBUSTNESS 

Robust behaviours are tolerant to out-of-normal inputs and stressful conditions. Where 
this concerns over-voltage or other physical problem these are largely hardware 
properties that apply similarly to microprocessors and FPGAs, as the integrated circuit 
(IC) fabrication technology determines the electrical sensitivity to over- and under-
voltage or inaccurate clocking. In software, it is possible that malconfiguration of 
scaling parameters can lead to unforeseen overflows or nonsensical values, which can 
then cascade meaningless computations into other processing functions. Testing at 
extremes of value ranges can provide some confidence that this should not happen. 
Microprocessor code and HDL should both be checked for implementation of sensible 
defensive behaviours, such as range checking of values before they are used. Both 
microprocessor based designs (where interrupts might be activated by an external 
stimulus more frequently than the coder expected) or FPGA designs (where some 
asynchronous stimulus is applied more often than expected) could lead to demands 
being ignored or timed out. Robust software or HDL design should have defined 
behaviours in overload circumstances such as this (such as ignoring or queuing), which 
are validated to be safe in the context of the wider application. 

4.6 FAULT TOLERANCE, DIAGNOSTICS AND FAILURE RECOVERY 

Many of the system level approaches to fault tolerance apply similarly to FPGA based 
systems as they do to microprocessor based systems. Familiar techniques such as the 
use of error detection and correction codes and modular redundancy are equally 
applicable. FPGAs increase the scope of some of these approaches because they can be 
implemented more flexibly on-chip. For example, modular redundancy on an FPGA 
may be implemented by spatially separating multiple instances of the same logic. This 
approach can work together with usual design strategies such as divisional 
redundancy. 

FPGAs can provide some semi-automatic detection and repair facilities. However, 
these approaches tend to rely on IP cores and may therefore increase the design 
footprint of the whole solution and thus also the justification overhead. 

Since FPGAs are dynamically configurable (with the exception of the one-time-
programmable antifuse type), they are susceptible to configuration upsets as well as 
execution upsets: this is addressed in Section 6. Detection and protection of these errors 
is often a standard feature of FPGAs, but does not address the usual bit flip concerns 
familiar in microprocessor based designs. 

Failure recovery differs from fault detection and tolerance attributes in that it concerns 
the response to a failure that has occurred rather than one that has been masked to a 
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higher system level. Modular approaches to fault containment and recovery from 
failure are sufficiently abstract that there is no real difference between the approach 
taken with microprocessors and FPGAs. The main difference between FPGAs and 
microprocessors in the scope for implementing failure detection and repair of soft 
errors is that the level of tolerance for FPGAs can be very flexibly tailored to a given 
target tolerability of upsets. Additionally, since FPGAs are reconfigurable, permanent 
failures due to electromigration or other causes may in theory be accommodated by 
reprogramming, although it is questionable whether dynamic reconfiguration of this 
kind would be compatible with the requirement to maintain a stable configuration. 

4.7 CONCLUSIONS 

Many V&V techniques that pertain to system level behaviours are equally applicable to 
microprocessors and FPGAs. However, behaviour relating to timing and concurrency 
needs to be assessed in different ways. FPGAs have extra behavioural facets that must 
be considered because verifying them involves tools that must use non-discrete 
physical models to handle issues such as propagation delay. These V&V obligations 
arise on a per-development basis rather than at chip design time as is the case for 
microprocessors, although in the case of microprocessors, it is rare to have access to the 
verification records. V&V for FPGAs does not need to address an operating system or 
require analysis of control flow through instruction sets at a low level, but it is 
important not to neglect any dataflow paradigms that might be adapted from 
microprocessor development idioms, which may not be naturally covered by HDL 
verification tools that are aimed at low level IC development. 
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5 Vulnerability assessment 

Vulnerabilities of artefacts, tools or processes are properties of particular technologies 
that often lead to predicable patterns of failure. For example, a program written for a 
microprocessor will likely involve using and manipulating memory addresses, which is 
well known to be a source of programmer error. Concurrency in programs for 
microprocessors is vulnerable to data corruption, starvation or performance issues, 
while the synthesis and deployment of HDL code onto an FPGA is known to be 
vulnerable to timing propagation errors and unpredictable asynchronous behaviours. 
At the physical level, certain types of FPGAs are vulnerable to spontaneous 
configuration changes owing to ionising radiation (see Section 6). 

In this section we analyse the similarities and differences among the vulnerabilities 
found in microprocessor and FPGA based designs, and the implications this has for 
V&V requirements and available approaches in each case. We compare 
microprocessor-based systems and FPGA based systems, considering small and medium 
sized applications at Cat A. Such systems comprise the core FPGA or microprocessor 
chip, supporting electronics and proprietary module structure, such as hot swap 
boards in a single chassis, using a proprietary interconnection system and development 
tools. We do not consider systems that are housed in more than one chassis or 
heterogeneous systems. The extent of the theoretical vulnerabilities and strengths of 
microprocessors and FPGAs chips often diverges from what is achievable with the 
systems on the market that are suitable for use in nuclear power plants, which include 
some element of common platform code: where this contains elements that are 
intractable to analyse (such as microprocessor platforms that make more than very 
limited use of interrupts) this places a limit on the feasibility of a deterministic analysis 
for an entire implemented system consisting of a platform and an application. 

FPGA vulnerabilities concern common patterns of error in rendering requirements 
specifications in HDL and the tools used to refine HDL code into a deployed FPGA, 
and can occur both in IP cores (see Section 5.5) and per-development code. Since IEC 
62566 mandates that all HDL designs be fully synchronous, if maximum logic 
propagation times for combinatorial logic do not generate unsynthesisable timing 
constraints, FPGA-specific vulnerabilities can in principle be reduced to toolchain 
vulnerabilities. Similarly, the logic functions generated by synthesis tools are in 
principle correct by construction, although some cautions and provisos are discussed 
below. An analogous situation with microprocessor based designs is that some classes 
of memory interference bugs are extremely easy to introduce in manually written 
assembly code programs, but are completely avoided by use of a suitable high level 
programming language – but the protection is lost if the compiler is flawed or the tool 
flow not followed properly. 

