KME 705

MoSi₂ matrix composites for components exposed to HT oxidation and hot corrosion

Yiming Yao^a, Erik Ström^b, Qin Lu^b

- a) Chalmers University of Technology
 - b) Sandvik Heating Technology AB

Outline

- KME 705
- MoSi₂-SiC and C-40 (Mo,Al)Si₂-SiC composites
- Cyclic oxidation of FS (in air) MoSi₂-ZrO₂ composite
- Summary and future work

Aim of KME 705

- Produce MoSi₂-based composites with improved fracture toughness and mechanical properties over 1200°C.
- Hot-corrosion at T = 1200 1300°C.

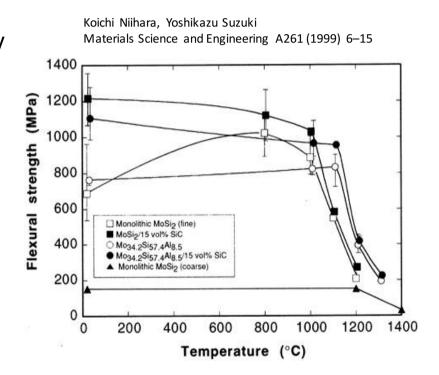
Planned activities in KME 705

- Pre-oxidation or final sintering (FS) of $MoSi_2+15$ vol.% ZrO_2 to counteract the negative influence of as-sintered surface on oxidation behaviour and mechanical properties.
- Evaluation of $MoSi_2$ -based composites reinforced with SiC to lower oxidation rates found for $MoSi_2$ +15 vol.% ZrO_2 .
- Evaluation of Mo(Si,Al)₂-based composites reinforced with SiC to be used in dry atmosphere.
- Develop standard method for fracture toughness K_{IC} measurement.

KME705 in 2015. 03 – 2016. 03:

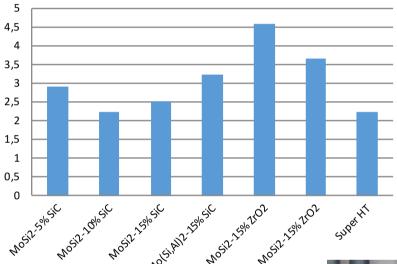
- 1. MoSi₂- and C40 (Mo,Al)Si₂-based composites, reinforced with SiC particles, were subjected to sag testing at 1700°C.
- 2. Cyclic oxidation of final sintered (FS) MoSi₂+15 vol.% ZrO₂ at 1200 and 1300°C.
- 3. Development of SEVNB technique for K_{IC} for cylindrical testing bars at MoT Chalmers.

1. SiC reinforced MoSi₂ based composites


- MoSi₂+SiC and (Mo,Al)Si₂+SiC composites with moderate sintering density were prepared, using a powder metallurgy and pressureless-sintering (PLS) technique.
- Amounts of SiC additive are 5, 10, and 15%.
- Sagging test were performed at 1700°C in air, and compared with MoSi₂ ZrO₂ composite.

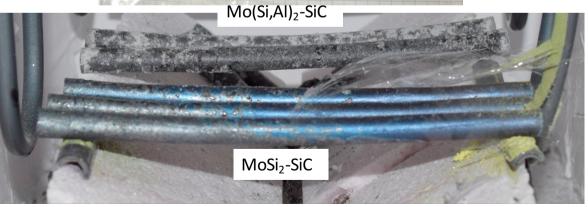
1. SiC reinforced MoSi₂ based composites

- MoSi₂+SiC and (Mo,Al)Si₂+SiC composites with moderate sintering density were prepared, using a powder metallurgy and pressurelesssintering technique.
- Amounts of SiC additive are 5, 10, and 15%.
- Sagging test were performed at 1700°C in air, and compared with MoSi₂ ZrO₂ composite.

