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Abstract 
The short term production planning optimization problem for a district heating system is 
solved in two steps by integrating physics-based models into the standard approach. The 
first optimization step solves for the discrete variables of the unit commitment problem 
(UCP) using mixed integer linear models and standard mixed-integer solvers. The 
second step, the economic dispatch problem (EDP), considers dynamic optimization 
using physics-based non-linear models that utilize the unit statuses from the first step. 
All optimizations aim at maximizing production profit using fuel, electricity and heat 
prices as well as maintenance and start-up/stop costs. Through the physics-based models 
in the EDP, it is feasible to optimize over and consider constraints on power flows as 
well as important physical variables such as supply temperature, supply flow rate, pump 
speeds and condenser pressures which is not available in today’s standard methods. 
 
The modeling has focused on distributed consumption and production. The goal has 
been to represent the most important units and network distribution of the Uppsala 
district heating network. The distribution yields that the total heat demand is distributed 
and the delay times from production to customers are customer individual. The district 
heating net has been modelled using physics-based pipes, including mass flow 
dependent delays and temperature dependent (water and outdoor temperature) heat 
losses. Comparisons between optimizations with and without distribution net models 
have been performed, showing that careful modeling of the net impacts the production 
planning in form of reduction of costly production peaks and delay of costly unit start-
ups, production compensation for heat losses and time delays as well as usage of the net 
for heat storage (accumulation). The optimizations also results in production plans 
where supply temperature and flow is minimized and maximized, respectively, and 
there is a balance between heat production and heat consumption.  
 
The physics-based modeling and dynamic optimization techniques provides a flexible 
way to formulate the optimization problem and include constraints of physically 
important variables such as supply temperature and flow, pressures, heat loads, and 
start-up/stop trajectories for production units. 
 
Two examples of stochastic optimization have shown that taking probabilities of heat 
demand predictions into account, the expected profit may be increased. 
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Sammanfattning 
Optimeringsproblemet för den kortsiktiga produktionsplaneringen i ett fjärrvärmenät 
löses i två steg genom integrering av fysikaliska modeller och standardmetoden. I det 
första optimeringssteget behandlas start/stop problemet (SSP), där de diskreta 
variablerna bestäms med hjälp av diskrettidsmodeller och standardlösare för 
linjärprogrammering. I det andra steget, det optimala lastfördelningsproblemet (LFP), 
används dynamisk optimering med fysikaliska olinjära modeller där statussignalerna 
från steg ett ingår. Vid alla optimeringar är målet att maximera den ekonomiska vinsten, 
genom att el-, värme- och bränslepriser tas i beaktande, liksom kostnader för underhåll, 
uppstart och nedstängning. Med hjälp av den fysikaliska modelleringen i LFP är det 
möjligt att optimera effektflöden och inkludera bivillkor för dessa, liksom för andra 
viktiga variabler såsom framledningstemperatur, massflöden, pumphastigheter och 
kondensortryck. Detta är inte möjligt med dagens standardmetoder. 
 
Modelleringen har fokuserat på distribuerad konsumtion och produktion. Målet har varit 
att representera de viktigaste enheterna, samt distributionsnätet i Uppsala. 
Distributionen leder till att det totala värmebehovet är fördelat och fördröjningstiden 
från produktion till kunder är kundspecifik. Fjärrvärmenätet har modellerats med hjälp 
av fysikaliska rör, med massflödesberoende tidsfördröjning och temperaturberoende 
(vatten- och utomhustemperatur) värmeförluster. Jämförelser mellan optimeringar med 
och utan den distribuerade nätmodellen har genomförts och resultaten visar att noggrann 
modellering av nätet påverkar produktionsplaneringen genom att dyra 
produktionstoppar kan undvikas och dyra uppstarter av produktionsenheter kan 
fördröjas, produktionen kompenseras för värmeförluster och fördröjningstider och nätet 
kan användas för värmelagring (ackumulation). Optimeringarna resulterar också i att 
framledningstemperaturen och massflödet minimeras respektive maximeras och att det 
är balans mellan värmeproduktion och värmekonsumtion. 
 
Den fysikaliska modelleringen och dynamiska optimeringstekniken ger en flexibel 
metod för att formulera optimeringsproblemet och inkludera bivillkor på fysikaliskt 
viktiga variabler såsom framledningstemperatur och -massflöde, tryck, värmelaster och 
uppstarts-/nedstängningsprofiler för produktionsenheter. 
 
Två exempel med stokastisk programmering har visat att man kan uppnå en större 
förväntad vinst genom att beakta sannolikheten för olika värmebehovsprognoser. 
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Executive Summary 
The standard approach for production planning of a district heating network today 
typically involves highly simplified models where most of the physical descriptions are 
removed. This makes it possible to solve the resulting optimization problem using 
simple linear optimization methods, but significant physical constraints and degrees of 
freedom are then excluded from the model.  
 
In this study the production planning problem is divided into two separate optimization 
problems; the Unit Commitment Problem (UCP) and the Economic Dispatch Problem 
(EDP). 
 
In the UCP the modeling of the system is simplified to only include piecewise linear 
dependencies between the variables. The system is furthermore discretized in time, 
creating a Mixed Integer Linear Programming (MILP) problem. This kind of 
optimization problem can be solved using a numerical solver. 
 
The EDP model includes much more detailed representations of the producers, 
customers and distribution net in the district heating network, compared to the UCP 
model. The modeling is physical, which has benefits in terms of accuracy, 
interpretation, and possibility to impose constraints corresponding to the limitations of 
the physical system. 
 
In order to use the EDP model for optimization purposes it is necessary to remove the 
integer variables from the formulation. The status signals from the UCP optimization 
results are therefore used as input signals in this optimization. When the EDP 
optimization formulation is discretized a Non-Linear programming (NLP) problem is 
created. 
 
The district heating network of Uppsala is modeled in this study. The most important 
production unit in this network is the cogeneration plant denominated KVV (Kraft- och 
värmeverk), situated at the production site Boländerna. This plant is represented in 
detail in the EDP, where a large part of the vapor cycle is modeled. The main 
components in this model are high and low pressure turbine stages, condensers, and a 
reheater. For the UCP a polytope in the space of electricity, heat and return temperature 
is used to describe the KVV. Other production units are not modeled physically in either 
the UCP or the EDP, but are instead simply adding heat to the district heating water 
proportionally to their load. 
 
An important unit in the Uppsala network is the accumulator. This is modeled using a 
finite volume approximation in the EDP, while it works as an integrator for the stored 
energy in the UCP. 
 
The physical distribution of the customers and producers in the Uppsala district heating 
network is represented using a one dimensional approach based on the delay time for 
the customers relative to Boländerna. In order to represent the delay time a simple delay 
is used in the UCP, while a more complex pipe model is implemented in the EDP. This 
model consists of a fixed delay combined with a finite volume pipe implementation. In 
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both the UCP and the EDP a heat loss model based on the outdoor temperature is 
included in the pipe modeling. 
 
The Pyomo modeling language is used for creating the UCP optimization formulation. 
Two different solvers are used to solve the problem; Gurobi and GLPK. The Gurobi 
Optimizer is a commercial solver which can handle several different types of 
optimization problems and modeling languages. GLPK is an open source software 
package. 
 
The EDP optimization problem is formulated using the Optimica language. The open 
source platform JModelica.org is used to solve the problem. This tool translates the 
problem into an NLP which is solved by the Interior Point Optimizer (IPOPT). 
 
For both the EDP and the UCP the optimization problem is formulated so that the 
economic profit is maximized. The revenue comes from selling heat and electricity, 
while fuel and maintenance costs are the main expenses. Only constant prices are 
considered. Thanks to the physical modeling in the EDP, the optimization formulation 
in this case includes constraints on critical variables such as mass flows and customer 
inlet temperatures. 
 
Five optimization cases have been created in order to study the implemented method for 
solving the production planning problem. The first three consider only deterministic 
data and are of increasing complexity. In the last two uncertain signals with discrete 
probability distributions are included in the formulation. The base optimization scenario 
is a 24 hour period with a demand profile roughly corresponding to the heat demand 
expected from a residential area on a week day. 
 
In the first optimization case only one producer, the KVV, and one customer is present. 
A comparison between having no pipes in the model and having supply and return pipes 
between the production unit and the customer model is conducted. 
 
The results show that the optimal solution in both cases involves maximizing the 
electricity production. In the EDP this is achieved by maximizing the mass flow through 
the KVV. Constraints on the pump speed, condenser pressure and customer inlet 
temperature are limiting. When there are pipes in the model the EDP solution involves 
using the heat stored in the pipes to satisfy a part of the heat demand. This lowers the 
customer supply temperature, which again maximizes the electricity production. 
 
In case II there are three customers connected in parallel. The KVV is the production 
unit in the system and there are pipes between the KVV and the customers, and also 
between the customers. The effect of adding dissipation of heat in the pipe models is 
investigated. 
 
The main feature of the results is the lowering of the main production peak due to the 
distributed customer network. The delay times between the customers distributes the 
demand peak in time for the producer. Another observation that can be made for this 
case is that the delay time does not have any influence when heat load changes are 
handled by only changing the mass flow. The incompressibility of the district heating 
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water makes the heat flow changes instantaneous in this case. The introduction of heat 
losses has a surprisingly large influence on the optimal solution. The reason for this is 
that the condenser steam pressure is sensitive to changes in return temperature and mass 
flow. With heat losses the steam pressure constraint gets active for lower mass flows, 
resulting in a different production profile. 
 
Case III is a more realistic case with three production units and an accumulator in the 
system. The optimization interval is four days, making the integration between the UCP 
and EDP important. A comparison between a distributed and point-wise network is 
conducted. 
 
The UCP results indicate a clear advantage of considering the distribution of the 
network in production planning. By doing this it is possible to delay the start-up of 
additional units, due to the reduced production peaks caused by the distribution. It is 
also notable that the accumulator is used to handle all load variations and that the 
production units therefore can be run with constant loads. 
 
The EDP results are very similar to the UCP results without the distributed network. 
The differences are greater when pipes and delays are added to the system; the reason 
for this is that is the more detailed pipe modeling in the EDP, which introduces 
additional possibilities such as using the network as an accumulator.  
 
In case IV a comparison between stochastic programming and robust optimization is 
conducted. The setup includes three different production units: the KVV, an oil boiler 
and a solid fuel boiler. The heat demand profile is uncertain for the second half of the 
optimization time. 
 
A higher expected profit can be achieved with stochastic programming compared to the 
robust formulation. The reason for this is that the stochastic programming scheme 
avoids starting additional units unnecessarily. This is highly beneficial when the heat 
demand turns out to be low. For higher heat demands it becomes necessary to use the 
more expensive production unit, but due to the probability distribution between the 
cases the extra cost this introduces is smaller than the gain at lower demands. 
 
In case V the results from stochastic programming are again compared with a robust 
optimization results. In this model there are two production units and both the heat 
demand and the electricity price are uncertain. The results show that a higher expected 
profit can be achieved with stochastic programming. 
 
A scaling test indicates that the commercial solver is clearly superior when optimization 
problems with many possible scenarios are considered. For less complex problems, such 
as the UCPs in the deterministic optimization cases, the open-source solver seems 
sufficient in terms of convergence speed.  
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1 Introduction 

1.1 Background 

1.1.1 Short-Term Production Planning 
Running the production of heat and power in a cost efficient manner is desirable both 
from a producer and consumer perspective. Production planning does not only consider 
the cost when optimizing unit schedules, but also network heat load demand and 
operational constraints. The scheduling includes the status (on/off, discrete variable) of 
each production unit as well as each unit’s produced electric power and heat 
(continuous variables). To the authors’ best knowledge, there exists no robust algorithm 
for solving the resulting optimization problem that involves both the discrete and 
continuous variables, known as a mixed-integer non-linear programming (MINLP) 
problem. For tractability reasons, it is therefore necessary to divide the optimization 
formulation into two separate optimization problems: 
 

1. The Unit Commitment Problem (UCP), where the statuses of the units are 
optimized and the main difficulty lies in the combinatorial nature of the 
problem. 

2. The Economic Dispatch Problem (EDP), which considers the result from the 
UCP and optimizes the load level for each active unit. The main difficulty of this 
optimization problem are the non-linearity of the units and the non-convexity of 
the optimization problem (local minima may be present). 

 
The major differences between the two optimization problems are the model 
complexities and resulting optimization problem types. The UCP contains only linear or 
piecewise linear models and the optimization problem is a mixed integer linear problem 
(MILP) that can be used to solve both UCP and EDP. The EDP contains non-linear 
models with higher level of detail than the UCP models and the resulting optimization 
problem does not contain any discrete variables and is casted as a non-linear program 
(NLP) to be solved. 

1.1.2 Common Approaches 
Approaches do not involve solving both the discrete and continuous variables 
simultaneously due to the difficulty of the MINLP. Instead, a related MILP problem 
(e.g., Outer Approximation or General Bender Decomposition) or a related NLP 
problem (eg., Branch and Bound, see [1]), is iterated over.  
 
A few approaches solve both UCP and EDP and most of them are based on Lagrangian 
relaxation (LR) or on mixed integer linear programs (MILP). The LR approach can 
handle some non-linearities by using relaxation, but network topology is not considered. 
The most appealing feature of the LR approach is the decomposition of the global 
optimization problem into a global master-problem and a small unit-specific problem, 
which may be beneficial for large networks (over e.g., 100 units) The MILP formulation 
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results in large-scale integer optimization problems, but due to the progress of efficient 
solvers for such problem, this strategy has increased in popularity.  
 
Typical for today’s scheduling of units is that the unit models are highly simplified such 
that all physical descriptions are almost removed and the resulting optimization 
problems can be solved by using simple linear optimization methods. In [2], it is 
mentioned that the following commercial software uses this approach: 
 

- Planner [3] 
- Energy Optima 2000 [4] 
- OPTIMAX PowerFit [5] 

 
A survey of available approaches for short-term production planning can be found in [6] 
and [7]. The Värmeforsk-reports [2] and [8] focuses on the effect of an uncertain load 
prediction on the optimization results and the effect of integrating a model of the 
distribution network in the MILP formulation, respectively. In [9], the effects of a 
detailed physics-based model of the EDP are seen together with an integration of UCP 
and EDP. 

1.1.3 Limitations 
Current scheduling algorithms performed using MILP formulation of the UCP/EDP 
problems contain heavily simplified models, often only modelled as algebraic equations 
with exceptions for storing dynamics (heat and fuel) and delays in the distribution net. 
The continuous optimization variables are typically heat flows and the effects of the 
supply temperature and flow as well as return temperature are not directly considered. 
This is limiting as these temperatures and flows affect many critical parameters such as 
amount of energy that can be stored in the net, heat losses in the net and efficiencies for 
electricity production in steam turbines. The simplified modeling approach can be 
expanded to include supply temperature, see [10], but this strategy introduces several 
difficulties in the formulation. 
 
The distribution of heat is in many cases point wise, i.e., only one customer is 
considered. Effects of having a customer delay spread from the production units are not 
considered. Additionally, distributed production is not considered either.  

1.1.4 Proposed Approach 
The proposed approach utilizes the advances made in non-linear dynamic optimization. 
It is based on the decomposition of the discrete problem (UCP) and the continuous 
problem (EDP) and contains two stages: 
 

1. UCP. The optimization problem is formulated as a MILP and solved using a 
MILP solver. The result of this optimization problem is the discrete variables, 
i.e., unit statuses (on/off). These are then passed to the EDP in the second stage. 

2. EDP. From the results of the UCP in stage 1, it is known when units should be 
turned on and off. In the EDP, the desired load is dispatched between the 
running production units to meet load demands as well as operational and safety 
constraints. 
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The second step involves load dispatch considering a non-linear model containing 
producers, distribution net and customers based on physical laws without any major 
simplifications. The units are described using mass and energy balances expressed by 
enthalpy, pressure and mass flow rate based on non-linear steam tables approximated 
from IAPWS/IF97, see [9]. Dynamics are included to match the real dynamics of the 
system. The benefits of this model are: 
 

- Reduction of modeling work (no simplification process to comply with solver 
capabilities) 

- Highly accurate models 
- Model parameters have physical meaning yielding simpler calibration 
- Optimization problem can incorporate constraints on e.g., mass flow rates, 

temperatures and pressure in units, distribution net and customer.  
 