5.1 EQUIVALENCE BETWEEN DESIGN AND IMPLEMENTATION LEVELS 

Development of both HDL and code for microprocessors usually proceeds according to 
the ordinary V model of development (see Figure 3 and Figure 4). Using the V model, a 
design is implemented in increasing detail at progressively lower levels of abstraction. 
With each artefact and translation between equivalent artefacts at different design 
levels, there are opportunities for errors to occur. V&V processes can be applied to each 
artefact as it is generated in order to address this vulnerability, and to the tools and 
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processes that are used to move from a high level artefact to a more detailed one. As 
part of the development process, the functionality is broken down into smaller 
components, and these are verified at each stage within the semantics of the abstraction 
level in question. When all of the low level modules have been implemented, they are 
again verified as they are integrated towards the top system level, with validation of 
the final implemented system taking place against the original requirements. 

In FPGA contexts, it is common to use “Electronic System Level” (ESL) tools to capture 
a design at a high level. “ESL” is a term used by IEC 62566 to mean “high-level 
description of an electronic system, based on a set of processes representing 
functionalities of components such as microprocessors, memories, specialized 
computing units, or communication channels” [6]3. This is often referred to as 
“Transaction Level Modelling” (TLM), and is facilitated by languages such as SystemC 
and SystemVerilog. IEC 62566 provisions such as clause 6.6.3 (in relation to ESL usage) 
mandate that “[t]he requirement specification shall be reviewed to check its 
completeness and its consistency”; this language mirrors that in IEC 60880 about 
requirements specification, although IEC 60880 does not provide for any ESL-like 
languages other than in an oblique reference to high level tools in Clause 14.1.1. 

Clause 6.5.3 of IEC 62566 states that “[t]he semantics of the languages used to express 
the requirement specification at ESL level may differ from the semantics of the HDL 
languages used during design.” The reason this can present a problem is not that the 
semantics differ in themselves, but the equivalence relations between the semantics can 
be incomplete and contain ambiguities that may be resolved differently by different 
human implementers or transformation tools. While ESL level tools are expressive, 
facilities for verification beyond simulation and assertion checking are limited. 
IEC 62566 (in clauses 6.5 and 8.5) discusses the requirements for using “Electronic 
System Level” (ESL) tools, imposing similar qualification standards on them as for the 
lower level FPGA toolsets. Assertion languages can be used at ESL level, although 
these do not give assurance of the level of coverage or completeness. IEC 62566 [6] (at 
clause 8.5) raises a number of provisos if HDL is to be produced by an automated 
toolchain. 

Both IEC 60880 and IEC 62566 are silent on the use of even higher level tools such as 
Simulink and Matlab and traceability through tools such as DOORS to system 
requirements and plant need, but such techniques are increasingly deployed in modern 
design flows, and can also apply to systems that are eventually implemented using 
microprocessors. 

High level code (microprocessors) or HDL (FPGAs) to physical implementation 
equivalence concerns the correctness of compilers and assemblers (for microprocessors) 
and logic synthesis and place-and-route tools (for FPGAs). In the microprocessor case, 
object code analysis after compilation can provide a high level of assurance that the 
compiler has not introduced bugs, but this is very expensive when applied to an entire 
code base. Owing to the closed source nature of place-and-route tools and the 
mechanisms for generating bitstreams and loading them onto FPGAs, it is not possible 
to conduct a fully equivalent exercise of this kind using an independent tool or manual 
inspection. However, the logic synthesis process from HDL to RTL can be readily 
examined (this part of the process is more analogous to high level code to assembly 
code compilation for microprocessors). Moreover, the standard closed source tools for 

                                                             
3 Clause 3.4 
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FPGA synthesis will test the bitstream against RTL as a matter of routine. Whether this 
bitstream checking (which corresponds to a stage absent in microprocessor based 
designs) provides extra confidence compared to a microprocessor, or whether it simply 
compensates for the extra complexity present in an FPGA is a somewhat subjective 
question. For FPGA designs, this problem can be mitigated by synthesising HDL code 
onto diverse platforms and using voting arrangements on different divisions to 
mitigate the consequences of any FPGA tool flaws. 

5.2 TIMING VULNERABILITIES 

At the application level, timing events may be asynchronous. For example, a demand 
on a safety alarm system may come at any time. Further, the state transitions as a result 
of these stimuli might be immediate, or constrained as a functional requirement to 
occur with some specific delay or within some time interval. However, this transition 
bears little relationship to the time it takes to compute the next state from the current 
state. If the next state function involved a computationally intensive mathematical 
function involved in modelling the state of a reactor, it cannot be taken for granted that 
the state transition time is negligible. This has two consequences at the level of HDL or 
ordinary programming languages: 

• there is some implicit or explicit constraint on worst case execution time for a 
particular piece of code 

• given a non-zero state transition time at the synchronous level, there are implicit 
constraints at the application level on the number, frequency, parameters and 
coincidence of demands 

The application’s implicit or explicit requirements for timeliness of response must be 
matched with worst case execution time of the implementing logic. In microprocessor 
systems, this is often fraught with practical problems, and empirical and statistical 
arguments are often used rather than analytical techniques to provide assurance of this 
correspondence. In FPGA designs, spatial separation of functions can make this kind of 
analysis easier. It should be noted that it does not remove it altogether, because 
pipelined functions, particularly where there are cyclic data flow structures, still 
require an element of worst case timing analysis. Further, combinatorial logic takes a 
minimum time to settle that is dependent on both logic synthesis and place-and-route. 
However, timing analysis at this level is simpler than the equivalent for a 
microprocessor because it bypasses many low level control details, assembly language, 
operating system and processor dependencies that need to be dealt with the in the 
microprocessor case. Table 4 summarises the equivalences between areas of concern at 
the synchronous code level. 