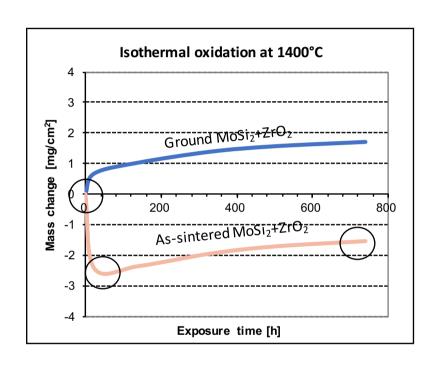

1. SiC reinforced MoSi₂ based composites

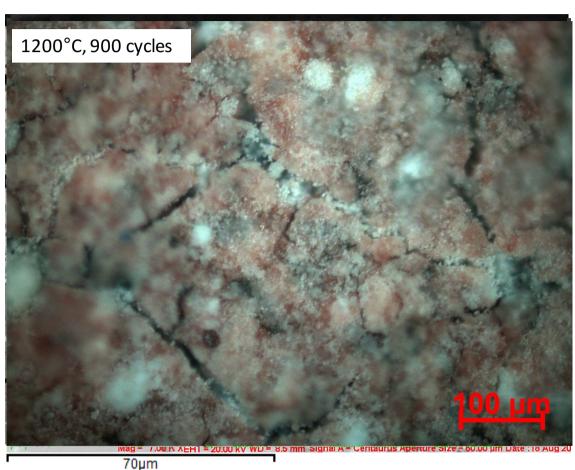
- MoSi₂+SiC and (Mo,Al)Si₂+SiC composites with moderate sintered density were prepared, using a powder metallurgy and pressureless-sintering technique.
- Amounts of SiC additive were 5, 10, and 15 vol.%.
- Sagging tests were performed at 1700°C in air; MoSi₂-ZrO₂ composite and state-of-the-art Kanthal Super HT as reference for comparison.

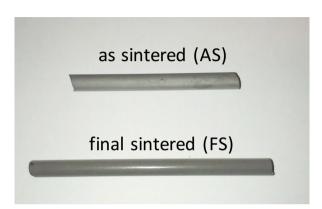
Sag test at 1700°C in air

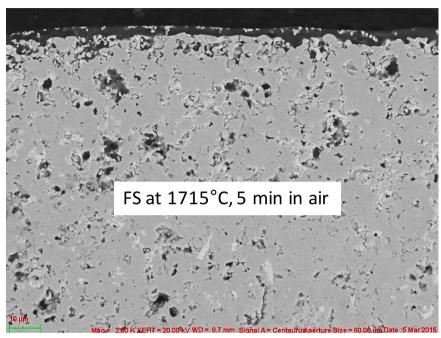

Deflection [mm] after 100 h at 1700°C

Mo(Si,Al)₂-SiC samples oxidized heavily and broke upon handling or during the test.


Material (as-sintered)	Sintered density (g/cm³)	% of T.D.
MoSi ₂ -5 vol% SiC	6.10	94.3
MoSi ₂ -10 vol% SiC	5.94	95.1
MoSi ₂ -15 vol% SiC	5.79	93.4
Mo(Si,Al) ₂ -5 vol% SiC	5.71	97.3
Mo(Si,Al) ₂ -10 vol% SiC	5.24	91.6
Mo(Si,Al) ₂ -15 vol% SiC	5.22	93.5