The higher model complexity and the non-linear dynamic optimization problem require 
different types of solvers and strategies than the ones used for MILP problems, see [11]. 
One reliable and efficient method of dynamic optimization, which is used in this work, 
is to transcribe the dynamic optimization problem into a non-linear programming (NLP) 
problem by collocation. The transcription parameterizes the trajectories (algebraic 
variables, states and control variables) in time by a small number of variables, making 
the optimization problem tractable. The NLP can be solved efficiently using open-
source or commercial NLP solvers. In this work, the open-source solver IPOPT (Interior 
Point Optimizer) was used. The authors have previously used this method in dynamic 
optimization of a carbon capture plant [12], start-up of a combined cycle power plant 
[13] and, more significantly, in short-term production planning of district heating in a 
previous Värmeforsk-project [9]. 

1.2 Project Goal 
The overall project goal is to further develop decision support in district heating 
production planning based on the results of [9]. From a modelling perspective this 
includes 

- larger and more general district heating networks, including support for 
distributed production and consumption. 

- a district heating network model that supports energy accumulation.  
- increased plant model complexities compared to [9], mainly for the unit 

commitment problem. 
On the optimization side, the project goals cover 

- maximization of profit for producers by utilizing production and fuel costs as 
well as heat and electricity prices. 

- longer optimization horizons to handle long start-/stops times of units compared 
to [9]. 

- robustness against uncertainties in heat load predictions by using stochastic 
optimization in the unit commitment problem. 

- integration between the unit commitment problem and the economic dispatch 
problem. 
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1.3 Distribution of Work 
The work in the project has been distributed between the three participating parties as 
follows: 

1. Modelon AB 
a. Modelling 

i. Performing all physics based non-linear modelling in Modelica 
based on [9] 

ii. Deriving net model for UCP and EDP based on results in [14] 
b. Optimization case specifications, including 

i. cases for analyzing the effects of distributed production and 
consumption 

ii. case with stochastic programming including units with different 
start-/stop and production costs 

iii. case for scaling test of UCP solvers 
c. Optimizations 

i. Performing non-linear dynamic optimization of the EDP using 
JModelica.org for all optimization cases 

ii. Performing stochastic optimization of case ii) above 
iii. Analyzing impact of distributed production and consumption as 

well as heat accumulation in distribution net. 
d. Integration of UCP and EDP optimizations 
e. Major contributions to project report 

2. SICS Swedish ICT 
a. Modeling 

i. Modeling of distributed heat production and consumption in 
UCP. 

ii. Higher fidelity of UCP models compared to [9] 
b. Specification of stochastic optimization case having outcomes with 

different heat and electricity demands 
c. Optimization 

i. Setup of stochastic optimizations 
ii. Performing  UCP optimization of cases where effects of 

distributed production and consumption should be studied. 
iii. Performing stochastic optimization of case b) above  
iv. Performing optimizations for scalability of different UCP solvers. 

d. Minor contribution to project report 
3. Vattenfall AB 

a. Providing measurement data from Uppsala district heating plant and 
distribution net for validation of physics-based Modelica model 

b. Specifications of optimization cases. 
c. Providing comments and comparisons on optimization results 
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2 Overview of Uppsala District Heating Network 
System 

The district heat network in Uppsala covers the major part of Uppsala and can handle a 
heat load range from 50MW to 600MW [14]. One of the main reasons why the Uppsala 
district heat network was chosen in this study was because it has distributed production 
of heat. In total, there are three production sites (see Figure 1): 
 

1. Boländerna, containing a peat fired cogeneration plant denominated KVV (kraft- 
och värmeverk), a waste incineration plant, heat pumps and additional peak load 
boilers such as electric and oiled fired boilers. 

2. Husbyborgsverket, containing oil fired boilers. 
3. Värmepumpverket, containing heat pumps. 

 

 

Figure 1: Production sites in Uppsala: Boländerna, Husbyborgsverket and Värmepumpverket. 
Figure taken from [15]. 

Figur 1. Produktionsanläggingar i Uppsala: Boländerna, Husbyborgsverket och 
Värmepumpverket. Figur tagen från [15]. 

 
In the optimization examples performed in this work, only the sites Boländerna and 
Husbyborgsverket are considered.  
 
At the site Boländerna, also steam and cooling is produced and distributed to customers. 
However, this will not be part of the current study. 
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3 Modeling and Optimization Overview 
The end goal of the modeling and optimization effort is to deliver an optimal production 
plan of forthcoming hours for the production units regarding customer heat demands 
and plant economics. Both modeling and optimization are divided into two separate 
problems: Unit commitment problem (UCP) and Economic Dispatch Problem (EDP). 
The two optimization problems are ran in series with UCP first and then EDP, where 
EDP utilizes the results from UCP.  
 
Modeling efforts and optimizations with focus on plant dynamics, such as return 
temperature and supply temperature and flow, were made in [9]. Here, the same types of 
plant dynamics are included and the models and optimizations are extended to contain a 
more sophisticated distributed net model including pipes and customer models. Thus, 
focus is shifted towards the net and how it can be modeled, and how it affects the 
optimization results, while maintaining the dynamic effects of return temperature and 
supply temperature and flow. The two modeling and optimization problems can be 
described as follows: 
 

1. Unit commitment problem (UCP): The UCP is constructed using linear, rough 
models in discrete time only. The optimization formulation provides a mixed-
integer linear program to the solver, requiring all constraints to be linear. The 
solution of the UCP contains production unit statuses (on/off) as well as 
production unit loads. However, only the statuses are passed on to the economic 
dispatch problem, where further optimizations of the unit loads are performed. 

2. Economic dispatch problem (EDP): The models used in the EDP are high 
fidelity physics-based models in continuous time. Using non-linear dynamic 
optimization techniques, the load of each unit is decided. The EDP uses the 
on/off status results from the UCP as input. With the higher fidelity models 
compared to the ones used in UCP, the optimization problem can be more tightly 
related to the physical plant in the form of e.g., maximum flows, temperatures 
and pressures which the physics-based EDP model contains.  

 
Both types of optimizations need a customer heat demand prediction. In general, this 
prediction is generated from e.g., weather forecasts and date and time, see e.g. [16]. 
This type of prediction was used in [9], while in this work predictions manually 
generated with the same type of characteristics are used.  
 
A more detailed overview of the solution process using UCP and EDP together with 
measurement data and an external heat demand prediction can be found in [9]. 
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4 Unit and net Models 

4.1 Modeling for the Discrete Optimization 
The time discrete models in the UCP are very coarse compared to models used in the 
EDP. The UCP models are linear and describe mainly energy and energy flows. Thus, 
important variables such as mass flow rate and temperatures are not considered, nor is 
the influence of actuators such as pumps and valves. The heat production units, the 
accumulator and the pipe model described in more detail below. 

4.1.1 Heat Production Units  
4.1.1.1 Kraft- och värmeverk (KVV) 
The most advanced model in the UCP is the kraft- och värmeverk (KVV). The heat and 
electricity production of the KVV is described as a polytope in the space of electricity, 
heat and return temperature. Thus, for a specific return temperature, the optimization 
has an electricity-heat plane to place the production in. This is an extension compared to 
[9], where the return temperature was not considered. The main benefit from including 
the dependency of the return temperature in the model is that the typical behavior of 
increased electricity production when the return temperature is decreased, is captured. 
 
The polytope for the KVV is based on the physics-based, non-linear model in the EDP 
described in Section 4.2.1. By changing the boundary conditions and the control signals 
of this model, the plausible heat and electricity productions can be found. The load and 
return mass flow rate were varied according to Table 1, while the by-pass split was 
fixed to 0% and two different return temperatures, 40ºC and 60ºC, were considered.   

Table 1: Load and return mass flows used when generating KVV polytope for UCP model. 

Tabell 1. Last och returmassflöde vid generering av KVV-polytopen för UCP modellen. 

Boundary condition/Control signal Minimum Maximum 
Load 50% 100% 

Return mass flow 1000kg/s 3000kg/s 
 
The resulting heat and electricity productions for the two return temperatures can be 
found in Figure 2. In each plane, four extreme points were located and used for finding 
interpolation planes such that the polytope including the return temperature could be 
constructed. The resulting and used polyhedron is found in Figure 3. The produced heat 
of the KVV has constraints in the rate of change; see Table 3. 
 
For calculation of fuel consumption of the KVV, a constant efficiency of ߟ௄௏௏ ൌ
88.5% is used as  

௘ܲ௟ ൅ ܳ௄௏௏ ൌ ௄௏௏ߟ ௙ܷ௨௘௟,௄௏௏, 
 
where ௘ܲ௟ and ܳ௄௏௏ are produced electricity and heat, respectively and	 ௙ܷ௨௘௟,௄௏௏ is the 
fuel energy flow used by the KVV. 
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Figure 2: KVV heat and electricity production when varying return flow and load according to 
Table 1. Top: 40ºC. Bottom: 60ºC. 

Figur 2. Värme- och elektricitetsproduktion för KVV när returflödet och lasten varieras enligt 
Table 1. 
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Figure 3: Polyhedron of KVV expressing possible operating regions depending on return 
temperature. 

Figur 3. Polyeder för KVV med möjliga driftområden beroende på returtemperaturen. 

 

4.1.1.2 Other Production Units 
None of the production units, except for the KVV, are modeled in more detail than the 
decision variable, which is the produced heat	ܳ௨௡௜௧. The produced heats have several 
constraints, see sections 4.1.1.3 and 4.1.1.4, and are related to fuel consumption 
௙ܷ௨௘௟,௨௡௜௧	through efficiencies ߟ௨௡௜௧ as  

 
ܳ௨௡௜௧ ൌ ௨௡௜௧ߟ ௙ܷ௨௘௟,௨௡௜௧. 

 
The production units and their efficiencies are found in Table 2. 

Table 2: Fuel efficiencies for units in the discrete optimization. 

Tabell 2. Bränsleverkningsgrader för enheter i den diskreta optimeringen. 

 

 

Unit  Type Efficiency [%] 
KVV Cogeneration plant 88.5 
AFA Waste incineration plant 68.3 

Husbyborg Oil boiler 89.6 
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4.1.1.3 Production Capacities and Load Changes 
Each production unit has minimum and maximum production capacity as well as 
minimum and maximum load changes. For the considered units in this work, these 
constraints are found in Table 3. 

Table 3: Maximum production capacities and maximum and minimum load changes 

Tabell 3. Maximala produktionskapaciteter och maximal och minimala laständringar. 

Unit Min capacity [MW] 
(when running) 

Max capacity 
[MW] 

Min load  
change [MW/h] 

Max load 
Change [MW/h] 

KVV Polytope Polytope -50 50 
AFA 89.6 128 -50 50 
Husbyborg 15 120 -75 75 
 

4.1.1.4 Start and Stop Trajectories 
Different types of heat units have different start and stop times that need to be 
considered when performing production planning optimization. During the start-up the 
heat production of a unit typically follows a predefined trajectory. In this study these 
trajectories are represented in the UCP model using piecewise linear functions for the 
ramp-up and ramp-down. In Figure 4 the start and stop trajectories for the Husbyborg 
oil boiler are displayed. 

 

Figure 4: Start-up (solid) and shut-down (dash-dotted) trajectories of Husbyborg. Dashed line 
shows lower limit on capacity when running. 
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Figur 4. Uppstarts (heldragen) och nedstängningsprofiler (streck-prickad) för Husbyborg. 
Streckad linje visar lägsta kapacitet vid drift. 

 

4.1.2 Pipe 
The pipe model used in UCP contains two parts; the delay and the heat loss. The delay 
is simply a certain number of sample period delays while the heat loss depends on 
several parameters. The number of samples is calculated by truncating the actual delay 
to nearest integer number of sample times. The dissipated heat is calculated through 
 

ሶܳ ൌ
଴ݐሺܮߣߨ2 െ ௦ሻݐ

ln ቆ2ܰܦ ൅ට4 ቀܰܦቁ
ଶ
െ 1ቇ

, 

 
which describes the heat flow from an underground cylinder with temperature ݐ଴, given 
the ground temperature ݐ௦ [17]. The parameters and values of this equation can be found 
in Table 4. The resulting value for the heat loss for a pipe of length 3000 meters, as a 
function of the temperature difference, is presented in Figure 5. 

Table 4: Parameters and parameter values of heat dissipation in pipes. 

Tabell 4. Parametrar och parametervärden för värmeförlust i rör. 

Parameter Interpretation Value Unit 
L  Pipe length  Pipe dependent  m 
N  Pipe depth  1  m 
D  Pipe diameter  0.7   m 
λ  Soil heat transfer coefficient  1.2   W/(m2K) 

 
It should be noted that the modeling of the heat loss is highly simplified. The equation 
above is for instance only valid for subterranean pipes and the fact that the return and 
supply pipes typically are situated close to each other has been neglected. The fixed 
parameter values for all pipes are also a clear simplification as all these values typically 
vary depending on the location of the pipe in the network. 
 
As the UCP model does not contain the district heating water temperature, it is assumed 
that the supply temperature is 90C. The return temperature is calculated through a 
return temperature model that has the outdoor temperature ݐ௦ as input, which is an input 
to the optimization as a prediction. The return temperature model is explained in section 
4.3.2. 
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Figure 5: Pipe heat loss depending on temperature difference between water and ground for a 
3000 meter pipe. 

Figur 5. Värmeförlust i rör beroende på temperaturskillnad mellan vatten och markytan för ett 
3000 meter långt rör. 

4.1.3 Accumulator 
The accumulator is modeled as a simple integrator for the stored energy, i.e.,  
 

ሿݐ௔௖௖ሾܧ ൌ ݐ௔௖௖ሾܧ െ 1ሿ െ ݄ܳ௔௖௖ሾݐ െ 1ሿ 
 
where ܧ௔௖௖ሾݐሿ is the accumulator energy and ܳ௔௖௖ሾݐ െ 1ሿ is the energy flow to or from 
the accumulator and ݄ is the sampling period. The accumulator has maximum and 
minimum limits on the stored energy as well as maximum and minimum limits on the 
heat flows to and from it. The limits are summarized in Table 5. 

Table 5: Limits for the accumulator in UCP. 

Tabell 5. Begränsningar för ackumulatorn i SSP. 

Min storage  
[MWh] 

Max storage 
 [MWh] 

Min change 
 [MW] 

Max change 
 [MW] 

250 1000 -100 100 
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4.2 Modeling for the continuous optimization  

4.2.1 Co-generation plant KVV 
The co-generation plant “Kraft- och värmeverket” (KVV) mainly contains 

- A boiler providing steam for the turbines 
- A reheater raising temperature of the steam after the high pressure turbine to be 

used by low pressure turbine stages 
- Several turbine stages with varying operating points 
- Four condensers 

o One condenser mainly used in start-up/dumping mode 
o Two condensers that transfer the major part (~95%) of the heat to the 

district heating water 
o One condenser transferring a minor part (~5%) of the heat to the district 

heating water. This condenser uses part of the bleed steam from the high-
pressure turbine after the steam has driven the feed water pump. 

- A pre-heating systems for pre-heating of water to boiler 
- A feedwater tank 

 
The main characteristics needed to be captured by the KVV model for optimization is 
the influence of plant load and incoming district heating water temperature and mass 
flow rate on the produced heat and electricity.  
 
The main assumptions when deriving the KVV model have been  

- The vapor characteristics from the boiler outlet (pressure and enthalpy) are 
constant and the vapor mass flow is linearly dependent on the plant load.  

- The condensate leaving the condensers is assumed to be at saturation pressure.  
- Pre-heating systems are not considered and the bleed streams that normally go 

from the low-pressure turbines to the pre-heating systems are modeled using a 
lumped pressure drop and a fixed pressure boundary. 

- Bleed steam from high-pressure turbine is fixed. 
- The condenser mainly used in start-up/dumping mode is not considered. 
- The splits for incoming district heating water between to flue gas cooler and 

minor condenser (~5% of total transferred heat) are fixed, while the split 
between main condensers (~95% of transferred heat) and by-pass valve is varied 
during model validation but fixed during optimization (essentially all flow to 
main condensers).  
 