 Imperative microprocessor programming FPGA-implemented design 

Transition Assignment of expressions Clocked combinatorial logic 

Iteration Looping and recursion Cyclic data paths 

Table 4: Transition and iteration analogues 

 

Timing constraints can arise not only from external demands, but from implicit 
requirements of internal concurrent behaviour. If a particular application state 
transition A is dependent on some other transition B occurring before or after another 



 
VERIFICATION AND VALIDATION TECHNIQUES FOR I&C APPLICATIONS IN NORDIC 

NPPS 
 

36 

 

 

 

transition C, subtle timing bugs can occur, leading to (potentially intermittent) 
opportunities for starvation. 

Synchronous level languages such as ordinary C or synchronous subsets of HDL are 
not sufficient to completely (or deterministically) describe a system behaviour at the C 
or HDL programming level. This is because sources of asynchrony from the application 
and physical levels often undermine assumptions necessary for synchronous operation. 
We will see that this problem is more difficult to deal with in the microprocessor case 
than with HDL-based designs, owing to the presence of interrupts and operating 
systems, the constraints on which are usually incompletely defined. V&V for FPGA 
based systems can be somewhat more straightforward in this area. 

5.2.1 Microprocessors 

At the physical level, from the programmer’s or compiler writer’s point of view, a 
microprocessor is a discrete state machine. The state of the processor and its memory is 
a deterministic function of some starting state, a program, and some set of state 
transitions that are uniquely determined by instructions in that program. While this 
means that the programmer is protected from any concerns about gate design, 
propagation time or latching stability of integrated circuits, the apparent determinism 
of a microprocessor is illusory: 

• Usually the microprocessor may be interrupted. Even if sources of interrupts 
external to a system are regimented so as to occur with some minimum interval, 
software generated interrupts are much more difficult to constrain, as the times at 
which they occur is highly dependent on the final compiled object code, the data 
on which a program is operating, and the discontinuity of running code caused by 
operating system pre-emption or other interrupts. 

• Microprocessors may pipeline concurrent processes to optimise instruction 
throughput. 

• Contention on buses (where two parts of a system want to assert data on a bus at 
the same time) is resolved by hardware bus arbitrators, which are metastable and 
hence non-deterministic. 

5.2.2 FPGAs 

On the other hand, a common design paradigm for an FPGA based development 
assigns dedicated hardware to particular functions, so the difficulties born of 
contention and scheduling in a microprocessor design do not apply. On an FPGA, a 
particular piece of logic connected to an input/output takes the place of an interrupt in 
dealing with asynchronous external processes. It is still necessary to consider the 
frequency of demand of these “interrupts” and how the input handling logic 
synchronises external demands with the clocking domains and the processing cycles of 
any iterating structures, but the overall complexity of these issues is reduced. The main 
drawback of FPGAs where physical timing is concerned is that the programmer and 
toolchain must handle low-level propagation, synchronisation and stability issues that 
a microprocessor programmer may safely neglect. 

The tool chain used to program an FPGA is similar to a compiler for a microprocessor. 
However, it is more complex as it has to take account of physical factors on the IC (in 
logic synthesis and place and route), and also frequently involves guided refinement 
and higher level transformations than are the case for a microprocessor compiler. 
Timing can be complicated by “back annotations”, where the transformation tool 
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refines timing requirements that can have an effect at the RTL level, and may need 
some re-verification. For example, if a very long chain of combinatorial logic is 
included in the flows between some clocked registers, then it may not be synthesisable, 
owing to the cumulative propagation delay through the gates. This violates the 
assumption that, from a microprocessor user’s point of view, compilation is an acyclic 
refinement process. These complications and others in the toolchain provide more 
scope for tooling-induced errors, and issues with initialisation, power loss and 
transients. 

A further vulnerability exists if a Verilog or VHDL development is not confined to a 
synthesisable subset. Behavioural directions such as “wait 10ns” are not synthesisable, 
and can be ignored by synthesis tools. In a synchronous design, waiting should be 
enforced by the clocking of registers only. 

A problem can exist even in a fully synchronous design if registers are clocked at a 
different frequency. Section 8.4.7 of IEC 62566 prescribes static timing analysis to deal 
with this kind of problem. Section 8.4.7 of IEC 62566 does not fully explain what kind 
of static timing analysis is envisaged: some kinds are in effect part of the ordinary 
synthesis flow, whereas others can be carried out using back annotations generated by 
the synthesis flow. Section 8.4.7.4 of IEC 62566 mentions that clock skew should be 
analysed. This is only possible in external tools for those parts of clock transmission 
that are handled in programmable logic, or which are made known by the FPGA 
manufacturer. 

This can be contrasted with the microprocessor case, in which timing is only non-
deterministic if interrupts are used, or if a very aggressive multithreaded pipeline is 
employed. We consider the use of asynchronous interrupts to be an application-level 
timing issue. WCET for functions implemented in microprocessors is a matter that 
belongs at the synchronous level of abstraction, since assembly code is no less time 
deterministic than C, and rather more detailed. 

Avoidance of timing errors in synthesis flows is reliant on particular FPGAs and 
synthesis tools, so some mitigation of these vulnerabilities can be achieved by platform 
and tool diversification. 

Static timing analysis of the kind mentioned in Section 4.2.2 is an essential verification 
activity but addresses low level integrity concerns rather than high level timing 
constraints. Any hardware level timing constraints on the system boundary should be 
incorporated into the design and it should be verified that the design meets them. That 
the timing requirements themselves are correct should be validated by desktop review 
and integration testing. 

5.2.3 Comparison summary 

In summary, timing vulnerabilities arise from 

• the potential for mismatch between an application requirement for an output 
within a particular time and the length of time microprocessor code or an HDL 
design takes to produce it 

• consequential effects on concurrency and coordination affecting either 
microprocessor code or HDL 

• low level physical propagation, latching and clock domain issues, affecting only 
FPGAs 
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With the exception of FPGA low-level issues, the principles of V&V techniques for 
checking that application timing assumptions are not violated are the same across 
platform architectures. Suitable assertions over HDL (combined with automated formal 
analysis or simulation tools) can provide a similar effect to some kinds of WCET 
analysis, should require less work to verify, and provide greater determinism with 
more confidence. However, it is important to check that any such assertions are 
adequate to cover the application requirements, as HDL is not a natural language to 
express application level constraints. 