MoSi₂-ZrO₂


2. Cyclic oxidation of FS MoSi₂-ZrO₂ composite

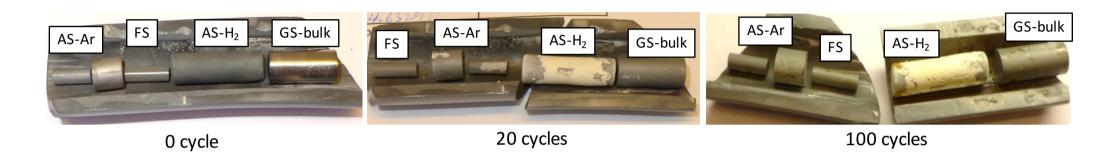

Oxidation of as-sintered MoSi₂ –ZrO₂ composite

Final sintered (FS) MoSi₂-ZrO₂ composite

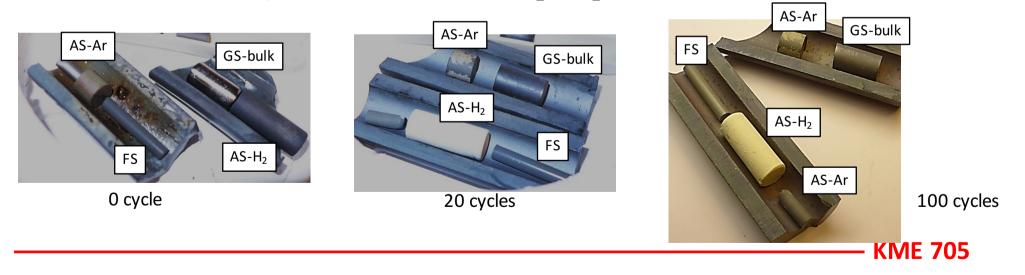
Mechanical properties

	σ _{f ,} 1200°C (MPa)	o _{f ,} RT (MPa)	KIc (SEVNB) (MPa·m ^{1/2})	HV10 (GPa)	Relative density (T.D.)
MoSi ₂ -ZrO ₂ (AS)	334 ± 13	320	4.4	9.5	98%
MoSi ₂ -ZrO ₂ (FS)	427 ± 24	357	4.4	9.0	98%
Si ₃ N ₄ (HP)	294 ± 29	629	5.2	13.5	100%

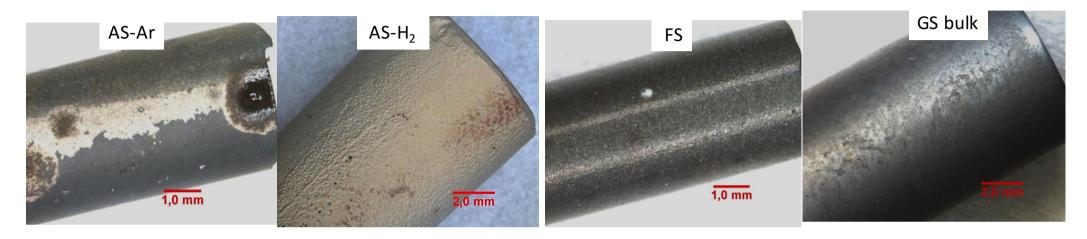
KME 705


Cyclic oxidation of FS MoSi₂-ZrO₂ composite at 1200 and 1300°C

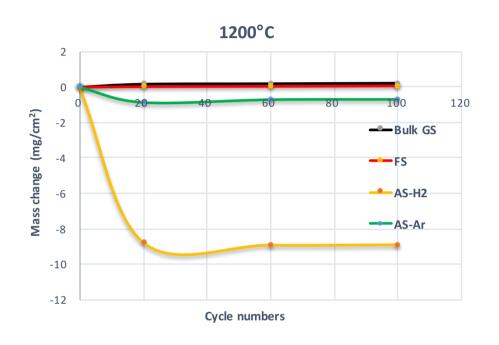
Cyclic parameters: furnace heating to 1200 and 1300°C, in 10 min;
furnace cooling to 100°C in ambient air, in 10 min.

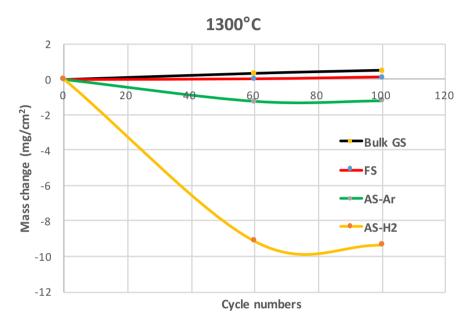

Testing materials:

Surface condition	Sintering density (g/cm3), T.D.%
AS – Ar MoSi ₂ -15vol%ZrO ₂	6.03, 98% T.D.
As – H ₂ MoSi ₂ -15vol%ZrO ₂	6.09, 99% T.D.
FS MoSi ₂ -15vol%ZrO ₂	6.03, 98% T.D.
Bulk GS (ground surface) MoSi ₂ -15vol%ZrO ₂	6.10, 99% T.D.


Cyclic oxidation of FS MoSi₂-ZrO₂ at 1200°C

Cyclic oxidation of FS MoSi₂-ZrO₂ at 1300°C


Cyclic oxidation of FS MoSi₂-ZrO₂ at 1200°C, 100 cycles



Cyclic oxidation of FS $MoSi_2$ - ZrO_2 at $1300^{\circ}C$, 100 cycles

Cyclic oxidation of FS MoSi₂-ZrO₂ at 1200 and 1300°C

Summary and next work

- Pressureless sintered MoSi₂-10%SiC composite presents with lower deformation rate and high oxidation resistance at 1700°C.
- Since heavy oxidation occurred during sag testing PLS Mo(Si,Al)₂-10% SiC, final sintering should be performed in order to produce a protective Al_2O_3 -layer prior to sag testing.
- Final sintered MoSi₂-15%ZrO₂ composite has excellent thermal chock and oxidation resistance at 1200, and 1300°C, respectively, compared with the as-sintered material.

Thank you!