The KVV is described by the following units in the Modelica model; see also Figure 6. 
- One high-pressure (HP) turbine stage and three low pressure (LP) turbine stages, 

all with bleed flows. 
- Two main condensers, transferring heat from steam to district heating water. 
- One reheater for raising temperature of steam from high-pressure turbine to 

nearly inlet temperature 
- Lumped pressure loss for bleed stream of first low-pressure turbine stage. 
- Control volumes. 
- Flue gas cooler and minor condenser as ideal heat transfers. 
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name

 

 

Figure 6: Overview of KVV Modelica model containing boiler, turbines, condensers, reheater 
and control volumes. 

Figur 6. Översikt över Modelica modellen av KVV innehållande panna, turbiner, kondensorer, 
mellanöverhettare och kontrolvolymer. 

4.2.1.1 KVV Units 
The following sections will give a more detailed description of the units in the KVV. 

4.2.1.1.1 Turbine 
The physics based calculations of the outlet enthalpy and turbine work 
is defined by an isentropic efficiency, and the mechanical power is 
calculated using a mechanical efficiency. The pressure drop over the 
turbine is related to the flow rate using Stodola’s law. Generator losses 
are considered using an electrical efficiency parameter. The efficiency 

parameters are found in Table 6 with default values. 

Table 6: Efficiency parameters with default values for turbine model. 

Tabell 6. Verkningsgrader för turbinmodell. 

Efficiency	type	 Value	
Isentropic 0.92 

Mechanical 0.98 
Electrical 0.95 

 
4.2.1.1.2 Condenser 

The heat flow rate transferred to the district water is driven by the 
temperature difference between the incoming water and the saturation 
temperature in the condenser. This heat flow rate is further used to compute 
the condensation rate that drives the bleeding flow from the turbine stages. 
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4.2.1.1.3 Control Volume 
The control volume is a straightforward implementation of dynamic mass 
and energy balances expressed using pressure and enthalpy as states. 
Temperature is computed using pressure and enthalpy. The model requires 
partial derivatives of density with respect to enthalpy and pressure. The 

control volume is not a component with a physical equivalent in the plant; it is a 
component for holding physical balances and numerics.  

4.2.1.1.4 Pressure Loss 
The mass flow through the pressure loss model is calculated using the 
pressure difference and a quadratic loss function.  
 

4.2.1.1.5 Reheater 
The reheater is assumed ideal in the sense that the temperature of the steam at 
the outlet is perfectly controlled to a specific set-point given as a parameter. 
 

4.2.1.2 Calibration and Validation 
The KVV has been calibrated and validated against both a previously derived plant 
model and measurement data from the KVV. 
 
The previously derived model of the KVV, provided by Vattenfall AB, was built in 
Ebsilon. It was derived several years ago and at the time provided good agreement with 
measurement data. However, as conditions in the plant may have changed, the Ebsilon 
model was only used as a starting point for the calibration. The Ebsilon model was run 
in several different load cases, showing that the split factors for the incoming district 
heating water to the flue gas cooler, the minor condenser and the by-pass were almost 
constant. The determined splits are found in Table 7. It was also determined that the 
fixed bleed flow from the high-pressure turbine could be approximated to 12.4% of total 
steam flow. 

Table 7: Split factors in KVV based on Ebsilon simulations. 

Tabell 7. Splitfaktorer i KVV baserat på Ebsilon-simuleringar. 

Unit(s) Split factor (%)
Main condensers 93.3 
Flue gas cooler 1.0 

Minor condenser 4.5 
By-pass 1.2 

 
Additionally, from the different load cases, correlations could be derived between the 
KVV boiler steam flow and heat to district heating water provided by the flue gas cooler 
and the minor condenser. These could be approximated such that the heat to district 
heating water depends linearly on the boiler steam flow, see Figure 7 and Figure 8 . The 
total heat provided to the district heating water is greater than 120 MW at low steam 
flows, which results in a relative error off less than 1% due to the linear approximation, 
which was considered acceptable.  
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Figure 7: Heat transferred to district heating water from minor condenser as a function of boiler 
steam flow. Dot-marked line is result from Ebsilon model, while solid line is linear 
approximation. 

Figur 7. Värmeflöde till fjärrvärmevatten från mindre kondensor som funktion av ångflöde. 
Resultat från Ebsilon-modell markerat med punkter, heldragen linje är linjär 
approximation.  

 

Figure 8: Heat transferred to district heating water from flue gas cooler as a function of boiler 
steam flow. Dot-marked line is result from Ebsilon model, while solid line is linear 
approximation. 

Figur 8. Värmeflöde till fjärrvärmevatten från rökgaskylare som funktion av ångflöde. Resultat 
från Ebsilon-modell markerat med punkter, heldragen linje är linjär approximation.  
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Comparisons between the Ebsilon and Modelica model for total electricity and heat 
produced are found in Table 8 and Table 9. The relative errors are always less than 5% 
which is acceptable for the considered application of the Modelica model. 

Table 8: Electricity produced in Ebsilon and Modelica model and relative error as a function of 
boiler steam flow. 

Tabell 8. Producerad elektricitet i Ebsilon- och Modelica-modell och relativt fel som funktion av 
pannans ångflöde. 

Steam flow [kg/s] P el [MW] (Ebsilon) P el [MW] Rel. error [%] 
61,79  48,05  49,96  3,97 
66,97  60,99  62,95  3,21 
91,21  74,46  76,32  2,50 
106,49  89,37  90,11  0,82 
122,49  106,58  104,60  ‐1,85 
138,99  125,12  119,63  ‐4,38 

 

Table 9: Heat transferred to district heating water in Ebsilon and Modelica model and relative 
error as a function of boiler steam flow. 

Tabell 9. Värmeflöde till fjärrvärmevatten i Ebsilon- och-modell och relativt fel som funktion av 
pannans ångflöde. 

Steam flow [kg/s] Q [MW] (Ebsilon) Q [MW] Rel. error [%] 
61,79  125,00  126,30  1,04 
66,97  150,00  148,41  ‐1,06 
91,21  175,00  172,85  ‐1,23 
106,49  200,00  198,91  ‐0,55 
122,49  225,00  226,69  0,75 
138,99  250,00  256,17  2,47 

 
The Modelica model has been validated against measurement data during the time 
period 2013-11-20 – 2013-12-10. The placement of sensors in the plant has complicated 
the validation as 

- There is no temperature sensors placed at KVV outlet or inlet. The supply or 
return temperature is measured after or before the accumulator. 

- There is no mass flow sensors placed at KVV inlet or outlet. The supply or 
return flow is measured after or before the accumulator. 

- There is no flow sensor for the by-pass valve in KVV. 
 
The implications of the above sensor placements are that 

- Sensor values of the inlet and outlet temperatures and mass flow rates of the 
KVV can only be used when the accumulator is not in use, which is determined 
by having a small mass flow rate to or from the accumulator. 

- The flow through the by-pass valve is estimated by using total inlet mass flow 
rate of the KVV when accumulator is not running, and mass flow rates of major 
and minor condensers and flue gas cooler. 
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Compared to the validation with the Ebsilon model, the by-pass valve is open more and 
varies. One reason for this is that it is manually set by operators such that they can 
guarantee that the pressure in the condensers is high enough for steam to be transported 
to the feed water tanks. Additionally, the isentropic efficiency of the turbine stages had 
to be increased compared to the Ebsilon validation.  
 
Figure 9 shows the KVV load, return temperature and flow for the time period used for 
validation. The load varies within 50-85%, spanning almost the same range as the 
Ebsilon simulations. The return temperature and flow varies between 45-65ºC and 
1400-2600 kg/s, respectively. 
 
The resulting produced electricity and heat to district heating water are shown in Figure 
10. The measurement of the heat is slightly noisier than the electricity measurement as it 
is calculated from several measurement signals in the sensor system of the plant.  
 
Figure 11 shows the relative errors of the electricity and heat. It should be noted that the 
relative error is set to 0 when the accumulator is running and the sensor values cannot 
be used. Relative errors are for most of the validation period less than 5%, which is 
acceptable for the usage of the Modelica model. The validation results show that the 
Modelica model captures the main characteristics of the KVV in terms of effect of 
return temperature and flow and load on produced electricity and heat.  
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Figure 9: Boundary conditions and load when validating KVV Modelica model with 
measurement data. Top: KVV load. Middle: Return temperature. Bottom: Return flow. 

Figur 9.  Randvillkor och last vid validering av Modelica-modellen av KVV med mätdata. 
Överst: KVV-last. Mitten: Returtemperatur. Nederst: Returflöde 
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Figure 10: Top: Measured (black) and simulated (grey) electric power from KVV. Bottom: 
Measured (black) and simulated (blue) heat from KVV.  

Figur 10. Överst: Uppmätt (svart) och simulerad (grå) elektricitet från KVV. Nederst: Uppmätt 
(svart) och simulerad (grå) värme från KVV. 
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Figure 11: Relative errors between measurement data and model for electricity (top) and heat to 
district heating water (bottom) when validating KVV Modelica model. 

Figur 11. Relativa fel mellan mätdata och modell för elproduktion (överst) och värme till 
fjärrvärmevatten (nederst) vid validering av Modelica-modellen av KVV. 

4.2.2 Pipe 
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finite element pipe implementation, a fixed time delay on the water enthalpy, and a heat 
loss model. The visualization of the pipe model in Dymola is displayed in Figure 12. 
The heat loss model is the same as for the UCP, explained in Section 4.1.2, but with the 
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Figure 12: Continuous optimization pipe model in Dymola. 

Figur 12. Rörmodell i Dymola för den kontinuerliga optimeringen. 

4.2.2.1 Pipe Delay Representation 
The pipe and delay models replace the fixed delay in the UCP in order to achieve a 
more realistic representation of the delay the pipe introduces. The volume of the pipe is 
divided into the finite volume model and the fixed delay. This division is implemented 
in order to avoid the downsides of using only a fixed delay or a finite volume pipe 
model as a representation of the pipe. 
 
A fixed delay of the water enthalpy has a clear disadvantage whenever the mass flow 
through the pipe is varying, as this implies that the delay time of the real pipe is also 
varying, according to 

ௗܶ௘௟௔௬ ൌ
݉
ሶ݉
 

 
where ݉ is the total mass of the water in the pipe. In the Uppsala district heating 
network the mass flow through the KVV typically varies between 1400 and 2600 kg/s 
as seen in section 4.2.1, which makes a fixed delay model alone inaccurate. However, 
whenever the mass flow is fixed, the delay provides an exact solution to the translation 
of the temperature profile of the water passing through the pipe. 
 
A finite volume pipe is always representing the delay time of a pipe correctly, even for 
varying mass flows. The weakness of this kind of model is that the temperature profile 
of the water passing the pipe gets distorted due to numerical dissipation. This effect gets 
more pronounced as the volume of each element in the model increases. The 
phenomenon can therefore be reduced by increasing the number of elements in the 
model, but this is undesirable in a model that should be used for optimization, as this 
would increase the model complexity. 
 
By combining the two ways of modeling the pipe delay a compromise between the 
accuracy in delay time and temperature profile is achieved. The exact delay time of the 
fixed delay and the volume of the finite volume model are decided using the range of 
mass flows that will be present in each specific pipe. After deciding the level of delay 
time error that is acceptable on the boundaries of this range the corresponding volume 
and fixed delay is calculated. A higher accuracy in delay time means that volume of the 
finite volume model will be increased, introducing more numerical dissipation. 
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4.2.2.2 Heat Transfer Effects 
In the EDP only the enthalpy of the water passing through the component is delayed in 
the delay and finite volume components, while the mass flow is unaffected. This 
introduces an important difference compared to the UCP model where the entire heat 
flow signal gets delayed. In the EDP instantaneous changes in heat flow through the 
pipe can be achieved by changing the mass flow rate while keeping the temperature 
constant, something that is not possible in the UCP. 
 
The separate modeling of the water temperature and mass flow also introduces the 
possibility to use the pipes as accumulators. By feeding the pipes with hotter or colder 
water than the water that is in the pipe at a specific time, the total amount of energy in 
the pipe gets manipulated. These changes in energy can for example be used to handle 
customer load variations. 

4.2.2.3 Optimization Model Implementation 
In order to implement this kind of function in optimization models where the time is 
discretized some modifications are necessary. Similarly to the UCP case the amount of 
fixed delay is rounded to the nearest integer number of time steps. As a part of the delay 
is handled by the finite volume model the fixed delay times in the EDP are shorter than 
the corresponding delays in the UCP. 

4.2.2.4 Simulation Validation 
To investigate the behavior of the pipe implementation it is compared to a more 
accurate pipe model which is described in [18]. The parameter values in the experiment 
can be seen in Table 10. 

Table 10: Pipe validation parameters. 

Tabell 10. Rörvalideringsparametrar. 

Parameter Value 
Pipe volume  1000 m3

Mass flow range  1200 – 1600 kg/s 
Accepted delay error  10 % 

Number of finite volumes  2 

 
In the optimization pipe model the parameter values result in a finite volume pipe 
volume of 500m3 and a fixed delay time of 331 seconds. In the experiment the inlet 
temperature is ramped between 70oC and 90oC for mass flows of 1200 and 1800 kg/s. A 
comparison between the output temperatures and the delay times can be seen in Figure 
13.  

4.2.2.5 Energy balance violation 
The fixed delay component introduces a possibility to violate the balance between the 
inlet and outlet energy flow for the whole pipe. By manipulating the mass flow and inlet 
temperature it is possible to consistently extract a different amount of energy from the 
pipe than what is added. The following example is a simple illustration. 
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Assume that the mass flow and enthalpy are oscillating out of phase with a period two 
times larger than the delay time. This can be achieved by having ሶ݉ ሺݐሻ ൌ ሶ݉ ଴ ൅
ሻݐሻ, ݄ሺݐሺ	௠sinܣ ൌ ݄଴ െ  ሻ with a time unit chosen so that the delay timeݐሺ	௛sinܣ
becomes ௗܶ௘௟௔௬ ൌ  The difference between inlet and outlet energy then becomes .ߨ

ܳ௢௨௧ െ ܳ௜௡ ൌ ሶ݉ ሺݐሻ ቀ݄൫ݐ െ ௗܶ௘௟௔௬൯ െ ݄ሺݐሻቁ ൌ 

ሺ ሶ݉ ଴ ൅ ሻሻ൫݄଴ݐሺ	௠sinܣ െ ௛ܣ sin൫ݐ െ ௗܶ௘௟௔௬൯ െ ݄଴ ൅ ሻ൯ݐሺ	௛sinܣ ൌ 
ሺ ሶ݉ ଴ ൅ ߨ௛ሺsinሺܣሻሻݐሺ	௠sinܣ െ ሻݐ ൅ sin	ሺݐሻሻ ൌ 

2ሺ ሶ݉ ଴ ൅ ሻݐሺ	௛sinܣሻሻݐሺ	௠sinܣ ൌ ௛ሺܣ2 ሶ݉ ଴ sinሺݐሻ ൅  ሻሻݐ௠sinଶሺܣ
 
The quadratic term makes the expression greater than zero on average, meaning that 
more energy is leaving the pipe than what is entering. This is illustrated in Figure 14 
and Figure 15. 

 

Figure 13: Comparison between detailed pipe implementation (black) and optimization model 
pipe (grey), when the input water temperature (dotted) and mass flow are varied. 

Figur 13. Jämförelse mellan detaljerad rörimplementering (svart) och rörmodell för optimering 
(grå) när det inkommande vattnets temperatur (prickad) och massflöde varieras. 

This phenomenon is not obvious during simulation as the effect will be cancelled out for 
most input signals, but the optimization software could exploit it as the pipes then 
become a source for free energy. 
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The following measures can be taken in order to limit this unwanted effect: 
 Introduce pipe energy constraints 
 Adjust ratio between fixed and variable delay 
 Reduce degrees of freedom in optimization 

 
All of these methods have some drawbacks. A pipe energy constraint is typically 
implemented as a point constraint for the final time of the optimization. This prevents 
unbalanced energy flows, but it can be hard to decide the final energy value and often 
results in transient behavior at the end of the optimization interval. 
 
Reducing the fixed delay and increasing the variable delay correspondingly reduces the 
modeling error in terms of time delay, but increases the model complexity for two 
reasons. It typically requires an increased number of finite volume elements to represent 
the temperature profiles correctly and it requires a finer discretization in order to 
represent shorter fixed delay times correctly. 
 