5.3 INITIALISATION 

The situation with FPGAs is similar to that with microprocessors. However, the state of 
the gates at start-up needs to be documented. Evidence also needs to be provided that 
the effect of the initial state of high level data in state machines and cyclic structures 
has been sufficiently determined. 

For a microprocessor, initialisation and reset design is dealt with at hardware design-
time and is opaque to the programmer: correct operation depends on the correct 
installation of the processor in the hardware platform. In an FPGA design, initialisation 
and reset must be dealt with more explicitly. In an FPGA design, state is stored across 
the whole design, particularly if there are cyclic structures and pipelines. The safe 
initialisation of all parts of the HDL design should be covered by appropriate 
assertions, which can be checked using FPGA verification or simulation tools. 

5.4 HIGH LEVEL CODE OR HDL BUGS 

This section concerns problems with code that arise from common patterns of mistakes, 
but mistakes of the kind that a person not expert in the application would be able to 
spot and correct. This applies both to high level languages (for microprocessors) or 
HDL (for FPGAs). 

For microprocessor code, integrity static analysis using tools such as QAC can 
effectively locate many common coding and logical errors. 

Assertion generators can provide similar coverage of specific types of problems with 
HDL code. There are a number of tools available that will generate these sorts of 
assertions with HDL, often with a claim about the level of coverage of these 
vulnerabilities achieved. 

It should be noted that neither of these kinds of tool check that design refinement has 
been performed correctly and that the code realises the intention of the high-level 
application design. This is a matter of functional verification, which is a type of 
behavioural attribute discussed in Section 4.1. 

5.5 INCORPORATION OF THIRD PARTY CODE 

Third party code can be found in both microprocessor and FPGA implementations. In 
both cases, the issue is whether the source code is available for the third party code, so 
that it can be analysed. In microprocessor implementations, some hidden code for 
missing instructions such as floating point operations can also be included as library 
functions, in which case object code verification is often necessary. Similarly, it is 
important to check whether any synthesis optimisation processes in an HDL design 
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include any IP from hidden libraries. The key differences between third party code for 
microprocessors and FPGA is that it is in general much more difficult to obtain source 
code for FPGA IP cores, and to be sure that the synthesis does not cause unexpected 
interactions between IP blocks and bespoke code (spatial isolation on the final layout 
can help here). Source code access to FPGA IP cores is typically much more expensive 
than netlist access, and the complexity of analysing such designs is further complicated 
by the fact that many have architectures that are parameterisable with some higher 
level tool. To keep the cost of IP cores down, in other applications, encrypted netlists 
are often used, but these should never be used as they are not compatible with IEC 
62566. 

IEC 62566 does not prohibit the use of IP cores (there are provisions about their 
inclusion in Clauses 7 and 9.3), but compliance is difficult for the reasons above. 

The use of IP cores should be avoided where possible. If an IP core must be used, it 
may be easier to justify the use of an IP core supplied by the FPGA manufacturer or one 
of their affiliates: such cores are more likely to have good supplier pedigree and a wide 
body of evidence of prior use. 

Clause 7 of IEC 62566 specifies how the requirements for an IP core should be captured 
and the acceptance criteria for candidate cores, most of which involve review exercises 
that are similar in scope to the activities needed to justify other kinds of COTS 
components. IP cores are often supplied “pre-verified”. Clause 7.4.2.1 of IEC 62566 
requires that the verification of a pre-developed block be reviewed as part of the 
acceptance process. 

5.6 UNREVEALED IMPLICIT STATE CORRUPTION 

Wherever there are cyclic structures in code for microprocessors or FPGAs, there is 
capacity for SEUs or other physical defects to cause a transient problem that causes 
internal state to diverge from what it should be (where a correct current state is defined 
as a function of an input history). It is easier for such failures to be revealed in a 
microprocessor design, because important state held in static memory can be checked 
by dedicated code, while local data on the stack is ephemeral. In the case of FPGAs, a 
corrupt state is harder to detect, as it is physically distributed, and there are no out-of-
band facilities to detect application data corruption directly. (Application data is here 
distinct from configuration data for the FPGA, for which consistency checks against a 
stored configuration are often implemented by the FPGA hardware.) Figure 5 
illustrates to process blocks A and B that are capable of accumulating state. If B is, for 
example, computing a rolling average of some quantity that is being sampled through 
the external input to A, any transient corruption will not be detectable, but will 
influence later calculations of the rolling average. 

A

B  
Figure 5: State loops 
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The use of cyclic structures should generally be minimised where possible. If a cyclic 
structure is being used as a hardware analogue of a “while loop”, a simple mitigation is 
to ensure that cyclic structures are reinitialised each time the loop is invoked by a 
sequential pipeline. If the loop is calculating some rolling quantity, then the algorithm 
should be designed so that the influence of earlier values decays with time. If more 
active checks are needed, then a layer of dedicated logic is needed to detect and/or 
correct transient errors. 

Control or data flow loops in a design can be easily identified using static analysis 
techniques: this applies equally to microprocessor and FPGA based implementations of 
an application. Once identified, different degrees of verification are necessary 
depending on the justification or mitigation of the loop, or the potential consequences 
for the application if a state corruption occurs. 

5.7 SILICON DESIGN ERRORS 

At the implementation level, programs for microprocessors are immune from physical 
timing problems on the chip, as long as the IC design has been verified and 
manufactured correctly. Two issues arise with this in comparison with FPGAs: 

• Especially for the more specialist FPGA architectures (e.g. antifuse designs) a given 
chip IC likely to be less widely used than a common microprocessor that has been 
in production for decades, and thus may have less compelling field experience 
available. 

