



#### Demonstration of 1<sup>st</sup> European SOFC Truck APU

Jonas Hagerskans, Volvo



3rd of December 2015



### Agenda

- Project DESTA
- Motivation
- Main Requirements
- SOFC Fuel cell APU
- Volvo Vehicle system
- Vehicle Integration
- Test and results

#### **Description of Work**



- EU project Fuel Cell and Hydrogen Joint undertaking (FCH JU) 3,5 years
- Objective: Demonstrate the 1st European SOFC Truck APU
- AVL (Coordinator)
  - Development of AVL SOFC APU
- Eberspächer
  - Development of Eberspächer SOFC APU
  - Test of SOFC APU (lab)
- TOFC
  - Stack improvements
- Jülich
  - Evaluate the benchmarktest
- Volvo
  - Requirements
  - Test plan
  - Power Electronics
  - Vehicle integration
  - In-Vehicle tests





#### Motivation





#### Motivation

- Estim 2 Billion litres diesel yearly from over-night idling
- Anti idling regulations
- Fuel cost savings
- Low emissions
- Low noise





\*regional differences from strict idling bans (0 min, idling) to idling permission of up to 15 min per hour of standstill

### SOFC Fuel cell APU



- Advantages of a SOFC APU:
  - Efficiency
    - > 30% vs. Truck idling < 10%</p>
  - Fuel consumption:
    - 1/5 compared to truck idling  $\rightarrow$  cost reduction
  - Low noise emissions:
    - No cyclical combustion, no low-frequency vibrations
  - Low pollutant emissions
  - Run on Conventional diesel



### Main Requirements

- Width: 40 cm
- Mass: 150kg
- Output: 3kW Net

~35%

12V nom

<60dB(A)

- Efficiency
- System Voltage:
- Conventional US Diesel
  - Up to 15 ppm S
- Environmental requirements
  - Vibrations /Shock
  - Temperature
  - Sealing etc
- Noise:
- Lifetime
  - 20 000 h -> 5000h operation





#### **DESTA SOFC APU: Basic principle**







2 \* Stack with 75 anode supported cells, 12x12 cm footprint. TOFC

source: www.eberspaecher.com

Jonas Hagerskans / Volvo



#### Volvo Vehicle System





![](_page_10_Figure_0.jpeg)

![](_page_11_Picture_0.jpeg)

#### **APU Installation**

- APU on chassis
- Exhaust
- Diesel from tank
- Air intake w filter

![](_page_11_Picture_6.jpeg)

![](_page_11_Picture_7.jpeg)

![](_page_11_Picture_8.jpeg)

![](_page_11_Picture_9.jpeg)

Jonas Hagerskans / Volvo

3rd of December 2015

![](_page_12_Picture_0.jpeg)

#### In-Vehicle Test

![](_page_12_Picture_2.jpeg)

3rd of December 2015

![](_page_13_Picture_0.jpeg)

#### Noise measurements

| dB(A)            | Outside 3m | Bunk |
|------------------|------------|------|
| APU, Start-up    | 68,5       | 41   |
| APU, Operational | 58         | <40  |
| Idle Engine      | 72,4       | 54,8 |

![](_page_13_Picture_3.jpeg)

Jonas Hagerskans / Volvo

55.0

## 24h Test profile

Typical US mission profile

- APU during night
  - 11h Operation
- Driving during day

E45

- Cool-down
- Heat-up
- ~800 km

![](_page_14_Picture_8.jpeg)

![](_page_14_Picture_9.jpeg)

3rd of December 2015

![](_page_15_Figure_0.jpeg)

Jonas Hagerskans / Volvo

![](_page_16_Picture_0.jpeg)

### CO2/Diesel reduction

![](_page_16_Figure_2.jpeg)

|                     | APU    |       | Engine Ideling |        |            |
|---------------------|--------|-------|----------------|--------|------------|
|                     | Fuel   | CO2   | Fuel           | CO2    | CO2 saving |
|                     |        |       |                |        |            |
|                     | Litres | kg*   | Litres         | Kg*    | %          |
|                     |        |       |                |        |            |
| Warmstart and Night | 9,12   | 23,86 | 33,5           | 90,115 | 73,5       |

\*US diesel and assumed complete combustion

3rd of December 2015

![](_page_17_Picture_0.jpeg)

### Driving

- Total Distance: >2500 km
- Realistic vibrations
  - Highway, City, Country roads
- Salt spray, water splash, gravel etc
- APU still working!