By limiting the degrees of freedom in the optimization formulation the possibility to 
manipulate mass flow and temperature simultaneously can be restricted or even 
eliminated, but it could also result in a less optimal solution. 

 

Figure 14: Fluid inlet enthalpy varying with a period of 2 ∗ ௗܶ௘௟௔௬, out of phase with the mass flow 
creating a violation against the energy balance. 

Figur 14. Inkommande vätskans entalpi varierar med perioden 2 ∗ ௗܶ௘௟௔௬ ur fas jämfört med 
massflödet, vilket leder till brott mot energibalansen. 
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Figure 15: Energy flow at pipe inlet and outlet and the energy flow difference, which is greater 
than zero on average. 

Figur 15. Energiflöde vid rörets in- och utlopp och skillnaden i energiflöde, som i genomsnitt är 
större än noll. 

4.2.2.6 Optimization Validation 
In order to determine how much the pipe modeling is affecting the optimization results 
two experiments are presented in this section. These tests are based on optimization case 
Ib, which is presented in detail in chapter 7. Firstly, the optimization case is solved with 
different pipe implementations. Two results are examined; the pipe energy difference 
between the end points of the optimization interval and the load profile for the 
production unit. Secondly, the optimization results with the most and least physical pipe 
representations are compared in simulations where both pipes are present. The energy 
levels in the pipes are compared. 
 
For the first test, models with different pipe implementations are created, using the same 
setup as in case Ib. The difference in the pipe modeling consists of different ratios 
between the fixed and variable delay. A longer fixed delay indicates a more unphysical 
pipe model. The corresponding optimization problem for each model is solved and for 
each case the difference in return pipe energy between hour 0 and 24 is calculated. This 
difference is a measure of how much the energy balance is violated in each case. The 
results are presented in Table 11. 
 
In this table the fixed delay and pipe volume used in the actual optimization case in 
chapter 7 correspond to the row marked with base. The settings marked with case III 
ratio represent the delay ratio used in the pipes in case II and III. A pipe implementation 
without any fixed delay and 10 finite volume elements is handled as the exact solution. 
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In a more complex model with more pipes this implementation would be impossible to 
optimize due to the increased number of states in the model introduced by the extra 
volumes. 

Table 11: Pipe energy comparison for different pipe implementations. 

Tabell 11. Jämförelse av rörenergi för olika rörimplementationer.  

Finite volume 
elements 

Finite volume 
volume [m3] 

Fixed delay 
[min] 

Energy difference 
[MWh] 

Comment 

10 14462 0 0.86 ”Exact” 
5 12051 20 0.39  
4 9642 40 -0.65  
2 7231 60 -2.1 Base 
2 4821 80 -4.4 Case III 

ratio 
 
When the energy differences in the different optimization results are compared one can 
note that the most unphysical pipe implementation results in an energy difference that is 
approximately 5 MWh lower than the most accurate model. This indicates that the 
energy balance in the least favorable case is violated to a similar extent over the 24 hour 
optimization interval. In Table 12 this value is compared to the total heat demand over 
the total optimization time in the considered system, the total capacity of the 
accumulator, and the energy variations in the supply pipe during one day. From this 
comparison the energy gained from the unphysical pipe modeling is considered small 
enough to be acceptable. 

Table 12: Pipe energy difference for case Ib compared to other data. 

Tabell 12. Energiskillnad för rör i fall 1b jämfört med annan data. 

Energy difference 
[MWh] 

Total energy 
demand [MWh] 

Accumulator 
capacity [MWh] 

Pipe energy 
variations [MWh] 

5 4300 750 74 
 
The impact of the pipe modeling on the optimization result must also be investigated. A 
comparison between the KVV load profiles for three different pipe implementations are 
presented in Figure 16. The “exact” pipe implementation above is compared with the 
implemented settings for case Ib and the less favorable fixed-variable delay ratio used in 
for example case III. There are some differences, but the general characteristics are 
similar. As expected, the greater fixed delay does result in a solution further away from 
the “exact pipe” solution. 
 
For the second test, simulation models containing the most and least physical pipe 
implementations were created. The inlet mass flow and temperature for the return pipes 
in the optimization results were used as input. By examining the energy level in the 
most accurate pipe model when the optimization results for the more unphysical pipe is 
used as input, and vice versa, the behavior of the optimization pipe model can be 
investigated. 
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The results from this test can be seen in Figure 17. When the optimal trajectories for the 
more unphysical pipe are used as input the difference in final pipe energy again is 
approximately 5 MWh, indicating that the optimization results involves a violation of 
the energy balance to a similar degree. 
 
However, when the optimal solution to the optimization problem without a fixed delay 
is used as input there still is a difference in final pipe energy of approximately 2 MWh, 
when the final energy level of the two pipe models are compared. This implies that the 
usage of a pipe energy constraint would result in a too conservative solution, as the 
optimal solution without a fixed delay results in a lower energy level in the fixed delay 
model. 
 
The conclusion from these tests is that the return pipe errors introduced by the pipe 
model implementation are small enough to be tolerated without the adding extra 
constraints for the considered pipes and that the implementation of energy constraints 
on these pipes would result in sub-optimal solutions. 

 

Figure 16: KVV load profile for different pipe implementations. 

Figur 16. Lastprofil för KVV vid olika rörimplementationer. 
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Figure 17: Pipe energy profiles in simulations with optimization input from model with 
optimization pipe (top) and exact pipe (bottom). 

Figur 17. Rörenergiprofiler vid simuleringar med insignaler från optimering med optimeringsrör 
(överst) och exakt rör (nederst). 

4.2.3 Pump 
The pump is modelled in an ideal fashion, where the delivered mass flow depends 
linearly on the control input. 

4.2.4 Heat production unit 
A simple model that transfers heat to the water based on a control input corresponding 
to the load and a parameter for maximum heat transfer. Used for modeling various 
production units in the network.  

4.2.5 Accumulator 
A finite volume approximation is used to model the accumulator. Buoyance effects are 
neglected, which means that no mixing is assumed when the accumulator is not 
charging or discharging. The accumulator is connected to the supply water on the top 
and return water on the bottom and these ports are used for charging and discharging the 
tank. 

4.2.6 Dynamic volume 
For models without pipes a volume is added to the network. The extra state this adds to 
the system improves the behavior of the model significantly. It makes the system much 
less sensitive to load changes and therefore easier to control. The delay the volume 
introduces to the network is negligible compared to the time constants of the rest of the 
system. 
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4.3 Customer 

4.3.1 Customer Model 
Each customer demands a predefined amount of heat from the network, based on the 
heat load prediction. The district heating water mass flow through each customer is 
decided so that this demand is fulfilled based on the supply temperature from the 
network and the specific return temperature of the customer. 

4.3.2 Return Temperature 
The return temperature is calculated based on the outdoor temperature. The model 
described in [16] is used for this purpose. The correlation between outdoor and return 
temperature, shown in Figure 18, is implemented in the EDP model using a table. 

 

Figure 18: Customer return temperature depending on the outdoor temperature. 

Figur 18. Kundernas returtemperatur beroende på utomhustemperaturen. 

 

4.4 District Heating Network Model 
The mathematical model of a district heating network should describe the mutual 
influence of the production sites, the distribution network and the consumers for 
different load and weather conditions. An exact mathematical description of the network 
shown Figure 1 requires a two-dimensional representation containing the geographical 
position of every customer and production site. Such a model with all customers, pipes 
and production units is only valuable for detailed simulations aiming at designing or 
extending a network but it would not be tractable in the context of dynamic optimization 
for production planning. A simpler network representation has therefore been used in 
the project to capture the properties that are relevant for production planning, namely: 
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 The transport delay between the produced heat and consumed heat 
 The geographical distribution in the heat load 
 The influence of the outdoor temperature on the supply water temperature at the 

customer stations 
 The influence of the flow rate (or total load) on the transport delay  
 The distributed nature of the production 

A variant of the one-dimensional district heating model presented in [14] turns out to be 
sufficient to capture the previously listed features and to substantially improve the 
quality of the production plans compared to the standard approach without any 
distribution model at all. Figure 19 shows a schematic representation of the network 
structure that is used for the UCP and the EDP sub-problems and Figure 20 shows the 
distribution of heat as function of the distance from KVV. 
 
 

 

Figure 19: Schematic representation of network structure used in the discrete (upper structure) 
and the continuous optimization (lower structure). 

Figur 19. Schematisk representation av den använda distributionsnätstrukturen i den diskreta 
(överst) respektive den kontinuerliga optimeringen (nederst). 
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Figure 20: Heat reached customer/km/total produced heat as a function of distance from KVV, 
taken from [14]. Discretized values shows the three customers used to describe the 
Uppsala district heat network. 

Figur 20. Andel av total värmeproduktion till kund per km som funktion av avstånd från KVV, 
hämtad från [14]. De diskretiserade värdena visar de tre kunderna som används för 
att beskriva Uppsalas fjärvärmenät.  

In addition to its simplicity and flexibility, this network model can easily be combined 
with a global load prediction model, which is more common than a distributed load 
prediction. The total predicted customer load ܳ௧௢௧ሺݐሻ is indeed distributed between the 
modeled customers using distribution factors ߙ௜	that are calibrated for a given network, 
i.e.,  
 

ܳ௖௨௦௧,௜ሺݐሻ ൌ  .ሻݐ௜ܳ௧௢௧ሺߙ
 
The Uppsala network has previously been described and calibrated in [14], using 13 
customers and delays. For the optimization, the model has been further simplified to 
contain three customers and delays. Two different distribution setups are used for 
optimization. The delays and distribution factors can be found in Table 17 in section 
7.1.1.1. 
 
One limitation of the chosen network model is the pre-defined direction of the flow in 
all pipes. 

4.4.1 Discrete Optimization District Heat Network Model 
The district heat network model in the UCP optimization model uses approximations 
that are not physical. They are: 

0 2 4 6 8 10 12 14 16 18
-0.02

0

0.02

0.04

0.06

0.08

0.1

0.12

Distance from KVV [km]

H
ea

t 
re

ac
he

d 
cu

st
om

er
/k

m
/t

ot
al

 h
ea

t 
pr

od
uc

ed
 [

1/
km

]



VÄRMEFORSK 
   

 

33 

 The delays are constant instead of flow dependent. This is limiting in some 
cases as an increased customer load met by an increased flow rate does not 
result in decreased transport delay. The transport delay should only be large 
when the plant follows the load by changing its supply temperature. 

 The heat loss is not dependent on actual supply temperature; a fixed supply 
temperature is used to compute the heat loss in supply pipes. 

 There is no return pipe. Heat loses in return pipes are however calculated using 
an outdoor temperature model and a return temperature model.  

4.4.2 Continuous Optimization District Heat Network Model 
The network model used in the continuous optimization is physics-based, meaning that  

 The water in the pipes is characterized by a flow and a temperature instead of a 
transported heat flow rate. 

 The heat loss is varying with outdoor temperature and water temperature, see 
Section 4.1.2. 

 The transport delay is time-varying and dependent on the flow and the pipe 
volume, see Section 4.2.2.1. 

 The return pipes are modeled and captures heat loss from the customers to the 
plant. 
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5 Optimization Tools 
The two types of optimizations performed require two distinctly different optimization 
frameworks. The UCP requires a framework supporting formulation of and solving 
mixed-integer optimization problems while the EDP requires a framework for solving 
non-linear dynamic optimization problems. 

5.1 Discrete Optimization 
The aim of this section is to provide a short introduction to the programming language 
and solvers used for the UCP. 

5.1.1 Pyomo 
The UCP in this project is implemented in Python using the Pyomo modeling language 
[19]. To use Pyomo, three sets of files should be prepared for an optimization process: 

 The model file in which all the sets, parameters, constraints (rules) and the 
objective function are defined. 

 The data file in which all the input data for a specific scenario is set. To be more 
efficient in implementing these data files for different case studies, a MATLAB 
code was constructed to generate them. 

 The run file in which the model and the data files together with the solver are 
called to solve the optimization problem. Handling the results in terms of saving 
or plotting is also defined in this file. 

5.1.1.1 Gurobi 
The UCP has been solved by the Gurobi commercial solver, see [20]. The Gurobi 
Optimizer is a commercial optimization solver for several types of optimization 
problems, including mixed-integer linear programming (MILP) problems. The UCP is 
of this type. The Gurobi Optimizer supports a variety of programming and modeling 
languages including: object-oriented interfaces for C++, Java, .NET, and Python and 
also matrix-oriented interfaces for C, MATLAB, and R. Gurobi provides free licenses 
for academic purposes. 

5.1.1.2 GLPK 
The UCP has also been solved by GNU Linear Programming Kit (GLPK), see [21], 
which is an open-source software package intended for solving large-scale linear 
programming (LP), mixed integer programming (MIP), and other related problems. 
GLPK uses the revised simplex method and the primal-dual interior point method for 
non-integer problems and the branch-and-bound algorithm together with Gomory's 
mixed integer cuts for (mixed) integer problems. 

5.2 Continuous optimization 
Modelica models can be simulated in many different environments and optimization 
platforms are emerging as well. JModelica.org, which is an open-source platform for 
both simulation and optimization of Modelica models, has been used in this work for 
the EDP simulation and optimization. Next section will give an overview of it, see also 
[22] and [23]. 
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5.2.1 JModelica.org 
The main focus of the Modelica language has been on simulation. However, as tools for 
this purpose have matured, focus has also been directed towards using the models for 
optimization. Integration tools that can interface several design tools (analysis, 
simulation and optimization tools) have emerged as well as simulation tools with 
limited optimization packages as add-ons. Optimization often requires high-level model 
details, including derivatives and sparsity structures, as well as a skilled user as the 
original optimization problem often needs to be transcribed in some way.  
 
To circumvent some of these problems it is beneficial if the optimization problem is 
stated in a high-level fashion, which can directly be associated with the mathematical 
formulation and the physics is represented in the model. One software package that 
supports this is JModelica.org, which is an open-source platform for both simulation 
and optimization of Modelica models. JModelica.org extends the Modelica language 
with Optimica constructs that allows for straightforward formulation of optimization 
problems. The software package contains a compiler and supporting functions to 
compile a Modelica model and translate it to a dynamic optimization problem that is 
transcribed into a non-linear optimization program using the method of collocation. 
JModelica.org uses the automatic differentiation tool CasADi [24], giving the 
possibility to provide symbolic Jacobian and Hessian matrices. The resulting non-linear 
program is solved by the Interior Point Optimizer (IPOPT), see [25]. Thus, 
JModelica.org bridges the gap between simulation models and state-of-the-art 
optimization algorithms.  
 
Using models for optimization puts certain restrictions and demands on the models. An 
important demand is that all model equations should be ܥଶ-continuous (twice 
continuously differentiable). It is also often very helpful if the model variables are 
scaled such that they all have the same magnitude and that they have minimum and 
maximum values declared. The Modelica language contains attributes for all variables 
for providing these properties. The models used in the EDP optimization all obey the 
above and a more detailed explanation can be found in [9]. 
 
A more detailed description of JModelica.org and its capabilities in simulation and 
optimization can be found in [22] and [23]. 
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6 Optimization Formulations 

6.1 Plant Economics 
The goal of the both the UCP and the EDP optimization is to satisfy the customer heat 
demand with as low economic cost as possible. The plant economics is therefore an 
important part of the problem formulation in both of the optimization problems. 
 
In this project constant fuel and electricity prices have been assumed. Start-up costs are 
also considered, as well as variable and fixed maintenance costs for the production 
units. Pumping costs have been neglected. 
 
Prices and costs normalized with the electricity price are presented in Table 13 and 
Table 14. The fuel cost for the AFA is negative because the unit incinerates waste.  

Table 13: Fuel and sell prices. 

Tabell 13. Bränsle- och försäljningspriser. 

Unit Fuel price  Type Sell price  
KVV  0.52    Electricity  1   

Husbyborg  1.31    Heat  0.61   

AFA  ‐1.21         

 

Table 14: Maintenance costs. 

Tabell 14. Underhållskostnader. 

