Electrochemical corrosion measurements in concrete structures

Johan Ahlström Johan.ahlstrom@swerea.se

PART OF RISE

Content

- Causes of corrosion damages in concrete structures
- Monitoring methods
- Previous measurements
- New project

Causes of corrosion damages in concrete structures

- 1: Rebar connected with a more noble material
 → Galvanic corrosion
- 2-3: Optimum moisture condition for corrosion
- 4: Stray current corrosion

Galvanic corrosion

- Differences in corrosion potential of the metals which are connected
- The ratio of anodic and cathodic areas (unnoble and noble areas).
- The electric conductivity of the electrolyte
- The oxygen concentration of the electrolyte
- The anodic and cathodic polarization behavior of the metals.

Galvanisk spänningsserie (havsvatten, vid 20°C)

		Elektrodpotential E _H , volt
alltmer ädla metaller alltmer oädla metaller	Guld Silver Rostfritt stål (18/8) i passivt tillstånd*) Koppar Tenn Rostfritt stål (18/8) i aktivt tillstånd*) Bly Stål Kadmium Aluminium Förzinkat stål Zink Magnesium	$\begin{array}{r} + \ 0,42 \\ + \ 0,19 \\ + \ 0,09 \\ + \ 0,02 \\ - \ 0,26 \\ - \ 0,29 \\ - \ 0,31 \\ - \ 0,46 \\ - \ 0,49 \\ - \ 0,51 \\ - \ 0,81 \\ - \ 0,86 \\ - \ 1,36 \end{array}$

PART OF RILER

Stray current corrosion

Fig 52. Läckströmskorrosion vid likströmsbana.

Fig 53. Polariserad elektrisk dränering.

Stray current korrosion from HVDC transfer

- Long constructions in contact with water can suffer from stray current corrosion by HVDC transfer
- The risk of stray current corrosion increases with shorter distance to the HVDC station
- Highest risk when the HVDC transfer is monopolar or unbalanced bipolar transfer

Olika typer av HVDC-ledningar

Figure 3-1. Monopolar HVDC system.

Stray current measurement, Forsmark (SKB Rapport TR-14-15, Elforsk rapport 10:84) Bertil Sandberg/Claes Taxén och B Sandberg et al.

About 4 volt difference.

Figure 3-3. Stray current corrosion caused by an electrical field in the grou

TART OF RILEN

Monitoring methods

- Measure corrosion potential
- Measure corrosion current
 - LPR (linear polarisation resistance method)
 - Zero resistance ampere meter

Corrowatch (force): For new constructions

CorroWatch and ERE 20 fixed to reinforcement in tunnel

Anode: "rebar" cathode: titanium net

- Measure corrosion current with a zero resistance ampere meter
- Linear polarisation resistance
 method

CorroRisk (Force): For existing constructions

Photo of CorroRisk installation on marine bridge pillar

Photo of anodes of CorroRisk sensor

- Measure corrosion current with a zero resistance ampere meter
- Linear polarisation resistance
 method

Corrosion potential

Previous measurements: Ringhals, cooling water tunnels

• Background

The consumption rate of sacrificial anodes was high. Why? Is there a risk of galvanic korrosion?

- Measurements: Corrosion rate and temperature over time.
- Corrosion potential

Stainless steel in seawater:-100 mVRebar in water saturated concrete:-650 mVAluminium in seawater:-1000 mV

Conclusion

• Galvanic corrosion risk:

-100/200 mV in concrete with 1 weight-% CI by weight of cement. -300/400 mV with 2% CI.

- The high consumption rate of sacrificial anodes was explained by a high potential difference between the anodes and rebar+stainless steel pump.
- The corrosion potential logger could detect potential differences with distance from the pump and difference between the left and the right side.
- The measured potentials did not indicate galvanic corrosion

New project

- Installation of corrosion potential loggers in cooling water tunnels.
- Determine the risk of galvanic corrosion and stray current korrosion.
 - condense pipes made of titanium, galvanic corrosion?
 - Is there a potential difference when HVDC transportation is changed?
- Measurements in ringhals, oskarshamn and possibly forsmark.

Scientific Work for Industrial Use www.swerea.se