• FPGAs have all the same EDA and fabrication vulnerabilities as microprocessors, 
but in addition have software tools that allow the user to do similar kinds of design 
verification, but parametrically in higher level design languages. These tools are 
usually proprietary to given FPGA manufactures, and are highly complex. They 
therefore introduce an entirely new area of vulnerability when compared with 
microprocessors. 

Specifically, at the implementation level, an FPGA-based application can be susceptible 
to logic propagation delays, clock distribution problems, latches that are not given 
enough time to latch, fan-out delays and logic replication synchronisation issues. 

In the case of an FPGA, if a synchronous subset of an HDL is used to specify the low 
level logic of a system as specified by IEC 62566 (isolating the implementation from 
application level timing issues), and assuming that the synthesis has been set up to 
allow sufficient settling time to latch registers after each piece of combinatorial logic, 
then the problems of Section 5.7 can be reduced to the level of confidence in the FPGA 
toolchain, rather than errors by the implementer of the application. This toolchain is 
typically a closely guarded proprietary secret of the FPGA manufacturer, so additional 
confidence may need to be obtained by using diverse FPGA implementations of the 
same logic. 

Designs should be restricted to synchronous-only HDL designs as specified by IEC 
62566 (this does not in itself require that only directed acyclic graphs of gates between 
registers be used). This design rule bars some common structures such as asynchronous 
bus arbiters and ripple counters. The ensurance of preservation of timing properties 
from HDL, through logic synthesis and place-and-route to bitstream, is in the hands of 
a manufacturer’s closed source tool, and thus independent static assurance of timing 
correctness is likely to be impossible. The pedigree of the FPGA/tool manufacturer and 
standard of production is of even higher importance than that of a compiler for a 
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microprocessor, since no object code is available to analyse after compilation. Although 
the trust relationship in this case is similar to that involved in trusting the verification 
activities of a microprocessor manufacturer, the addition of a synthesis tool adds an 
additional layer of complexity over hardware synthesis that creates more opportunities 
for errors than in the microprocessor case. This problem can be mitigated by using 
diverse FPGAs and tools to synthesise their netlists and bitstreams. 

In the case of a microprocessor, analysis of electronic timing issues is out of scope 
(implementation timing at the assembly code level is a matter of code or discrete model 
refinement correctness, as assembly language semantics are discrete). 

For FPGAs, a number of techniques are available. As observed in Section 5.1, there is 
little scope for analysing FPGA synthesis tools themselves. However, integrity 
properties of HDL designs can be analysed, as assertion languages such as PSL or SVA 
can be used to make logical claims of the behaviour of a given piece of HDL. Code can 
be verified against assertions by 

• simulation testing of assertions 
• model checking 
• formal (static) verification of assertions 

Tools are available from independent software houses that perform these tasks. Some 
of their functionality (regarding constraints imposed by synthesis for a particular target 
architecture) has to be provided with the cooperation of the FPGA manufacturer. 

5.8 MICROPROCESSOR VULNERABILITIES ABSENT IN FPGAS 

FPGAs are free of problems with interrupts, which is a major advantage over 
microprocessor based systems. Concurrent tasks are able to run without mutual 
interference. Although FPGAs must deal with asynchronous demands across its I/O 
interfaces, these demands do not interfere with other running tasks, which makes 
analysis of the impact of such interactions easier. Memory management is not an issue 
in FPGA designs unless memory banks are used in a microprocessor style idiom, which 
would defeat much of the purpose of using an FPGA. Similarly, the presence of a 
microprocessor IP core would vitiate many of the advantages of using an FPGA: these 
should be avoided. 

5.9 VULNERABILITIES – CONCLUSIONS 

V&V techniques to address vulnerabilities in FPGA and microprocessor 
implementations differ more than those involved for behavioural attributes. This is 
because many behavioural properties concern the black box or system level 
functionality of an I&C application, whereas vulnerabilities tend to be particular 
opportunities for making mistakes that arise from different development paradigms, 
tools and implementation targets. Some of these mistakes are particular to the 
languages used, and both HDL and ordinary programming language code can be 
checked by automated tools for adherence to coding standards in order to check that 
certain common pitfalls or practices associated with subtler errors have been avoided. 
Many of the most intractable vulnerabilities in microprocessor based systems, such as 
lack of certainty about the impact of interrupts on task interaction and overall system 
performance are absent in FPGA implementation flows. However, care must be taken 
to mitigate the lack of transparency in the code artefacts that are eventually uploaded 
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to the FPGA, as well as any hidden microprocessor-style development paradigms that 
might be used in and HDL design, of which HDL assertion checking techniques do not 
necessarily provide good coverage. The lack of transparency in code artefacts is caused 
by the complex synthesis toolchain involved in producing an FPGA design. Many of 
the tools are closed source, and the toolchain is lengthier than for the microprocessor 
compilation workflow. 

A tabular presentation of this section can be found in Appendix C. 
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6 FPGA technology-specific issues 

In this section we review vulnerabilities that are specific to particular FPGA types. 
There are three main defences to these vulnerabilities: 

• The selection and justification of the particular technology given its installation 
environment. For example, an FPGA local to a sensor in an area with high levels of 
ionising radiation will tend to suggest antifuse or Flash types. 

• Selection of defensive design rules such as configuration integrity checking and 
range checking, supported by V&V measures to check the consistent application of 
these design rules. 

• Testing in a realistic environment or simulation of disturbances. 

6.1 SRAM 

SRAM types of FPGA use static RAM to configure the lookup tables (LUT) and 
interconnection sensitivities on the chip. At initialisation, these patterns are loaded 
from some persistent storage and configure the device. This type of FPGA is 
susceptible to single event upsets (SEUs) caused by free neutrons or alpha particles 
interacting with latches. FPGA manufacturers have developed architectures that 
monitor the configuration state of the FPGA using cyclic redundancy checks (CRCs) 
and compare it against that in persistent storage and make corrections if necessary. 
Clause 6.4 of IEC 62566 stipulates how these issues should be mitigated using defensive 
design techniques, but is not explicit about the extent to which a degree of systematic 
checking is necessary that the design rules have been met. Fault injection techniques 
have been suggested in the academic literature to test these behaviours dynamically, 
but IEC 62566 does not explicitly require them. 