Unit Maintenance cost fixed Maintenance cost variable 
KVV  10,6  0,021 

Husbyborg  2,02  0,015 

6.2 Discrete Optimization 
In this section, the UCP optimization formulation is presented. The problem results in a 
mixed-integer linear program (MILP). The status variables of the solution to this 
problem are used as inputs to the EDP. The formulation follows the lines of [26], which 
can be used for a more detailed explanation. The formulation was also used in [9]. 

6.2.1 Degrees of Freedom and Inputs 
The UCP optimization problem contains two types of variables; continuous and binary. 
The continuous variables can take any value between its minimum and maximum 
constraint values, while the binary may only take the values 0 or 1. The two types of 
variables have in common that they are both discontinuous in time due to the sampled 
nature of the UCP.  
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For a heat and electricity producing unit	݅, the following variables are available as 
decision variables: 

 ܳ௜ሾݐሿ – Heat produced by the unit. 

 ௘ܲ௟ሾݐሿ – Electricity produced by the unit (only available for KVV) 

 ݏݑݐܽݐݏ௜ሾݐሿ – Status of the production unit (on/off). 1 when on, 0 otherwise. 

The produced heat and electricity are continuous variables, while the status variable is a 
binary variable.  
 
The units are constrained to follow certain start-up and stop sequences, modeled as 
piecewise linear sequences. Two additional decision variables are needed for these 
sequences: 
 

 ݐݎܽݐݏ௜ሾݐሿ− variable indicating the time point for when a unit is beginning its 
starting sequence by being equal to 1 at that sample, 0 otherwise. 

 ݌݋ݐݏ௜ሾݐሿ− variable indicating the time point for when a unit is beginning its 
stopping sequence by being equal to 1 at that sample, 0 otherwise.  

These variables are communicated to the EDP optimization problem at the integration 
stage of the production planning optimization. 

The accumulator, as modeled in Section 4.1.3, has the heat flow ܳ௔௖௖ሾݐሿ	to and from it 
as decision variable. 

6.2.2 Optimization Problem 
6.2.2.1 Cost Function 
The cost function expresses the profit of the heat and electricity production, taking into 
account heat and electricity sell prices as well as fuel prices, unit start costs and other 
production costs. The instantaneous profit ܴሾݐሿ can be approximated as follows: 
 
ܴሾݐሿ ൌ ௘ܲ௟ሾݐሿ݌௘௟ ൅ ܳሾݐሿ݌ொ െ																																																																																																											 

	 ෍ ሺ ௙ܷ௨௘௟,௜ሾݐሿ݌௜ ൅ ௙ܷ௨௘௟,௜ሾݐሿ݌௩௔௥௖௢௦௧,௜ ൅ ௙௜௫௖௢௦௧,௜݌ሿݐ௜ሾݏݑݐܽݐݏ ൅ ௜ሻݏሿݐ௜ሾݐݎܽݐݏ	
௜ୀ௔௟௟	௣௥௢ௗ௨௖௧௜௢௡

௨௡௜௧௦

െ ෍ |ሿݐ௜|∆ܳ௜ሾߛ
௜ୀ௔௟௟	௣௥௢ௗ௨௖௧௜௢௡	

௨௡௜௧௦

 

The first two terms contain the electricity price ݌௘௟and heat price ݌ொ and the total 
production of electricity ௘ܲ௟ and by customers received heat		ܳ, and thus provide the 
revenue.  
 
The first sum contains the production costs, of which there are four. The first is the fuel 
cost where ݌௜ is the fuel price, the second is a variable maintenance cost depending on 
the amount of fuel used, the third is a fixed maintenance cost for running the unit and 
the fourth and last term is the start-up cost where ݏ௜ is the price for one start-up.  
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The second sum is a penalty on change in heat production as	∆ܳ௜ሾݐሿ ൌ ܳ௜ሾݐሿ െ ܳ௜ሾݐ െ
݄ሿ. This sum removes undesirable rapid changes of unit loads and constitutes the only 
part that is not directly coupled with plant economics. However, this term is very small 
part of the total cost function. The absolute value function is implemented using linear 
functions. 
 
The total approximated profit to be maximized at optimization is thus 

ܬ ൌ ݄ ෍ ܴሾݐሿ,

௧೑

௧ୀ௧బ

 

where ݐ଴ and ݐ௙ are start and end time of the optimization interval, respectively. 
 

6.2.2.2 Constraints 
The major constraints of the UCP are presented here while a more detailed and 
mathematical description can be found in [26].  
 
The production units have minimum and maximum production capacities. Note that the 
minimum capacity limit is greater than 0, since there is always a base load on the boiler. 
For all production units, except for the KVV, the constraints are  
 

ܳ௜,௠௜௡ ൑ ܳ௜ሾݐሿ ൑ ܳ௜,௠௔௫, 
 
while for the KVV, the heat and electricity production is confined inside the polytope 
defined in Section 4.1.1.1.  
 
Each unit has a minimum and maximum heat production change, which is formulated as  

 
௜,௠௜௡ܳ߂ ൑ ሿݐ௜ሾܳ߂ ൑  .௜,௠௔௫ܳ߂

 
The change ܳ߂௜ሾݐሿ is the same change used in the cost function to remove undesirable 
rapid load changes. 
 
Heat units may take a long time to start and stop and must follow specific start-up and 
stop trajectories. Thus, these constraints are important to include in the optimization of 
the production plan. For this, each unit has a predefined start-up trajectory ܳ௜,௦௧௔௥௧ሾݐሿ 
and predefined stop trajectory ܳ௜,௦௧௢௣ሾݐሿ	which are used in constraints as 
 

					ܳ௜ሾݐሿ ൌ ܳ௜,௦௧௔௥௧ሾݐሿ,				ݐ ∈ ሾݐ௦௧௔௥௧, ௦௧௔௥௧ݐ ൅  ௦௧௔௥௧ௗ௘௟௔௬ሿݐ
ܳ௜ሾݐሿ ൌ ܳ௜,௦௧௢௣ሾݐሿ,				ݐ ∈ ,௦௧௢௣ݐൣ ௦௧௢௣ݐ ൅  ,௦௧௢௣ௗ௘௟௔௬൧ݐ

 
where ݐ௦௧௔௥௧ௗ௘௟௔௬ and ݐ௦௧௢௣ௗ௘௟௔௬ are the durations of the constraints. The formulations of 
the start-up and stop constraints involves the ݐݎܽݐݏ௜ሾݐሿ and	݌݋ݐݏ௜ሾݐሿ variables and the 
details can be found in [26]. 
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The accumulator has minimum and maximum limits on how much energy it can hold 
and also the rate of which it may change. These are formulated as 
 

௔௖௖,௠௜௡ܧ ൑ ሿݐ௔௖௖ሾܧ ൑  ௔௖௖,௠௔௫ܧ
ܳ௔௖௖,௠௜௡ ൑ ܳ௔௖௖ሾݐሿ ൑ ܳ௔௖௖,௠௔௫. 

 
Additionally, to prevent the accumulator to be emptied at final time, a constraint is set 
as  

௙൯ݐ௔௖௖൫ܧ ൒  .଴ሻݐ௔௖௖ሺܧ
 
It is reasonable not to empty the accumulator at final time as the accumulator is the heat 
buffer of the system that should be used at unforeseen events. 
 
The constraint on fulfilling customer heat demand depends on how the production and 
consumption is distributed. The main characteristics of this constraint are that the 
accumulator heat and total produced heat should cover the customer demands and 
possible heat losses in pipes. This can be formulated as  
 

ܳ௔௖௖ሾݐሿ ൅ ෍ ܳ௜ሾݐሿ ൒
௜ୀ௔௟௟	௣௥௢ௗ.

௨௡௜௧௦

																																																																																							

																																 ෍ ݐ௜ሾܥ ൅ ௜ሿݐ
௜ୀ௔௟௟	
௖௨௦௧.

൅ ෍ ௜ܮܲ
௦ሾݐ ൅ ௜ݐ

௦ሿ
௜ୀ௔௟௟	௦௨௣௣௟௬

௣௜௣௘௦

෍ ௜ܮܲ
௥ሾݐ ൅ ௜ݐ

௥ሿ
௜ୀ௔௟௟	௥௘௧௨௥௡

௣௜௣௘௦

	 

 
where ܥ௜ሾݐ ൅ ௜ܮܲ ,௜ሿݐ

௦ሾݐ ൅ ௜ݐ
௦ሿ and ܲܮ௜

௥ሾݐ ൅ ௜ݐ
௥ሿ is the customer demand, supply pipe heat 

loss and return pipe heat loss, respectively, time shifted for correction for pipe delays. 

6.2.3 Stochastic Methodology 
In a real world problem such as the production planning for a district heating network 
there are always uncertainties present. Data such as the customer heat demand or the 
electricity price cannot be known exactly in advance and predictions with some degree 
of uncertainty must therefore be used. This makes it valuable to include stochastic 
aspects in the optimization formulation. 
 
It is natural to include the stochastic formulation to the UCP, as it is here the long term 
decisions concerning the statuses of units are made. These plans needs to be made in a 
way so that the customer demand can be fulfilled in all future scenarios. Having 
included the distribution of future scenarios into the formulation, the resulting stochastic 
UCP can be solved using the same technique as the deterministic problem. 
 
In this study the uncertainty is included in the optimization formulation using a two-
stage stochastic programming formulation. The optimization time is then split into two 
stages. The outcome in the first stage is known, while one or more signals are uncertain 
during the second stage. The probability distributions of the unknown variables are 
discretized into a number of possible outcomes and the discrete probability distribution 
is assumed to be known. For signals such as the heat demand this is a reasonable 
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approach as the accuracy of a prediction concerning the nearest future often is quite 
high, but the certainty decreases for longer horizons. 
 
For the stochastic cases, the following three different methods are implemented: 
 

 Perfect information approach: Separate plans are derived for each outcome, 
given that the outcomes are known in advance. In other words, it is assumed that 
at the start of stage 1, the planner already knows the outcome in stage 2 and the 
profit is maximized for each scenario separately. 

 Stochastic programming: Plans maximizing the expected profit are derived, 
under the assumption that the outcome of stage 2 is unknown during stage 1. 
This means that the same stage 1 plan must be used for all stage 2 scenarios. 
This method is well-known in the mathematical optimization community. For an 
application to the unit commitment problem, see [27]. 

 Wait-and-see: Implemented through the following steps: 
a. Stages 1 and 2 are optimized for the expected outcome in stage 2, 

computed using the maximum demand and expected price in each time 
step. 

b. The solution to stage 1 is fixed. 
c. Stage 2 is re-optimized separately for each scenario, simulating a robust 

approach where the maximum demand and the expected price are used to 
plan, and re-planning is done when the outcome in stage 2 becomes 
known. 

6.3 Continuous Optimization 
In this section the continuous time optimization formulation used for solving the EDP is 
presented. 

6.3.1 Degrees of Freedom 
Depending on the specific case considered, a number of the following model inputs are 
present in the EDP model: 

 UKVV, KVV fuel load 
 UHVC, HVC fuel load 
 UHusbyborg, Husbyborg fuel load 
 UAcc, Accumulator pump speed 

 
These inputs will however not be used as decision variables in the optimization 
formulations. Instead their derivatives will be used, which is achieved by introducing 
equations of the form 

௝ܷሺݐሻ ൌ න ሶܷ௝ሺݐሻ݀ݐ
௧

 

into the model. This construction allows the formulation of constraints on input signal 
derivatives in a simple way. 
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6.3.2 Optimization Problem 
6.3.2.1 Cost Function 
Similarly to the UCP formulation, the cost function is based on the economic costs and 
incomes from running the district heating network. However, as the model is running in 
continuous time, this is implemented as an integral, rather than a sum. The definition of 
the instantaneous profit ܴሺݐሻ is very similar to the EDP formulation in section 6.2.2.1: 
 
ܴሺݐሻ ൌ ௘ܲ௟ሺݐሻ݌௘௟ ൅ ܳሺݐሻ݌ொ െ																																																																																																									 
 

	 ෍ ሺ ௙ܷ௨௘௟,௜ሺݐሻ݌௜ ൅ ௙ܷ௨௘௟,௜ሺݐሻ݌௩௔௥௖௢௦௧,௜ ൅ ௙௜௫௖௢௦௧,௜ሻ݌ሻݐ௜ሺݏݑݐܽݐݏ
௜ୀ௔௟௟	௣௥௢ௗ௨௖௧௜௢௡

௨௡௜௧௦

, 

 
with the same denominations as in the UCP function, but for continuous time. The main 
difference is that the start-up cost has been removed as the start-up of a unit is pre-
defined in the UCP formulation. The load change penalty is furthermore handled 
differently, as explained next. 
 
In order to achieve a well-behaved optimization problem, it necessary to introduce 
additional terms to the cost function, penalizing the input derivatives. This is typically 
done by adding weighted quadratic terms for all input derivatives, according to 
 

ሶܹ ሺݐሻ ൌ ෍ ௎ሶݍ ೔ ሶܷ ௜
ଶ

௜ୀ௔௟௟	௠௢ௗ௘௟
௜௡௣௨௧௦

 

 
The weights ݍ௎ሶ ೔ are chosen so that each derivative only contributes to a small degree to 
the total cost function. The need for this type of added cost is explained in more detail in 
[9]. 
 
The cost function to be minimized is now formulated in the following way: 
 	

ܬ ൌ න ൫ ሶܹ ሺݐሻ െ ܴሺݐሻ൯݀ݐ,
௧೑

௧బ

 

which is the continuous counterpart to the cost function in the UCP, except for the start-
up costs and the penalties for load variations and input signal changes. 
 

6.3.2.2 Constraints 
A main benefit of the detailed physics-based EDP model is that constraints can be set on 
variables present in reality. These constraints can be based on the limits of physical 
components in the network. One such example is the maximum flow in the network set 
by the maximum flow rate by the pumps. Relevant constraints are summarized in Table 
15.  
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All production units have constraints on their load change rates as explained in the UCP 
section. This can be seen as the inertia of the boiler or operational constraints. 
 
The accumulator has two types of constraints. The first one is limits on its pump 
capacity, limiting the rate of which the accumulator may be charged or discharged. 
Secondly, a constraint is set on the contained energy at optimization end time. This is 
needed as the optimization results would otherwise be an emptied accumulator at end 
time. There is furthermore a constraint on the change rate of the accumulator pump. 
This is a decision variable in the optimization formulation and the main purpose of the 
constraint is to obtain a more well-behaved optimization problem and consequently an 
improved optimization convergence. 
 
The KVV, which is the most detailed physics-based model, has constraints mainly on 
the condensers VK1 and VK2. The steam pressure shall not be lower than 0.1bar and 
the inlet water temperature should be above 39C. 
 
It is necessary to provide water with a temperature of at least 55oC in order to avoid 
growth of bacteria [16]. In order to have a safety margin a minimum constraint of 57oC 
is therefore used on the district water inlet temperature for each customer. 
Constraints on pipe energy of the form ܧ௣௜௣௘൫ݐ௙൯ ൒  ௣௜௣௘ሺ0ሻ have been introduced intoܧ
the formulation. The main reason for this is to keep a balance between production and 
consumption combined with heat losses, for each optimization case. 

Table 15: Continuous optimization constraints. 

Tabell 15. Optimeringsbivillkor i den kontinuerliga optimeringen. 

Variable Min Max Comment 
Accumulator end energy From UCP 

optimization
- EDP accumulator strategy 

based on UCP planning 
Accumulator mass flow -600 kg/s 600 kg/s Pump limitation 

Customer inlet temperature 57 C 110 C Min value is to limit bacterial 
growth 

VK 1/2 steam pressure 0.1 bar  Plant operating conditions 
VK 1/2 inlet water temp. 39C  Plant operating conditions 

District heating water  
mass flow 

1000 kg/s 3000 kg/s Pump limitation 

Pipe energy Pipe energy 
initial value 

- Balance between production 
and consumption 

ሶࢁ  Improves optimization 0.02 0.02- ࢉࢉ࡭
convergence 

ሶࢁ  Plant load change limitation 0.024 0.024- ࢍ࢘࢕࢈࢟࢈࢙࢛ࡴ

ሶࢁ  Plant load change limitation 0.00575 0.00575- ࢂࢂࡷ
 
For units that change status during the EDP optimization interval the start-up and/or 
shut-down times and the corresponding trajectories constitute additional constraints. 
These are described in the integration between UCP and EDP. 
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6.3.2.3 Pipe Energy Balancing Measures 
In this section the specific parts of the EDP optimization formulation that are used to 
prevent pipe energy unbalances are presented. 
 