![](_page_17_Figure_7.jpeg)

![](_page_17_Figure_8.jpeg)

3rd of December 2015

CONFIDENTIAL

Jonas Hagerskans / Volvo

Technical TARGETS AND ACHIEVEMENTS

![](_page_18_Picture_1.jpeg)

# The 1st European SOFC Truck APU was successfully demonstrated (06/2015)

| Technical objectives                                                         | Unit  | Planed | Achieved | Status |  |
|------------------------------------------------------------------------------|-------|--------|----------|--------|--|
| Max. start-up time                                                           | min   | 30     | < 70     |        |  |
| Max. Electric power (net)                                                    | kW    | 3.0    | 2.9      | •      |  |
| System electrical net efficiency<br>(approx.)                                | %     | 35     | 29       | 0      |  |
| Diesel consumption (3 kW, net)                                               | l/h   | 0.86   | 0.95     | •      |  |
| Volume                                                                       | I     | 186    | 178      | •      |  |
| Weight                                                                       | kg    | 150    | 160      | 0      |  |
| Noise level                                                                  | dB(A) | 65     | 58       | •      |  |
| CO <sub>2</sub> reduction compared to engine<br>idling of a heavy-duty truck | %     | 75     | 73.5     | 0      |  |
| Operation on conventional road diesel fuel (US Diesel)                       |       |        |          |        |  |

![](_page_18_Picture_4.jpeg)

![](_page_18_Picture_5.jpeg)

![](_page_19_Picture_0.jpeg)

### Future Challenges

- Lifetime
  - Lifetime of 2000h shown but need to increase.
- Cost
  - The cost needs to be in par with the other market alternatives (for HD truck applications)
- Total cost of ownership...
- Start-up time
  - 65 minutes (from cold) shown, but need to decrease.

#### **Project Summary**

![](_page_20_Picture_1.jpeg)

1st SOFC Fuel Cell APU demonstrated on vehicle

- Excellent Cooperation
- Most project goals achieved

CONFIDENTIAL

EEL 721

### More material

![](_page_21_Picture_1.jpeg)

#### Project homepage

http://desta-project.eu/desta-project/

#### **Press Release**

 <u>http://www.desta-</u> project.eu/fileadmin/downloads/DEST
<u>A website press release Volvo Eber</u> <u>spaecher final.pdf</u>

#### Film Clip – In-Vehicle testing

<u>https://www.youtube.com/watch?v=B</u> <u>AN5AiJ983M</u>

#### **Public Report**

Soon...

![](_page_21_Picture_10.jpeg)

3rd of December 2015

#### Press Release, June 2015

#### $\underline{D} emonstration of 1^{st} \underline{E} uropean \underline{S} olid Oxide Fuel Cell \underline{T} ruck \underline{A} PU on a Vehicle$

Recently the goal of the DESTA project (to demonstrate the first Solid Oxide Fuel Cell Auxiliary Power Unit on a heavy duty truck in Europe) has been achieved. The results are a major breakthrough for fuel cell based APU systems for trucks.

![](_page_21_Picture_15.jpeg)

DESTA truck with SOFC APU (without fairing) CDESTA

The APU system developed and supplied by Eberspächer, was integrated and tested by Volvo on a long haul truck for the North American market. Until today, several weeks of smooth operation were demonstrated on conventional US diesel fuel (< 15 ppm sulfur). With the DESTA system, 3 kW of electrical net power can be supplied with an efficiency of 30%, very low NOx emissions, no diesel particles and a noise level of about 58 dB (A) outside the vehicle and less than 40 dB (A) inside the vehicle. Compared to engine idling of a heavy-duty truck the CO<sub>2</sub> emissions could be reduced by 71 %. The diesel consumption is 0.95 l/h at an electrical net power of 3 kW.

![](_page_22_Picture_0.jpeg)

### SOFC Fuel cell principle

![](_page_22_Figure_2.jpeg)

Stack with 75 anode supported cells, 12x12 cm footprint

![](_page_23_Picture_0.jpeg)

### Batteries

- 3 Alternatives
  - All can fulfill energy need for startup (0.8kWh)
  - Alternative 3 with super-capacitor chosen to secure cranking ability

![](_page_23_Figure_5.jpeg)

![](_page_24_Picture_0.jpeg)

#### Vehicle Integration

![](_page_24_Picture_2.jpeg)

![](_page_24_Picture_3.jpeg)

#### In-vehicle testing activities April- June

![](_page_25_Picture_1.jpeg)

- Volvo and Eberspächer joint in-vehicle testing for 5 weeks
- Tests according to test plan
  - ✓ Basic Functionality
  - ✓ Static tests
  - ✓ Vehicle Scenarios
  - ✓ Driving Profiles

![](_page_25_Picture_8.jpeg)

CONFIDENTIAL

![](_page_25_Picture_10.jpeg)

3rd of December 2015

Jonas Hagerskans / Volvo

#### 3rd of December 2015

**Real loads** 

Jonas Hagerskans / Volvo

![](_page_26_Figure_4.jpeg)

#### Micro, Coffee maker, Water boiler etc

![](_page_26_Picture_6.jpeg)

![](_page_26_Picture_7.jpeg)