The SRAM type of FPGA Includes those with on-board Flash used to initialise SRAM. 
The main advantage of putting the Flash memory on the chip is that it makes it more 
difficult to intercept and copy a bitstream, but this is not the dominant consideration in 
a bespoke nuclear application, where the physical security of these components and the 
facilities for their manufacture and preparation should be high. 

6.2 ANTIFUSE 

Antifuse FPGAs are “one time programmable” (OTP) devices. They are a relatively 
niche product, produced by, for example, Microsemi. Once programmed, the 
connection topology of the FPGA is fixed, and does not need to be loaded on power-up. 
They are resistant to SEUs affecting configuration, but are still vulnerable to SEUs on 
application data, and, like any electronic device, they can suffer from hard faults. Any 
such hard faults may not be revealed in ordinary use. Defensive design is therefore still 
necessary, but need not encompass on-line configuration checking. Static analysis 
techniques may be used to check compliance with design rules, but would require 
bespoke or customised tooling. 

6.3 FLASH 

Flash-based FPGAs use Flash cells built into the gates that controlling LUT and 
interconnection configuration. They are less susceptible than SRAM types to radiation 
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bit flips, but are more susceptible than antifuse types. This type is not the same as a 
SRAM FPGA with an on-chip Flash area (which is sometimes used for convenience and 
as a mechanism to protect the intellectual property on an FPGA). Again, devices of this 
type are available from, for example, Microsemi. The same techniques as discussed in 
Section 6.1 apply, but the quantitative aspects of any analysis (in terms of tolerable SEU 
rates) would be different (see also Section 4.6). 

EEPROM can be used in an alternative to bulk Flash memory, but tends to have smaller 
capacity and less read/write cycle tolerance, so it is not usually employed in new 
applications. 

6.4 MODULES, MEZZANINE CARDS, BACKPLANES AND COMMUNICATION BETWEEN 
CHASSIS OR RACKS 

FPGAs are usually used in prefabricated modules, which form part of a wider system. 
A wider system could include a variety of Cots components using common standards 
such as mezzanine cards (e.g. AMC, FMC), ADC/DAC cards, backplanes (e.g. 
AdvancedTCA, VPX), and communications systems for digital communication 
between chassis and equipment racks (e.g. Ethernet, RapidIO). It is difficult to 
axiomatise a coherent model of an ad hoc collection of these kinds of products, so, for 
nuclear applications, a unified platform supported by a particular manufacturer is 
usually preferred, such as Radiy RadICS or Westinghouse’s ALS platform. The V&V 
tools available for these platforms is specific to the manufacturer. However, higher 
level standards for systems development processes such as IEC 61513 are relevant here. 
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7 Conclusion 

We have compared verification and validation (V&V) techniques for FPGA and 
microprocessor techniques by considering the requirements of the respective 
standards, a behaviour based analysis, and a survey of vulnerabilities that are 
commonly associated with particular technologies and design approaches. Overall, we 
have found few systemic differences, although V&V techniques at lower design and 
implementation levels do diverge somewhat. 

In our analysis of standards we looked for differences in V&V requirements in relevant 
IEC standards at all stages of the development lifecycle, and found very few significant 
differences. In general, the relevant FPGA standard is less prescriptive about the 
specific documents that need to be produced, and in some cases it has clarified 
requirements in the equivalent microprocessor standard. 

In examining the V&V techniques applicable to establish correct behaviours, we found 
that many are the same or similar. In particular, many of the system level dynamic 
testing approaches are identical. However, timing and concurrency require different 
approaches owing to the different physical design and abstraction level of the different 
architectures. FPGA tools are generally much more sophisticated in the V&V support 
they provide when compared to ordinary programming tools, but some of this 
additional complexity is necessary in order to compensate for the additional 
complexity of FPGAs. 

V&V techniques to address vulnerabilities in FPGA and microprocessor 
implementations vary in more respects than the other aspects that we have considered. 
Many of the most intractable vulnerabilities in microprocessor based systems, such as 
lack of certainty about the impact of interrupts on task interaction and overall system 
performance, are absent in FPGA implementation flows. Operating systems are absent 
in FPGAs (although some platform code may be shared, it should not have the same 
problems with interrupts). However, care must be taken to mitigate the lack of 
transparency in the code artefacts that are eventually uploaded to the FPGA, and 
coverage of any data flow or control flow issues at a high level of abstraction should be 
reviewed, since HDL assertion checking techniques are not optimised for this. 

In assessing a suite of V&V measures chosen for a particular implementation, FPGA 
workflows tend to be supported by more comprehensive toolsets, but it is important to 
review the whole set of V&V techniques used in any particular case to ensure that all 
abstraction levels are adequately covered, particularly if the resulting justification must 
interface with another case that has been developed or reviewed by engineers more 
familiar with microprocessor based V&V processes. 
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8 Glossary 

Abbreviation Term 

ADC Analogue digital converter 

AMC Advanced Mezzanine Card 

COTS Commercial off-the-shelf 

DAC Digital analogue converter 

EDA Electronic Design Automation 

EMC Electromagnetic compatibility 

ESL Electronic System Level 

FMC FPGA Mezzanine Card 

FPGA Field Programmable Gate Array 

HDL Hardware Description Language 

HPD HDL-programmed devices 

I&C Instrumentation and control 

IEC International Electrotechnical Commission 

IC Integrated circuit 

I/O Input/output 

IP Intellectual property 

LUT Look-up table 

NPP Nuclear power plant 

OOR Out of range 

OTP One time programmable 

RAM Random Access Memory 

RTL Register Transfer Level 

SEU Single event upset 

SRAM Static random access memory 

TLM Transaction Level Modelling 

V&V Verification and validation 

WCET Worst case execution time 
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: Tabular comparison 
 

The following table identifies the major points of difference between the two standards 
at each lifecycle phase. 