For the supply pipes, the energy constraints guarantee that the optimization results do 
not contain any unbalanced energy flows. In the return pipes the predefined temperature 
profiles make it harder to impose corresponding constraints whenever the temperatures 
of start and final time in the optimization do not match, which is the case in case IIIb. 
This case is presented in detail in the next chapter. However, the fixed temperature 
profile also limits the possibility to exploit the unphysical modelling, since the mass 
flow mainly must be determined by the main optimization objectives. The Husbyborg 
pump mass flow not being a decision variable in case IIIb was decided specifically with 
this in mind. 

6.3.3 Problem Complexity 
In this section, data describing the complexity of the EDP is presented in relation to the 
computational power of the system used to solve the problem. 
 
For the EDP, the most complex optimization case considered is case IIIb, which is 
presented in detail in section 7.4. The continuous formulation contains 307 variables 
and 33 states. This system is discretized with an element length of 20 minutes and a 20 
hour optimization horizon, creating a nonlinear programming problem containing 
approximately 69000 variables. 
 
All EDP solving during the project was conducted on a laptop with 8 GB RAM and four 
2.6 GHz CPUs. On this system the convergence time for the most complex optimization 
problem is approximately 5 to 10 minutes. The corresponding number of iterations for 
the IPOPT solver is between 60 and 150. 
 
At the moment the limiting factor for the complexity of the nonlinear programming 
problems that can be solved is the amount of memory needed to perform the 
optimization. It is mainly JModelica and not IPOPT that is using up the memory 
capacity. 

6.4 Integration of Discrete and Continuous Optimization 
The optimization horizon for the EDP is limited to a maximum of 20-24 h, depending 
on the complexity of the considered case. The reason for this is the large amount of 
memory required to perform the optimization, as explained above. The typical 
production planning optimization horizon is however several days, which cannot 
currently be handled through EDP optimization for the entire scenario. 
 
With the separation of the production planning problem into the UCP and the EDP, it is 
however not needed, or even relevant, to use the EDP for optimization intervals longer 
than one day. In the EDP model the focus lies on faster dynamics, while the UCP is 
used to determine the long term plans. Having a longer time scale in the UCP is no 
problem, due to the significantly simpler modeling.  
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In order to achieve a useful result both the faster dynamics and the long term planning 
must be considered. This makes the integration between the two optimization problems 
very important. 
 
The unit statuses from the UCP are used to construct constraints in the EDP 
formulation, determining when the production units are started and stopped. This is 
explained in detail below. The UCP also determines the constraint on the accumulator 
energy at the end of each EDP optimization. This is an improvement compared to the 
formulation used in [9], where the accumulator energy constraint always was based on 
the initial energy level. 

6.4.1 Start-up Trajectories 
In scenarios where production units change status, the start-up and/or shut-down times 
from the UCP results are included as parameter values into the EDP formulation. 
 
In order to make a unit start and follow a start-up trajectory at a specific time, 
constraints on the unit load are introduced in the EDP. An example of this 
implementation can be seen in Figure 21, where the upper plot shows the result from the 
UCP optimization and the lower plot the result from the EDP optimization. 

 

Figure 21: Husbyborg status (upper) and the corresponding load constraints and resulting load 
(lower). 

Figur 21. Status (överst) och motsvarande bivillkor för last tillsammans med lastprofil (nederst). 
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When a unit is running, the load constraints are defined by the normal minimum and 
maximum load of that unit. When a unit is turned off, the constraints force the load to 
be between 0% and 2% of maximal load. For the start-ups and shut-downs, piecewise 
linear trajectories corresponding to the specific start-up and shut-down time of each 
unit, have been constructed. The load constraints are formulated so that the load of each 
unit follows these trajectories within 1 percent of full load. 
 
A tabular implementation is used to construct these constraints in the Modelica 
optimization model. In order to keep the model C2-continuous the table is constructed 
using C2-continuous approximations of min and max functions. 
 

6.4.2 Modeling Differences and Feasibility 
Due to the difference in model complexity there are inevitable differences between the 
UCP and EDP models. The two main differences are: 

 KVV modeling: The polyhedral representation of the KVV in the UCP is an 
approximation of the UCP model of the plant. The polyhedral representation of 
the feasible volume in the electricity production-heat production-return 
temperature space will contain some errors as the polyhedron must either cut 
away some extreme point or include some unfeasible points. In order to avoid 
unfeasibility problems a conservative approach was decided upon where the 
UCP polyhedral in general is slightly smaller than the actual KVV operating 
region. 

 Pipe modeling: Due to the difference in pipe modeling between the UCP and 
EDP, explained in section 4.2.2, the production profile for a certain load profile 
is different in the two models. In the UCP the production profile is completely 
determined by the load, as both the delay time and the heat loss are fixed. This is 
not the case in the EDP where the separate mass flows and temperature 
modeling introduces more freedom. 

 
The conservative approach when determining the polyhedron and the extra freedom in 
production introduced by the more detailed pipe description should in most cases 
guarantee that the input from the UCP results in a feasible EDP. The only situation 
when a feasibility problem could arise would be when the fixed delay in the UCP 
spreads and therefore lowers a load peak more than what is possible in the EDP, due to 
e.g. a higher mass flow or temperature constraints. Such a scenario has not yet been 
found in this project.  
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7 Optimization examples 

7.1 Overview of Cases 
The following section contains five optimization cases. The first two are used for 
analyzing important characteristics of the implementation of the district heating 
network. Case III is a more realistic scenario where the integration between the UCP 
and EDP is included and the optimization runs over several days. These cases are based 
on deterministic data, whereas the last two include stochastic programming. In these 
cases the load profile is uncertain and in case V also the electricity price is 
nondeterministic. 
 
The first three cases are divided into two sub-cases, to clarify the effects of increasing 
the complexity of the models. The characteristics of each case are summarized in Table 
16. 

Table 16: Production planning case characteristics. 

Tabell 16. Karakteristik för produktionsplaneringsfall. 

Case Number of 
customers 

Delay Heat 
losses 

Number of 
prod. units 

Accumulator Optimization 
time 

Ia  1  No  No  1  No  24 h 
Ib  1  Yes  Yes  1  No  24 h 
IIa  3  Yes  No  1  No  24 h 
IIb  3  Yes  Yes  1  No  24 h 
IIIa  1  No  No  3  Yes  96 h 
IIIb  3  Yes  No  3  Yes  96 h 
IV  1  Yes  No  3  No  24 h 
V  1  Yes  No  2  No   

 

7.1.1 Common Settings 
For the cases I, II and IV the optimization time is 24 hours, starting at midnight. In cases 
I and II the same time horizon is used for the EDP and the UCP and there is no 
integration between the optimizations. For the stochastic cases only an UCP 
optimization is considered. In case III the optimization time horizon is four days for the 
UCP. This time is split into 18 and 15 hour sections for the respective subcase in the 
EDP. The starting point for each optimization is then the final point of the previous one. 
In all cases the element length is 30 minutes in the UCP and 20 minutes in the EDP.  
 
In the first four cases the customer heat demand is defined by a base load with two 
peaks added at 07:00 and 19:00, as seen in Figure 22. This is roughly corresponding to 
the heat demand expected from a residential area on a week day. In case I and II the 
base load is constant, while a linear increment is added in case III, making the load 
increase from one day to the next. In the stochastic cases the load profile is uncertain 
and therefore split into several independent scenarios. 
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Figure 22: Load profiles for the deterministic optimization cases. 

Figur 22. Lastprofil för de deterministiska optimeringsfallen. 

 

Figure 23: Outdoor temperature profile and corresponding customer return temperature. 

Figur 23. Utomhustemperatur och motsvarande returtemperatur från kunderna. 
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In the deterministic cases an outdoor temperature model is used with a base temperature 
of -5 o C and a peak temperature of 5 o C at 14.00. This temperature is used for 
determining the heat loss in pipes and the temperature of the water leaving the 
customers. The temperature profiles are displayed in Figure 23. 

7.1.1.1 Topology 
The network topology for each case is illustrated in Figure 24. The method for deriving 
the customer distribution from data, used in case II and III, is explained in detail in 
Chapter 4.3. The distribution of the heat demand between the customers and the pipe 
delays for these cases are described in Table 17. Case II and III have slightly different 
customer distributions due to the addition of the Husbyborg oil boiler in case III. 

Table 17: Customer distribution data. The exact pipe delay cannot be used in the optimization 
models due to the discretization.  

Tabell 17. Kundfördelningsdata. Den exakta rörfördröjningen kan inte användas i 
optimeringsmodellerna på grund av diskretiseringen. 

Case Customer Exact pipe 
delay [h] 

Implemented Pipe 
delay [h] 

Customer demand 
[%] 

Ib  1    2  100 
II  1  0.4455  0.5  10 
II  2  0.9616  1  70 
II  3  2.3036  2.5  20 
IIIb  1  0.5815  0.5  10 
IIIb  2  0.9429  1  57 
IIIb  3  2.1427  2  33 
IV  1    0.5  100 

 

7.1.2 Result presentation 
The most important optimization results are presented in plots for each deterministic 
sub-case. In a summary of what these plots contain is presented. The profit in each case 
is normalized with the profit of case Ia. For each individual case additional plots are 
added in order to highlight the specific features of that case. 

Table 18: Summary of plot content for the different optimization cases.  

Tabell 18. Sammanfattning av innehåll i plottar för de olika optimeringsfallen. 

Plot description UCP EDP
Heat demand and production  Yes  Yes 
KVV electricity production  Yes  Yes 

Normalized profit  Yes  Yes 
District heating water mass flows and temperatures  No  Yes 
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Figure 24: Network topology for the optimization cases. 

Figur 24. Topologi för distributionsnätet i optimeringsfallen. 

7.2 Case I: Point-wise Network 
This case is divided into two sub-cases; case Ia, with no pipes included in the model and 
case Ib, where pipes corresponding to approximately two hour delays have been 
implemented. The results are visualized in Figure 25 - Figure 33. 

7.2.1 Decision Variables 
The only decision variable in this case is the KVV fuel load. 

7.2.2 Discrete Optimization Features 
For case Ia, it can be observed in Figure 25 that the heat production follows the 
customers demand exactly. Based on this heat production, the KVV will produce the 
maximal amount of electricity according to the polyhedron at every time step. The 
electricity production is displayed in Figure 27. The difference between the lines 
represents the inaccuracy of the polyhedral KVV model compared to the detailed model 
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used in the EDP. The higher UCP profit in Figure 29 is a consequence of the different 
electricity productions, as this generates a larger income.  
 
For case Ib more heat is generated at earlier time in order to satisfy the customer 
demand. In Figure 26 we observe that to compensate for the heat loss, the KVV 
produces more heat, and to compensate the delay, the heat is produced at an earlier step 
in time. The return temperature dependency of the pipe heat losses can be seen in the 
decline in production between hour 10 and 14, corresponding to the lowering of the 
return temperature which happens during these hours. 

7.2.3 Continuous Optimization Features 
For the EDP optimization, the characteristics of the optimization results are more 
dependent on which sub-case that is considered than in the UCP. In Case Ia, similarly to 
the UCP results, the KVV production is identical to the heat demand during most of the 
optimization time. The small differences between the signals, which can be seen during 
the first hour in Figure 25, is an initial transient during which the supply temperature is 
optimized. The close similarity is a result of the implemented customer model, which 
decides the mass flow in the system so that its heat demand is fulfilled. No pipes or 
other means of storing energy in the network, except for a small control volume, limits 
the degrees of freedom in the optimization result significantly. 
 
In Figure 31 the mass flow rate and customer inlet temperature in the district heating 
network, and the VK1 steam pressure, are illustrated for case Ia. From these plots it is 
visible that the mass flow is kept as high as possible, with the water mass flow, the VK1 
steam pressure and customer inlet temperature all being limiting constraints. The drop 
in steam pressure between hour 6 and 20 is explained by the customer return 
temperature profile, which has a minimum at hour 14. The possibility to optimize the 
supply temperature, rather than deriving it from the outdoor temperature is an important 
feature of the implemented optimization method. 
 
For case Ib the EDP optimization results clearly differ from the UCP results, as can be 
seen in Figure 26. 
 
The heat production is in general smaller in the EDP results compared to the UCP. This 
depends on the different pipe heat loss models. In the UCP the supply temperature is 
assumed to be 90oC, whereas the EDP has a supply temperature slightly below 60oC. 
This results in a lower temperature difference between the water and the surrounding 
temperature in the EDP, which also reduces the heat loss. The difference is mostly 
visible for the first part of the optimization time, logically coinciding with a lower water 
supply temperature in the EDP results. 
 
Usage of heat stored in the pipes is also present in case Ib. This is the explanation for 
the reduced heat production during the first part of the optimization interval. The 
optimization algorithm chooses this solution in order to reduce the supply temperature 
which maximizes the electricity production. The increased heat production in the end of 
the optimization time is the results of constraints on the pipe energy, stating that the 
final energy level must be the same as at the start of the optimization. 
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An interesting difference between the optimization solutions can be seen in the KVV 
production for the peak at hour 7. The explanation for the two separate production peaks 
around the heat demand peak is a combination of different phenomena exploited by the 
optimization. The dip in production leading up to the demand peak is explained by 
usage of heat stored in the pipes. This lowers the customer supply temperature, forcing 
an increase in mass flow. The mass flow constraint then gets active, forcing an increase 
in KVV load. The following load profile for the KVV is a function of the maximizing 
the mass flow, causing mostly the VK1 steam pressure constraint to be active. 
 
The pipe delay time in the model together with the theoretical delay time based on the 
mass flow are displayed in Figure 33. The maximal difference is 20 minutes, coinciding 
with the period when the mass flow is maximized. 
 
The total profit for case Ib, displayed in Figure 30, is lower than for case Ia. The reason 
for this is the pipe heat losses in case Ib, which forces a greater heat production and 
therefore increases the fuel cost. The difference in revenue between the UCP and EDP 
depends on the difference in heat loss explained above. 
 

 

Figure 25: Case Ia KVV and customer load for the discrete and continuous optimization. 

Figur 25. Fall Ia, last för KVV och kund för den diskreta och den kontinuerliga optimeringen.  
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Figure 26: Case Ib KVV and customer load for the discrete and continuous optimization. 

Figur 26. Fall 1b, last för KVV och kund för den diskreta och den kontinuerliga optimeringen. 

 

Figure 27: Case Ia electricity production for the discrete and continuous optimization. 

Figur 27. Fall Ia, elproduktion för den diskreta och den kontinuerliga optimeringen. 
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Figure 28: Case Ib electricity production for the discrete and continuous optimization. 

Figur 28. Fall Ib, elproduktion för den diskreta och den kontinuerliga optimeringen. 

 

Figure 29: Case Ia normalized profit for the discrete and continuous optimization. 

Figur 29. Fall Ia, normaliserad vinst för den diskreta och den kontinuerliga optimeringen. 
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Figure 30: Case Ib normalized profit for the discrete and continuous optimization. 

Figur 30. Fall Ib, normalized vinst för den diskreta och den kontinuerliga optimeringen. 

 

 

Figure 31: Case Ia supply water temperature and mass flow and VK1 steam pressure and 
corresponding constraints in the continuous optimization. 

Figur 31. Fall Ia, framledningstemperatur och -massflöde och VK1 ångtryck tillsammans med 
motsvarande bivillkor i den kontinuerliga optimeringen. 



VÄRMEFORSK 
   

 

55 

 

Figure 32: Case Ib supply water temperature and mass flow and VK1 steam pressure in the 
continuous optimization. 

Figur 32. Fall Ib, framledningstemperatur och -massflöde och VK1 ångtryck tillsammans med 
motsvarande bivillkor i den kontinuerliga optimeringen. 

 

Figure 33: Case Ib pipe delay time in the continuous optimization compared to theoretical value. 

Figur 33. Fall Ib, tidsfördröjning i rör i den kontinuerliga optimeringen tillsammans med 
teoretiskt värde. 
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7.3 Case II: Distributed Network 
This case is similar to case I, but the load demand is divided between three different 
customers rather than one. The customers are distributed in a network by placing them 
in parallel with pipes in between, as described in section 4.4. Two sub-cases are 
considered; case IIa without and case IIb with pipe heat loses. The results are visualized 
in Figure 34 - Figure 42. 

7.3.1 Decision Variables 
The only decision variable in this case is the KVV fuel load. 

7.3.2 Discrete Optimization Features 
For both sub-cases the difference in delay time between the customers results in wider 
and lower peaks. The heat losses in case IIb introduce an offset in heat production 
compared to case IIa, in order to fulfill the customer heat demand. A comparison 
between case Ia and case IIa reveals that the distributed customer model reduces the 
production peak by approximately 11 MW in the UCP results. 
 

7.3.3 Continuous Optimization features 
Like in case I the EDP optimization results differ from the UCP results due to the 
possibilities to store energy in the network and use mass flow changes to handle 
changes in customer demand. This happens for both sub-cases.  
 
In case IIa it is clearly visible from Figure 34 that heat stored in the pipes is used to 
fulfill the customer heat demand during the first part of the optimization time. This 
lowers the customer supply temperature which is economically beneficial. To handle the 
second peak the opposite happens, as the pipes are heated in advance in order to reduce 
the maximal load for the KVV. 
 
In Figure 35 the load profile for case IIb is displayed. An important effect of the pipe 
delay can be observed here. During the first peak the customer inlet temperature is 
almost constant and the load peak is handled by increasing the mass flow, as can be 
seen in Figure 41. As the water is incompressible this means that the increased load 
needs to be handled without any delay in the KVV. For the second peak however, only 
increasing the mass flow would violate the VK1 steam pressure constraint, so the 
temperature is also increased. When the temperature increases to handle the peak, the 
delay time is visible when comparing the KVV production and the customer load. 
However as the mass flow also increases the delay in the EDP is less pronounced than 
in the UCP results. 
 
Similarly to the first case, the mass flow in case II is in general maximized, with the 
supply temperature at the furthest customer station and the VK1 steam pressure being 
limiting constraints, as can be seen in Figure 40 and Figure 41. An important difference 
introduced by the distributed network in case IIb is that temperature constraints for 



VÄRMEFORSK 
   

 

57 

individual customers can be handled. For the implemented network model the farthest 
customer will have the active constraint as the heat losses are greatest for this customer. 
In case IIb this is customer 3. 
 
A clear difference between the subcases can be observed regarding the handling of the 
hour 19 load peak. In case IIa the production peak is significantly wider and lower 
compared to case IIb. The reason why this kind of production profile is not possible 
when pipe heat losses are present is that the heat losses in the return lines are lowering 
the temperature of the water entering the KVV. This reduces the VK1 steam pressure, 
making the constraint active for a higher production level.  
 
The pipe heat losses in case IIb are similar to those in case Ib, as can be seen in Figure 
42. The outdoor and return temperature profiles are the main contributors to the 
characteristics of these signals. The maximum in outdoor temperature results in the 
minimum in return temperature at hour 14, which creates a minimal temperature 
difference in the pipes at this hour and also a minimum in heat losses. The higher supply 
temperature during the second peak is also influencing the heat loss profiles. 

 

Figure 34: Case IIa KVV heat production and total customer heat demand for the discrete and 
continuous optimization. 

Figur 34. Fall IIa, värmeproduktion för KVV och sammanlagt värmebehov för den diskreta och 
den kontinuerliga optimeringen. 
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Figure 35: Case IIb KVV heat production and total customer heat demand for the discrete and 
continuous optimization. 

Figur 35. Fall IIb, värmeproduktion för KVV och sammanlagt värmebehov för den diskreta och 
den kontinuerliga optimeringen. 

 

Figure 36: Case IIa electricity production for the discrete and continuous optimization. 

Figur 36. Fall IIa, elproduktion för den diskreta och den kontinuerliga optimeringen. 
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Figure 37: Case IIb Electricity production for the discrete and continuous optimization. 

Figur 37. Fall IIb, elproduktion för den diskreta och den kontinuerliga optimeringen. 

 

Figure 38: Case IIa normalized profit for the discrete and continuous optimization. 

Figur 38. Fall IIa, normaliserad vinst för den diskreta och den kontinuerliga optimeringen. 
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Figure 39: Case IIb normalized profit for the discrete and continuous optimization. 

Figur 39. Fall IIa, normaliserad vinst för den diskreta och den kontinuerliga optimeringen. 
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Figure 40: Case IIa customer inlet water temperatures, customer mass flows and condenser 
steam pressure in the continuous optimization. 

Figur 40. Fall IIa, massflöde och framledningstemperatur för respektive kund, samt 
kondensortryck för den kontinuerliga optimeringen. 
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Figure 41: Case IIb customer inlet water temperatures, customer mass flows and condenser 
steam pressure in the continuous optimization. 

Figur 41. Fall IIb, massflöde och framledningstemperatur för respektive kund, samt 
kondensortryck för den kontinuerliga optimeringen. 
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Figure 42: Total heat losses for case Ib and IIb in the continuous optimization. 

Figur 42. Sammanlagda värmeförluster för fall Ib och IIb i den kontinuerliga optimeringen.  

7.4 Case III: Optimization over Several Days 
The following optimization case was created in order to investigate the performance of 
the implemented production planning strategy in a more complex and realistic scenario. 
Therefore a UCP optimization horizon over four days is considered and three heat 
production units are used. Two of these units, the KVV and the AFA, are run at all 
times, while the status of the last one, the Husbyborg oil boiler, is a decision variable in 
the UCP. The EDP is solved for five separate 20 hour windows for case IIIa, and six 
windows for case IIIb, with the Husbyborg starting time and accumulator energy level 
as input. However, the last hours of each EDP solution are disregarded in the production 
planning to avoid transient behaviors at the end of the optimization interval. In case IIIa 
the last two hours are disregarded, while the last five hours are disregarded in case IIIb. 
The starting point of each 20 hour optimization scenario is correspondingly determined 
by the status in the network 18 and 15 hours into the previous optimization result for the 
respective case. The disregarded section needs to be longer in the second sub-case due 
to the slower dynamics introduced by the pipes. 
 
As oil is much more expensive than the peat which is used in the KVV, or the waste 
used in the AFA, it is desirable to delay the start-up of the oil boiler for as long as 
possible. The start-up cost and maintenance costs are additional reasons for avoiding 
starting extra units. 
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The two sub-cases have different network topologies. In case IIIa a point-wise net with 
no pipes added to the model is used. This corresponds to the typical network 
implementation in today’s standard methods for unit scheduling. 
 
In case IIIb a distributed network with three customers and pipes between is used. Here 
the Husbyborg plant is placed the same distance away from Boländerna as the second 
customer, in order to mimic the topology of the real network. This unit can only be used 
to heat customer 3, as it otherwise would be necessary to introduce reversible pipe mass 
flows. For this reason an extra constraint is added in the UCP formulation. As the plant 
is connected in parallel with the customers a fixed mass flow through the unit have been 
assumed in the EDP formulation in this case.  
 
The models are initialized with the Husbyborg plant turned off, the AFA running at full 
load and the KVV load being 50%. As there is a negative cost on the AFA fuel this unit 
is kept running at maximal load throughout the optimization time. 
 
The results are visualized in Figure 44 - Figure 52. 

7.4.1 Decision Variables 
The decision variables in this case are the KVV fuel load, the Husbyborg fuel load and 
the accumulator pump speed. 

7.4.2 Discrete Optimization Features 
In both sub-cases the accumulator is used to handle the peaks in the heat demand 
profile, as seen in Figure 43 and Figure 44, where the load profiles are displayed and 
Figure 49 and Figure 50, which display the accumulator usage. As the heat demand is 
increasing the Husbyborg oil boiler must eventually be started. In the first sub-case this 
happens during the first peak in day 2, after 30.5 hours, while in case IIIb the start-up 
happens after 39.5 hours. In this sub-case the distributed customer model decreases the 
peak at the main production site which is what makes the delay in the start-up of the oil-
boiler possible. The difference in start-up time is an important result of the distributed 
network model as running extra units is expensive. 
 
As the heat demand increases further the load of the oil boiler is increased in steps. As 
the oil is more expensive than the heat it produces, the increase in load reflects on the 
hourly profit in Figure 47 and Figure 48, which decreases in corresponding steps. 

7.4.3 Continuous Optimization Features 
As in previous cases, the finer discretization and more complex modeling in the EDP 
formulation compared to the UCP result in some differences between the optimization 
results. The EDP signals are in general less smooth and involve more control actions 
and transient behaviors. However, the general characteristics are similar for the two 
solutions, especially for the first sub-case. Features such as optimization of supply 
temperature and better constraint handling should though guarantee that the quality of 
the EDP results is higher than the quality of the UCP results. 
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When the load profiles in Figure 43 and Figure 44 are examined, a difference in the 
modeling of the KVV between the UCP and the EDP can be observed, as the EDP 
model allows for a slightly higher heat production at maximal load. This forces a 
reduced production from the KVV in the EDP during the first days of the optimization, 
as the accumulator constraints and Husbyborg start-up time are based on a lower 
maximal load. 
 
In Figure 45 and Figure 46 the electricity productions are visualized. The greater 
variations in the electricity production in the EDP results compared to the UCP depends 
on the more detailed KVV and district heating water description in the continuous 
formulation. The on average higher electricity production in the EDP is a consequence 
of differences in the KVV modeling. 
 
In Figure 47 and Figure 48 one can see that the profit has a great similarity both 
between the UCP and EDP and between the two sub-cases. Due to the additional fixed 
costs of starting and running the Husbyborg oil boiler, and the added fixed income from 
running the AFA, the relative difference is very small. The start-up cost of the 
Husbyborg plant is visible in the UCP results as a small dip in the hourly revenue. 
 
In case IIIa the EDP accumulator signal is very similar to the corresponding signal in 
the UCP, as can be observed in Figure 49. The only difference is that parts of the load 
peaks are also handled by the production units in the EDP, first by the KVV and later, 
when the oil boiler is started and the KVV is running at maximum load, the Husbyborg 
plant. For case IIIb the difference is greater, which is shown in Figure 50. This depends 
on the addition of the pipes to the model, which increases the degrees of freedom in the 
EDP compared to the UCP, and the shorter optimization windows in the second sub-
case. Having more similar KVV models and improving the implementation of the 
accumulator energy constraint would therefore be desirable in order to improve the 
integration. 
 
Like in previous cases the district heating water mass flow is kept close to the maximal 
constraint. In case IIIa this constraint is present for both the customer and the KVV 
mass flows, these signals are displayed together with the constraint in Figure 51. In 
Figure 52 the supply temperatures and mass flow for each customer in case IIIb are 
showed. As there are additional production units heating the district heating water 
leaving the KVV, the customer supply temperature is clearly higher in case III 
compared to previous cases, and the lower customer supply temperature constraint does 
therefore not get active in either of the sub-cases. In case IIIb the inlet temperature for 
customer 3 has a different profile than the other customers. The reason for this is the 
extra mass flow that is coming from the Husbyborg plant. Before the plant is started the 
temperature is lower as the supply water is mixed with return water due to this mass 
flow. When the plant is started, it increases the water temperature more than the rest of 
the supply water, resulting in a higher supply temperature for customer 3 than the other 
customers. 
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Figure 43: Case IIIa heat production and customer load for the discrete and continuous 
optimization. 

Figur 43. Fall IIIa, värmeproduktion och värmebehov för den diskreta och den kontinuerliga 
optimeringen. 

 

 

Figure 44: Case IIIb heat production and total customer load for the discrete and continuous 
optimization. 

Figur 44. Fall IIIb, värmeproduktion och sammanlagt värmebehov för den diskreta och den 
kontinuerliga optimeringen. 
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Figure 45: Case IIIa electricity production for the discrete and continuous optimization. 

Figur 45. Fall IIIa, elproduktion för den diskreta och den kontinuerliga optimeringen. 

 

 

Figure 46: Case IIIb electricity production for the discrete and continuous optimization. 

Figur 46. Fall III3, elproduktion för den diskreta och den kontinuerliga optimeringen. 
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Figure 47: Case IIIa normalized profit for the discrete and continuous optimization. 

Figur 47. Fall IIIa, normaliserad vinst för den diskreta och den kontinuerliga optimeringen. 

 

 

Figure 48: Case IIIb normalized profit for the discrete and continuous optimization. 

Figur 48. Fall IIIb, normaliserad vinst för den diskreta och den kontinuerliga optimeringen. 
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Figure 49: Case IIIa accumulator energy content and flow for the discrete and continuous 
optimization. 

Figur 49. Fall IIa, energiinnehåll och -flöde för ackumulatorn i den diskreta och den 
kontinuerliga optimeringen. 

 

Figure 50: Case IIIb accumulator energy content and flow for the discrete and continuous 
optimization. 

Figur 50. Fall IIb, energiinnehåll och -flöde för ackumulatorn i den diskreta och den 
kontinuerliga optimeringen. 
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Figure 51: Case IIIa customer supply temperature and mass flows in the continuous 
optimization. 

Figur 51. Fall IIIa, framledningstemperatur och massflöde för kunden i den kontinuerliga 
optimeringen. 

 

Figure 52: Case IIIb customer supply temperatures compared to the temperature constraints 
and mass flows in the EDP. 

Figur 52. Fall IIb, framledningstemperatur och massflöde för kunderna i den kontinuerliga 
optimeringen. 
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7.5 Case IV: Stochastic Programming 
In this section an optimization case with an uncertain heat demand profile is 
investigated. The methods presented in section 6.2.3 are used to solve the production 
planning problem. 
 
Three production units with different characteristics are present in the setup; the KVV, 
the Husbyborg oil boiler and a solid fuel boiler (SFB) that is not present in the real 
Uppsala network. Initially only the KVV is running, but depending on which demand 
profile that is realized the start-up of additional units might be necessary to fulfill the 
customer heat demand. In order to highlight the impact of stochastic programming on 
the UCP, the additional units have been chosen to have clearly different behaviors. The 
Husbyborg oil boiler has a short start-up time, but the oil makes it expensive to use. The 
SFB has a much lower fuel cost, but takes significantly longer to start, representing the 
characteristics of a cold start of the boiler. The specific parameter values of this unit are 
presented in Table 19. 

Table 19: SFB characteristics. The start-up cost is normalized with the corresponding cost for 
the Husbyborg oil boiler. 

Tabell 19. Karakteristik för fastbränslepannan. Uppstartskostnaden är normaliserad mot 
motsvarande kostnad för Husbyborgsverket. 

Parameter Value 
Max capacity [MW] 120 
Min capacity [MW] 15 

Fuel cost (normalized) 0.52 
Fixed cost (normalized) 2.02 

Variable cost (normalized) 0.017 
Start-up cost (normalized) 2.67 

Start-up time [h] 7 
Efficiency 0.896 

 
The same type of demand profile is used as in the previous cases, with two demand 
peaks on a 24 hour optimization time. However, the linear offset used in this case is 
different as it represents the difference between the scenarios during stage two, which is 
starting after 12 hours. In order to prevent infeasibility problems, the demand profiles of 
stage two are however identical for the first time step of this stage. Otherwise the 
production at the last time step of stage 1 would be impossible to determine as there is a 
delay of one time step between production and consumption. Four different scenarios 
are included in the model, with demand profiles and probabilities displayed in Figure 
53. 
 
The KVV modeling is simplified compared to the deterministic cases, as only a constant 
return temperature is considered and the polyhedral representation of the plant is 
therefore replaced with a polygon. 
 
The heat production for each unit and scenario for the different production planning 
strategies is presented in Figure 54 - Figure 56. 
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Figure 53: Case IV total customer heat demand profiles during stage 1 and 2. 

Figur 53. Fall IV, kundernas totala värmebehov under de två stegen. 

7.5.1 Result Features 
The total profit for each of the scenarios is presented in Table 20, normalized with the 
perfect information result. 

Table 20: Expected profit from the three planning approaches. 

Tabell 20. Förväntad vinst från de tre planeringsmetoderna. 