 IEC 60880 IEC 62566 

Requirements Does not explicitly require 
verification of the requirements 
specification 

Requires verification (critical 
analysis) of the requirements 
specification 

Design and 
Implementation 

Fairly prescriptive in terms of what 
must be considered 
Design considerations listed; no 
explicit statement that additional 
design rules may be needed on a 
case by case basis 
Requires that translators and tools 
are thoroughly tested, as well as 
being qualified according to the 
standard 
Requires that sufficient detail be 
included in design documents, but 
no further guidance is provided 
Requires verification of 
intermediate design products 
Does not explicitly require static 
timing analysis to be performed 

Strongly recommended design 
constraints identified 
Listed design rules explicitly 
identified as potentially applicable, 
but the decision must be made on 
a case by case basis and reflect 
latest knowledge 
Requires tools to be qualified 
according to the standard, but 
does not explicitly require 
thorough testing apart from this 
Greater specificity on what design 
considerations must be 
documented, at a minimum 
Does not require verification of 
intermediate design products, 
although does describe a formal 
review process to be performed at 
the end of this phase 
Requires static timing analysis to 
be performed 

Verification Pre-developed products to be 
assessed only against the 
requirements of this standard 
Adequacy of selection process for 
pre-developed products not 
explicitly required to be justified, 
nor their use in the wider system 
Explicit requirements placed on 
documentation, including listing of 
individual documentation items to 
be produced 
Automated code analysis 
permitted, but justification of 
manual input is not required 
Informative annex provides 
information on potential 
verification activities 

Pre-developed products to be 
assessed against the rules of their 
suppliers, as well as against the 
requirements of this standard 
Adequacy of selection of pre-
developed products to be justified, 
along with their use and their 
conformance with their 
component requirements 
specification 
Similar information required to be 
contained in documentation, but 
the type of document produced is 
not similarly constrained 
Tests must be fully automated and 
manual input justified 
Greater specificity in identifying 
the minimum verification activities 
to be performed, including a 
requirement to perform static 
verification activities 

Software / HPD 
aspects of system 
integration 

Verification software tools not 
explicitly require to be compliant 

Verification software tools should 
be compliant with requirements of 
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 IEC 60880 IEC 62566 
with requirements of this standard 
on software tools for development  

this standard on software tools for 
development 

Software / HPD 
aspects of system 
validation 

Equipment used for calibration 
should be demonstrated to be 
suited to the purpose of system 
validation 
Software tools used in validation 
to be documented as an item in 
the validation report 

No explicit requirement that 
equipment used for calibration 
must be demonstrated to be 
suited to system validation 
No explicit requirement for 
validation software tools to be 
documented in the validation 
report, although this is a 
requirement of IEC 61513 

Modification No significant differences 
impacting V&V 

No significant differences 
impacting V&V 

Software tools for 
development 

No significant differences, with the 
exception of HPD-specific 
constraints around logic synthesis 

No significant differences, with IEC 
62566 requiring conformance with 
IEC 60880, with the exception of 
microprocessor-specific 
constraints around compilers 

Acceptance of pre-
developed products 

Explicit about the quality 
documentation needed, and the 
development process used for the 
pre-developed product 
Operating experience must have 
been obtained under similar 
conditions 
Operating experience can never 
completely replace 
documentation evaluation, and 
can only be used to compensate 
for specific named weaknesses in 
design 

Requires only that a review is 
carried out on the available design 
and verification documents of the 
pre-developed product 
Operating experience must have 
been obtained under equivalent 
conditions 
Operating experience may be used 
to compensate for limited 
documentation weaknesses in 
reliability or design, but no specific 
weaknesses are named 

Table 5: Tabular comparison 
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: FPGA development flow 
 

Artefact  Activity 

Plant need   

  
 Requirements capture 

Requirements specification    

Application level modelling using ESL tool (sometimes) 

  
 Design and coding process 

HDL source code or schematic diagram 
Register-Transfer-Level description 

 
 

  
 Implementation: Synthesis 

Netlist 
(gate-level description) 

 
 

  
 Implementation: Place and route 

Bitstream 
(binary image to be loaded on to the 
FPGA) 

 
 

  
 Instantiation on hardware 

Observed execution   

Table 6: Tabular representation of the FPGA development process 
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: Comparison of V&V vulnerabilities 
 

Vulnerability Microprocessors FPGAs 

Explanation Design pattern mitigations 
and V&V activities 

Explanation Design pattern 
mitigations and V&V 
activities 

Timing errors – 
application 
asynchronous 
timing 

Timely response 
to external 
stimulus or 
preserving order 
of internal 
events 

Testing, formal methods 
applied to high level 
programming language with 
suitable assertions, model 
checking 

As 
microprocessors 

Use design rules to 
check synchronous 
only design. Validate 
data and control flow 
propagation assertions 
against application 
requirements and use 
simulation and formal 
methods from FPGA 
toolchain to verify. 

Timing errors – 
instruction 
sequences 

Assembly 
language, clock 
speed, compiler 
choices, 
optimisations 
and inclusion of 
hidden library 
code affect 
execution time 
of atomic 
transitions in 
high level 
programming 
language. 

WCET analysis N/A N/A 

Timing errors – 
physical level 
issues 

Correctness of 
microprocessor 
silicon design 
and interaction 
with external 
components 

This is a matter for the 
microprocessor manufacturer. 
Direct access to V&V 
information is not usually 
available. Check interfaces 
with external buses for source 
of non-determinism. 

Propagation time, 
transistor 
technology and 
metastable 
constructions 

Avoid metastable 
constructions by using 
synchronous-only 
design, enforced by 
design rule checkers. 
Use back annotations 
and the FPGA vendor’s 
static timing analysis 
tools to ensure that 
place-and-route does 
not place unsafe 
bounds on times 
during which signals 
are stable. Use 
simulation and on-chip 
testing. 