Approach Expected profit (normalized) 
Perfect information 1 

Stochastic programming 0.972 
Wait-and-see 0.948 

 
As expected the perfect information strategy results in the highest profit. The plans 
derived for this case are interesting as they provide a reference when the other results 
are analyzed. In the perfect information strategy no additional units are started for the 
first scenario and only the Husbyborg oil boiler is started in scenario 2. For scenario 3 
and 4 the SFB is used to handle the increased load instead, since the higher load makes 
it more profitable to run this unit, even though the start-up time is longer. In these 
scenarios the start-up of the SFB is initialized before the end of phase 1. 
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When stochastic programming is used to solve the optimization problem no additional 
unit is started during phase 1. This implies that the results coincide with the perfect 
information results for scenario 1 and 2. In scenario 3 and 4 the SFB is used to handle 
the increased heat demand. However, the start-up is delayed compared to the perfect 
information results, making it necessary to also start the Husbyborg plant. This involves 
a greater cost compared to the ideal strategy in these scenarios, reducing the total profit. 
 
The wait-and-see approach forces an early start-up of the SFB, as this is the ideal 
strategy in scenario 4. This is close to the perfect strategy in scenario 3 as well, whereas 
the perfect results indicate that using the oil boiler instead would be more beneficial in 
scenario 2. In scenario 1 the biggest drawback of the robust planning is visible, as the 
SFB is started unnecessarily. Even though the unit is shut down as soon as possible, the 
start-up reduces the profit in this scenario considerably, as it involves additional costs 
and forces a reduced heat and electricity production from the KVV. 
 
The results from this stochastic example shows that it is possible to achieve a higher 
profit by considering the probability of different future scenarios when the production 
planning strategy is developed, compared to only planning for handling the worst case 
scenario. This is especially true in situations when there is a choice of which unit to start 
or stop and the available units have different operating characteristics. 
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Figure 54: Case IV KVV production in different scenarios, with increasing heat demand from top 
to bottom. SP is the stochastic programming results, PI is the perfect information 
results, and RP is the wait-and-see results. 

Figur 54. Fall IV, värmeproduktion från KVV för olika scenario, med ökande värmebehov 
uppifrån och ner. SP, PI och RP är resultaten för stokastisk programmering, perfekt 
information respektive wait-and-see metoden. 
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Figure 55: Case IV Husbyborg production in different scenarios, with increasing heat demand 
from top to bottom. SP is the stochastic programming results, PI is the perfect 
information results, and RP is the wait-and-see results. 

Figur 55. Fall IV, värmeproduktion från Husbyborg för olika scenario, med ökande värmebehov 
uppifrån och ner. SP, PI och RP är resultaten för stokastisk programmering, perfekt 
information respektive wait-and-see metoden. 

 

. 
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Figure 56: Case IV SFB production in different scenarios, with increasing heat demand from top 
to bottom. SP is the stochastic programming results, PI is the perfect information 
results, and RP is the wait-and-see results. 

Figur 56. Fall IV, värmeproduktion från fastbränslepannan för olika scenario, med ökande 
värmebehov uppifrån och ner. SP, PI och RP är resultaten för stokastisk 
programmering, perfekt information respektive wait-and-see metoden. 

7.6 Case V: Stochastic programming with uncertain electricity 
price 

In this section, we formulate a stochastic programming model in which variations in 
both electricity price and demand are considered. Using this model, comparisons with a 
replanning approach are made on a small sample case study using mock-up data. The 
objective of the study is not to accurately model electricity price and demand variation, 
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but only to determine whether the stochastic nature of electricity price and heat demand 
could theoretically have an impact on the profitability of running a district heating plant.  

7.6.1 Problem Data 
In this study the unknown demand and price in stage two is discretized into three 
possible outcomes. The problem setup is as follows: 

- Eight time steps, four in the first stage and four in the second stage. 
- Two production units: one KVV and one additional unit denominated HVC. 
- A single customer, connected with pipes which incur a one-unit delay. 
- Possibility to overproduce heat, since the heat demand is unknown at the time of 

the production. The excess heat returns to the KVV from the customer after one 
time unit and is limited to at most 65MW.  

- No start-up/shut-down ramping. 
- No heat losses. 

 
The characteristics of the HVC is displayed in Table 21. 

Table 21: HVC characteristics. 

Tabell 21. Karakteristik för HVC. 

Parameter Value 
Max capacity [MW] 30 
Min capacity [MW] 100 

Fuel cost (normalized) 0.52 
Fixed cost (normalized) 2.02 

Variable cost (normalized) 0.017 
Efficiency 0.92 

 
 
The three outcomes contain data as outlined in Table 22. As can be seen, at time 5 the 
heat demand spikes at 325 MW in outcome 1, 300 MW in outcome 2 and 275 MW in 
outcome 3.  

Table 22: Stochastic outcomes in stage two. 

Tabell 22. Stokastiska utfall i steg 2. 

Stage Time [sample] Demand El. Price 
[normalized] 

1 1  150  1 
 2  150  1 
 3  199  1 
 4  266  1 
2 5 325 300 275 0.75 1 1.25 
 6 291 266 241 0.75 1 1.25 
 7 224 199 174 0.75 1 1.25 
 8 175 150 150 0.75 1 1.25 
 Probability: 0.4 0.3 0.3 0.4 0.3 0.3 
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7.6.2 Results 
The results of the study are shown in Table 23 below. 

Table 23: Expected profit from the three planning approaches. 

Tabell 23. Förväntad vinst från de tre planeringsmetoderna. 

Approach Expected profit (normalized)
Perfect information 1 

Stochastic programming 0.9673 
Wait-and-see 0.9490 

 
The perfect information approach gives an indication on what the possible gains are 
from improving forecasting technology and gives an upper bound on the profit for all 
correct methods using the defined setup, but is otherwise not useful for planning in 
practice. The wait-and-see approach corresponds to robust planning, and has been 
considered as a practical alternative for a full stochastic programming approach. This 
method gives a lower bound on the profits of an optimal stochastic programming 
method. Considering stochastic programming, the results show that it was, for this 
particular setup, possible to reach a marginally higher profit by explicitly considering 
the possible outcomes in stage 2, and plan for them in stage 1. The difference between 
stochastic programming and robust planning is approximately 1.9 % on this particular 
setup. The difference can be compared to the theoretical maximum given by the perfect 
information approach, which is 5.4 % higher than the expected profit from wait-and-see. 
 
The individual profiles for the three approaches are shown in Figure 57, Figure 58 and 
Figure 59. Comparing the results for the stochastic programming approach in Figure 58 
to the results for the wait-and-see approach in Figure 59, we can see that in the latter 
case, the HVC starts up already at time 3, while this does not happen in the former case. 
Instead, in the first scenario, using the stochastic programming approach, the HVC runs 
at time 5 in stage 2, which does not happen in the wait-and-see approach. Starting the 
HVC at time 4 instead of 3 makes the return temperature lower at time 5. This allows 
the KVV to produce at a higher level (thus allowing the production of more electricity) 
in scenario 3 when the price is high. As the expected price in stage 2 is only 195, this 
opportunity is not taken into account in stage 1 in the wait-and-see approach, and as 
preparations have not been made, the opportunity is therefore lost when replanning is 
finally made at time 5. This illustrates the benefit of a stochastic approach. 
 
One clear drawback of this optimization case is the dependency between the heat 
demand and the electricity price in the considered scenarios. In order to create a more 
realistic scenario these signals should be uncorrelated. Such a formulation would 
however increase the complexity of the optimization problem considerably. The effect 
of increasing the complexity of a stochastic formulation will be investigated in the next 
section. 
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Figure 57: Perfect prognostics results. 

Figur 57. Resultat vid perfekt prognostisering. 

 

 

Figure 58: Stochastic programming results. 

Figur 58. Resultat för stokastisk programmering. 
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Figure 59: Wait-and-see approach results. 

Figur 59. Resultat för wait-and-see metoden. 

7.7 Scaling Test 
In this section a comparison of the performance of the two MILP solvers used in this 
project, GLPK and Gurobi, is conducted. For this purpose an optimization setup 
identical to the one in case IV is used, except for the probability distribution of the 
scenarios and the number of scenarios. The heat demand scenarios are for simplicity 
assumed to be equally probable. The complexity of the optimization problem increases 
rapidly with an increased number of scenarios, making this a useful parameter in a 
scaling test. 
 
Based on the computation time of the open-source solver the number of scenarios have 
been varied between two and seven. The calculation time for each solver when solving 
the stochastic programming formulation for different numbers of scenarios is presented 
in Table 24. 
 
The results show an exponential dependency between the number of scenarios and the 
calculation time for the open-source solver, whereas the time is increasing more linearly 
for the commercial solver. For seven scenarios the Gurobi optimizer finds the optimal 
solution approximately 160 times faster than GLPK finds the same one. 
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Table 24: Computation times for open-source and commercial MILP solver. 

Tabell 24. Beräkningstider för open-source-, respektive kommersiell lösare. 

Number of scenarios GLPK time [s] Gurobi time [s] 
2 1.6 1.5 
3 7.9 1.4 
4 7.4 2.0 
5 56.4 2.2 
6 404.1 2.7 
7 517.5 3.2 

 
For the setups used for the UCP in this project the open source solver has proven 
sufficient, but based on the results from the scaling test it seems to be beneficial to use a 
commercial solver when more complex MILP problems are investigated. Using a 
commercial tool would seem especially useful if more complex stochastic formulations 
are considered, as the open-source solver struggles in this case. 
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8 Summary 
This section summarizes the main contributions of the project. 

8.1 General 
In general, the work has shown that 

- It is possible to: 
o Model distributed consumption and production using a distribution 

network in both UCP and EDP. 
o Optimize production planning schedules based on models with 

distributed consumption and production in both UCP and EDP. 
- Modeling of a distribution network, as compared to point-wise consumption and 

production, has impact on optimized production planning: reduction of costly 
production peaks, heat losses, pipe heat storage. 

- Optimization horizons have been extended in both UCP (several days) and EDP 
(24h) compared to [9]. 

- Stochastic optimization is able to utilize load demand prediction probabilities in 
production planning. 

8.2 Modeling 
As the optimizations utilize the models in any way possible, it is important that the 
models describe the reality as closely as possible. 
 
Main results for the physics-based modeling for the district heat distribution and 
customers are 

- Both production and consumption of heat are distributed. This means that 
o Total heat demand is distributed among customers. 
o Delay times are individual for each customer. 
o Analysis on effects of distribution, compared to point-wise production 

and consumption, can and has been performed. 
- The distribution net is built using physics-based pipes, giving the following 

properties 
o Time delay of a pipe is supply/return flow dependent. 
o Heat loss of a pipe depends on supply/return water temperature, pipe 

length, and outdoor temperature. 
o Distribution net can be used as accumulator as the pipes are capable of 

storing energy. 
- A customer model that  

o Utilizes a return temperature model based on outdoor temperature. 
o Calculates its individually needed water supply flow rate based on supply 

and return water temperature.  
o Determines overall distribution hydraulics. 
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Main results for the physics-based modeling for the production units are: 
- Kraft- och värmeverk (KVV) has generation of heat and electricity that depend 

on return temperature and flow as well as load level, and has been validated with 
measurement data with low relative error (~5%). 

- The physics-based KVV model has been used as reference for incorporating 
return temperature dependence in the KVV UCP model by means of a polytope 
in return temperature-heat-electricity space. 

 

8.3 Optimization 
All resulting planning schedules have been optimized for maximized production profit, 
taking into consideration heat, electricity and fuel prices as well as start-up and 
maintenance costs for the production units.  
 
Physics-based modeling of the distribution network has impacted optimization results, 
and the main characteristics due to this are  

- Costly production peaks can be decreased as each customer has an individual 
time delay and heat demand, yielding production spread out over a longer time 
period.  

o In case III, the peak reduction delayed the start of an expensive boiler. 
- Distribution net is used as an accumulator, controlled by supply temperature. 
- Heat loss in distribution net, dependent on outdoor temperature, can be 

compensated for by higher heat production. 
 
Other characteristics of the resulting optimized planning schedules are  

- Production profit over optimization horizon is maximized. 
- Balance between heat production and heat consumption. 
- Electricity production is maximized due to high sell price. 
- Supply temperature is minimized yielding lower boiler load and supply flow 

(active constraints, see below). 
- Heat demand peaks can be handled by increased supply flow, supply 

temperature, or both simultaneously. 
 
The physics-based model approach in Modelica together with the optimization in 
JModelica.org allows setting constraints on physically relevant signals. The main active 
constraints in the planning schedule are 

- Individual temperature constraints at each customer provides safety towards 
bacterial growth; active in e.g., case I/IIab. 

- A decreased supply temperature requires higher supply flow, which in shown 
cases, e.g., IIIa, reaches limit due to pump flow rate constraint. 

- A high return flow can give too low condenser pressure, which has an active 
constraint in case I. 

- Production units have start-up/stop trajectories as well as minimum and 
maximum loads that have been active. 

  



VÄRMEFORSK 
   

 

84 

The examples with stochastic optimization has shown that  
- It is possible to formulate a stochastic optimization problem based on heat 

demand prediction probabilities. 
- Taking heat demand prediction probabilities into account, it is possible to 

increase the expected profit. 
 
A simple scaling test has revealed that 

- The commercial Gurobi solver performs considerably better than the open-
source package GLPK when MILP problems containing multiple stochastic 
scenarios are solved.  
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9 Future Work 
The work in [9] focused mainly on the production units, having a simple net and 
customer, while the work in this report has built upon [9] and focused more on the 
distribution net and distribution of production and consumption. For implementing the 
approach as a decision support tool, future work could aim at the customer. However, 
improvements on production units and distribution net can be done as well. This section 
presents some possible improvements and ideas. 

9.1 Modeling 
The distribution net considered in this work is one-dimensional and the water media 
model used in the distribution net is a fixed-pressure media. To increase the physics-
based modelling of the net, the following improvements are required: 

- General structures of the distribution net: 
o Several branches and junctions (not one-dimensional) are needed to 

model general district heating water nets. In turn, this may require a finer 
distribution of the total heat load prediction. 

o Pipes of the distribution net need to support reversing flow. 
- Including pressure calculations for the district heating water will make it 

possible to model the pressure drop along the net and at customers. This would 
also make it possible to have constraints on pumps for controlling the pressure 
difference across critical customers. 

 
Customers have requirements on the district heating water system and affect it at the 
same time. An improved customer model that reflects these properties could further 
improve the optimized planning schedule. Improvements include: 

- A pressure drop model, making it possible to set constraint on desired pressure 
of the district heating water. 

- Customer grouping into different types such as residential, commercial and 
industry. In turn requiring improved heat demand prediction models for the 
different types. 

- Inclusion of different demand side management (DSM) strategies at customers 
to reduce load peaks and avoid start-ups of expensive boilers. 

 
The overall fidelity of the UCP models could be improved such that the model 
consistency towards the physics-based EDP models is higher. Advancements in these 
models can include 

- Dependence on supply and return temperature in units, distribution net and 
customer. Such studies have been made, see e.g., [7].  

- Better parameterization of operating range, i.e., not excluding any extreme 
points when generating the UCP models from the EDP models. 
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9.2 Optimization 
The generality of the optimization formulation could be increased by  

- Adding handling of time varying electricity, heat and fuel prices, which was 
seen as interesting in [9]. 

- Adding start cost dependence on unit status history, e.g., lower start cost at 
warm starts than at cold starts, requiring temperature in the UCP unit model. 

- Removing or handling effects of limited optimization horizons such as  
o Accumulator energy at optimization horizon end. 
o Pipe energy at optimization horizon end. 

This is valid for both UCP and EDP optimizations as well as in the integration 
step. 

 
Stochastic programming showed a benefit when having uncertainties in heat demand 
predictions. Future work include therefore 

- Construction of more advanced and reality like scenarios with integration with 
EDP. 

- Analysis of different stochastic programming formulations. 
- Construction of a heat demand prediction model that provides e.g., a nominal 

heat demand prediction and a probability distribution of the heat demand as a 
function of time. 

Frameworks for implementing and solving stochastic mixed-integer linear programs are 
available in e.g., PySP, an open source modeling and solver library, see [28]. 

 
Improvements can be made in the dynamic optimization framework JModelica.org, 
mainly targeting  

- Memory consumption by implementing a BLT algorithm. 
- Implementing warm-start for supported solvers if using previous optimization 

results as initial guess is desired. 
- Evaluating different solvers, such as WORHP [29]. 
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