Initialisation Chip initialisation 
dealt with at a 
hardware level 

No scope for V&V other than 
by manufacturer, which is not 
normally available. Check 
initialisation semantics 
understood and any assembly 
code used in 
bootstrap/initialisation/reset. 

Reset lines must 
be able to return 
all logic to defined 
condition, which 
must correlate to 
the starting 
assumptions 
within the 

Use FPGA toolchain to 
check. Check assertions 
adequately address 
application 
assumptions. 
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Vulnerability Microprocessors FPGAs 

Explanation Design pattern mitigations 
and V&V activities 

Explanation Design pattern 
mitigations and V&V 
activities 

semantics of the 
application. 

High level code 
bugs 

Common error 
patterns 

Use integrity static analysis 
tools to enforce design rules, 
find common mistakes and 
risky practices. 

As 
microprocessors 

Use design rule 
checkers and assertion 
generators in 
combination with 
simulators and HDL 
formal verification 
tools. 

Incorporation of 
third party code 

Included 
libraries, 
operating 
systems and 
compiler 
introduced 
assembly code 
routines 

Object code analysis. Conduct 
ordinary V&V of source code 
where available. Limit use and 
complexity of operating 
systems. 

IP cores and 
shared platform 
code 

Avoid IP cores and 
verify source code. 
Comply with IEC 62566 
provisions on pre-
developed blocks. 

Unrevealed 
implicit state 
corruption 

Memory 
corruption 

Check use of memory checking 
as well as value plausibility and 
consistency checks in mainline 
code. Consider effects of state 
divergence between divisions. 

Cyclic structures 
and bulk memory 
may keep state 
that diverges 
undetectably 
during execution 
owing to SEUs or 
localised hard 
faults. 

Review all cyclic 
structures for 
consequences of state 
divergence and 
introduce monitoring 
logic if necessary. 

Silicon design 
errors 

Manufacturer 
errors in hard 
silicon design 

Usually not possible to assess 
directly manufacturer’s 
hardware V&V. 

As for 
microprocessors. 
Interaction 
between 
bitstream and 
silicon-level 
design proprietary 
information. 

Not available. 
Manufacturer’s post 
place and route 
analysis tools should 
be used. FPGA diversity 
may compensate. 

Reconfiguration 
errors 

Limited to 
unwanted 
firmware 
updates or 
corruption of 
code in RAM 

Check defensive coding 
practices used (such as range 
checking, memory checking 
and use of watchdogs) and 
firmware configuration locked 
down. 

SRAM (and to a 
lesser extent 
Flash) types of 
FPGA are 
susceptible to bit 
flips from SEUs. 

Check use of on-line 
configuration checking 
facilities. 

Table 7: Comparison of V&V vulnerabilities 
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: The strategy triangle of justification 
 

The strategy is property-based, vulnerability-aware and standards-informed. It is 
described by the safety justification triangle of [3]. Each of these different aspects of the 
strategy is discussed in the following sections.  

 
Figure 6: The strategy triangle of justification 

D.1 Property-based approach 

A property-based approach focuses directly on the behaviour of the system or 
component and explores claims about the satisfaction of the requirements and the 
mitigation of potential hazards. This approach is usually linked to specific claims about 
properties of the device being justified (e.g., time response, accuracy). 

Different properties can be considered for different types of systems or components, 
and the approach is generally applicable to any I&C system.  

D.2 Vulnerability-aware approach 

Vulnerabilities are weaknesses in a system. They could lead to a hazardous situation 
(e.g., if a divide by zero is not caught by error handling) but are not strictly a hazard. 
Experience has shown that bad things can occur from them and so they should be 
considered within a vulnerability analysis viewpoint. Therefore, here we consider 
whether there may be vulnerabilities that would affect the ability of the device to 
exhibit the properties considered in Section D.1. 

There are several methods and techniques that can be employed to perform a 
vulnerability analysis for a component and its system. Lessons learned from internal 
and external sources should be incorporated into the vulnerability assessment.  

D.3 Standards compliance 

Another principle, the third part of the assessment triangle, is that we should recognize 
the experience of others and, where there is a consensus, comply with appropriate 
standards. 

The standards compliance argument would involve assessing the development process 
and design against relevant nuclear standards for a system performing Cat A functions: 
IEC 62566, “Development of HDL-programmed integrated circuits for systems 
performing Cat A functions”. For software-based systems, the corresponding standard 
is IEC 60880 [4]. 
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This report considers the verification and validation (V&V) techniques that 
can be applied to microprocessors and FPGAs. It finds that many techniques 
apply similarly to both, but at lower design and implementation levels the tools 
diverge, particularly when considering mitigations of vulnerabilities. Techni-
ques for FPGA V&V are generally more comprehensive and integrated into the 
standard toolchains. Some of this complexity is needed to address extra de-
sign vulnerabilities present in FPGAs as compared to microprocessors, but in 
other areas the resulting analysis is arguably more routine and more thorough 
than is usually attempted for microprocessors. FPGAs are also free from some 
particularly difficult uncertainties and intractable analysis problems caused by 
the presence of operating systems in microprocessor-based platforms. Some 
behavioural V&V techniques dealing with application level issues such as data 
flow do not have such obvious analogues in HDL V&V methods based on hard-
ware assertions. Consequentially, it is important to review the whole suite of 
V&V measures used for a given application to ensure that all abstraction levels 
are adequately covered, particularly if the resulting justification must interface 
with another assurance case that has been developed or reviewed by engineers 
more familiar with microprocessor based V&V processes.

Another step forward in Swedish energy research
Energiforsk – Swedish Energy Research Centre is a research and knowledge based organization 
that brings together large parts of Swedish research and development on energy. The goal is 
to increase the efficiency and implementation of scientific results to meet future challenges 
in the energy sector. We work in a number of research areas such as hydropower, energy gases 
and liquid automotive fuels, fuel based combined heat and power generation, and energy 
management in the forest industry. Our mission also includes the generation of knowledge 
about resource-efficient sourcing of energy in an overall perspective, via its transformation and 
transmission to its end-use. Read more: www.energiforsk.se
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